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Abstract: This study aims to consider lattice Boltzmann method (LBM)–magnetohydrodynamics
(MHD) data to develop equations to predict the average rate of heat transfer quantitatively. The
present approach considers a 2D rectangular cavity with adiabatic side walls, and the bottom wall
is heated while the top wall is kept cold. Rayleigh–Bénard (RB) convection was considered a heat-
transfer phenomenon within the cavity. The Hartmann (Ha) number, by varying the inclination angle
(θ), was considered in developing the equations by considering the input parameters, namely, the
Rayleigh (Ra) numbers, Darcy (Da) numbers, and porosity (ε) of the cavity in different segments. Each
segment considers a data-driven approach to calibrate the Levenberg–Marquardt (LM) algorithm,
which is highly linked with the artificial neural network (ANN) machine learning method. Separate
validations have been conducted in corresponding sections to showcase the accuracy of the equations.
Overall, coefficients of determination (R2) were found to be within 0.85 to 0.99. The significant
findings of this study present mathematical equations to predict the average Nusselt number (Nu).
The equations can be used to quantitatively predict the heat transfer without directly simulating LBM.
In other words, the equations can be considered validations methods for any LBM-MHD model,
which considers RB convection within the range of the parameters in each equation.

Keywords: lattice Boltzmann; Rayleigh–Bénard convection; magnetohydrodynamics; Levenberg–
Marquardt algorithm; data-driven analysis; Nusselt number; Hartmann number; porosity;
rectangular cavity

MSC: 00A72; 62-07; 76A02; 76M27; 80A20

1. Introduction

The lattice Boltzmann method (LBM) is an efficient approach to investigate fluid flow
through numerical simulations across different geometries at microscopic, mesoscopic,
and macroscopic scales [1–8]. LBM is based on statistical mechanics and has immense
potential to establish a data-driven analysis for scientific progress [9–11]. Therefore, high-
dimensional nonlinear LBM data could be taken into account to calibrate any statistical
model through high-performance computing (HPC). With the increasing demand for HPC,
researchers have shifted their focus to fluid flow simulations by considering LBM across
complicated grids [5,12–15]. LBM has been found to be efficient in flow simulations and
heat transfer applications in hydrology, magnetohydrodynamics, and aerodynamics, to
name a few [16–20]. Magnetohydrodynamics (MHDs) represents electrically conducting
fluids in liquid metals and plasma flows. The applications of MHD have been reported
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in a wide range of applications, such as thermal engineering, geophysics, nuclear and
hydroelectric power plants, astrophysics, and so on [18,21–24]. Therefore, the analysis of
heat transfer in convective flow could be established by utilizing the LBM-MHD scheme.

The study of numerical heat transfer through different media is one of the popular
fields of study among researchers [25–28]. Rayleigh–Bénard (RB) convection is one form of
a phenomenon that takes place in a fluid layer assigned to a vertical temperature gradient
and heated from the base [18,29–31]. The difference between buoyancy and gravity leads
to fluid instabilities and convective electrical currents. This type of instability has been
the subject of extensive research to identify a procedure to stabilize the system. One major
reason could be the lack of understanding of the LBM data and correlations of the output
with the input variables prior to the numerical modeling [32]. Therefore, it is necessary to de-
termine the correlations to predict any upcoming phenomena linked to fluid instability. Several
authors reported successful outcomes in stabilizing a system by applying an external magnetic
field due to the induced electrical currents within the fluid [18,33,34]. However, most of the
works were based on analysis through certain numerical parametric variations. Therefore,
the prospect of establishing an LBM data-driven approach to determine correlations with
the heat transfer prediction remains unnoticed.

Machine learning (ML) and deep learning (DL) are two important sectors of artificial
intelligence (AI) with the ability for accurate data analysis and prediction model develop-
ment [35–39]. With computational resources, ML and DL can build a multivariate model
by taking high-dimensional non-linear data and developing correlations and numerical
prediction models within different sectors. The model needs to be trained with a dataset
to calibrate the model, and validations are performed through internal and independent
datasets. However, the prediction model needs to be optimized through efficient training
methods [40]. An inadequately optimized model will perform below the standard and
yield noise within the model, leading to low correlation to predict the outcome. The
Levenberg–Marquardt (LM) algorithm is one of the training methods for ML models, partic-
ularly for artificial neural networks (ANNs). LM develops the correlations by considering
the input variables to provide a nonlinear least squares minimization (NLSM) solution.
Therefore, it indicates that any numerically simulated data, including those from LBM,
could be fed into the LM algorithm to understand the correlations among the variables
through a quasi-ML approach along with numerical validations with the literature.

There is a shortage of literature on LBM data analysis through any efficient algorithm.
However, some recent studies have reported the utilization of neural networks to optimize
LBM data under the influence of MHD in natural convection. For example, Alqaed et al. [41]
studied natural convection and entropy generation by applying a magnetic field with ANN
and presented an equation based on the correlation development. However, the ML
modeling equation lacks information on whether it can be used to predict total entropy
across all geometries. In addition, the equation was not validated against any published
literature to showcase the accuracy and robustness. Shah et al. [42] followed similar steps
by adding radiation heat transfer. However, the validation methodology and the equations
to predict the entropy remained ambiguous. On the other hand, the study presented by
He et al. [43] was a much-improved one, as the correlation developments of LBM data
were efficiently described through ANN and internal validations. Yet, the independent
validations were still missed, and therefore, the accuracy of the correlations could not be
expanded beyond the internal database.

This study aims to address the shortcomings within the literature by analyzing LBM
data to establish correlations by considering the numerical variables, such as Rayleigh (Ra)
number, Darcy (Da) number, Hartmann (Ha) number, inclination angle (θ), and porosity
(ε), to predict the average rate of heat transfer (Nu) by the LM algorithm. The obtained
equations are presented in each section, including the statistical accuracy indicators, fol-
lowed by validations within the literature in each step under various circumstances. The
correlation coefficients (R2) are found to be between 0.85 and 0.99, which provides more
confidence in the accuracy of the numerical model.
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2. Geometry of the Porous Cavity

The schematic diagram of the porous cavity along with associated coordinates is
illustrated in Figure 1. The rectangular cavity in the 2D configuration includes the effect
of a magnetic field to investigate the RB convection by considering incompressible and
laminar fluid flow. The LBM data were extracted within these specifications. The cavity
was assumed to be filled with electrically conducting fluid. H denotes the vertical height,
and the horizontal length is denoted by L, where L = 2H. Two vertical side walls were
considered adiabatic, i.e., no heat transfer will occur. The top and bottom walls are cold and
heated, represented by Tc and Th, respectively, where Th > Tc. The LBM data were extracted
through different parametric variations, such as the Rayleigh (Ra) number within the
higher buoyancy range (104 and 105). Three different Darcy (Da) numbers were considered,
namely, 10−1, 10−2, 10−3, and Hartmann (Ha) numbers were considered to be between
0 and 100 to investigate the impact of the magnetic field. The impact of the magnetic
field was further studied along with different inclination angles (θ) ranging from 0 to 90.
The porosity (ε) was between 0.4 and 0.9. The gravitational acceleration (gy) was acting
downward. The uniform magnetic field was considered to be B in Figure 1. The study
assumes the Joule heating and viscous dissipation to be negligible to focus entirely on the
impact of the magnetic field [18]. However, through the Boussinesq approximation, this
particular assumption is validated, which ignores the density gradient, except from the
appearance where the former is multiplied by gy.

Figure 1. Considered geometry of the rectangular porous cavity along with the magnetic field.

3. Mathematical Formulations in Computation
3.1. Macroscopic Variables for Natural Convection in RB-MHD Flow in Porous Media

The formulation of LB equations using macroscopic governing equations is required
to study MHD natural convection through porous media. These formulae include the
energy equation, the Navier–Stokes equation with the Brinkman–Forchheimer model,
and the continuity equation. However, these equations need to be converted to their
non-dimensional form before being used to simulate MHD natural convection.

The dimensional equations for continuity, u-momentum, v-momentum, and energy are
as follows:

∂ū
∂x̄

+
∂ῡ

∂ȳ
= 0 (1)

∂ū
∂t̄

+
1
ε

(
ū

∂ū
∂x̄

+ ῡ
∂ū
∂y

)
=

1
ρ

[
−ε

∂ p̄
∂x̄

+ µ̄

(
∂2ū
∂x̄2 +

∂2ū
∂ȳ2

)
+ σεB2(ῡ sin φ cos φ− ū sin2 φ)

]
− ευ

K
ū

(2)
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− 1.75√
150εK

|ū|ū

∂ῡ

∂t̄
+

1
ε

(
ū

∂ῡ

∂x̄
+ ῡ

∂ῡ

∂ȳ

)
=

1
ρ

[
−ε

∂ p̄
∂ȳ

+ µ̄

(
∂2ῡ

∂x̄2 +
∂2ῡ

∂ȳ2

)
+ gyερβ(T̄ − Tc) + εσB2(ū sin φ cos φ− ῡ cos2 φ)

]
− εν

K
ῡ

− 1.75√
150εK

|ū|ῡ

(3)

∂T̄
∂t̄

+ ū
∂T̄
∂x̄

+ ῡ
∂T̄
∂ȳ

= α

(
∂2T̄
∂x̄2

+
∂2T̄
∂ȳ2

)
(4)

Meanwhile, the dimensionless governing equations could be written as the following:

∂u
∂x

+
∂υ

∂y
= 0 (5)

∂u
∂t

+
1
ε

(
u

∂u
∂x

+ υ
∂u
∂y

)
= −ε

∂p
∂x

+
Pr√
Ra

(
∂2u
∂x2 +

∂2υ

∂y2

)
+ ε

Pr√
Ra

Ha2(u sin φ cos φ− υ sin2 φ)− ε
Pr√

RaDa
u

(6)

− 1.75√
100εDa

|u|u

∂υ

∂t
+

1
ε

(
u

∂υ

∂x
+ υ

∂υ

∂y

)
= −ε

∂p
∂y

+
Pr√
Ra

(
∂2υ

∂x2 +
∂2υ

∂y2

)
+ εθ Pr+ε

Pr√
Ra

Ha2(u sin φ cos φ− υ cos2 φ)− ε
Pr√

RaDa
υ

− 1.75√
100εDa

|u|υ

(7)

∂T
∂t

+ ū
∂T
∂x

+ υ
∂T
∂y

=
1√
Ra

(
∂2T
∂x2 +

∂2T
∂y2

)
(8)

Here,
ρ is the fluid density,
α is the thermal diffusivity,
ε is the porosity,
Tc is the cold temperature,
Th is the hot temperature,
σ is the electrical conductivity,
µ is the dynamic viscosity,
H is the height of the cavity,
B is the magnetic field strength,
φ is the angle of an applied magnetic field,
β is the thermal expansion coefficient,
gy is the gravity acting downward along the y-axis,
Da is the Darcy number,
Ha is the Hartmann number,
∆T = Th − Tc is the temperature gradient between the top (hot) and bottom (cold) walls
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(Th > Tc),
|u| =

√
u2 + υ2

The relations which are implied to convert the dimensional equations to non-dimensional
form are

x = x̄
H

y = ȳ
H

u = ū
( α

H )
√

Ra

ν = µ
ρ

υ = ῡ
( α

H )
√

Ra

θ = T̄−Tc
Th−Tc

t = t̄(
H2
α

)√Ra

p = p̄
p( α

H )2Ra

Ra =
gy β∆TH3

vα

Pr = v
α

Da = K
H2

Ha = BH
√

σ
µ

(9)

3.2. LBEs for Heat Transfer and Fluid Flow

The lattice Boltzmann method is also referred to as thermal LBM or (TLBM) because it
simulates the fluid flow mechanics by solving both the Boltzmann and the energy equations.
TLBM calculates two distribution functions- fi for fluid field, and gi for temperature field.
These distribution functions could be defined by considering the probability of particles in
position x at time t moving toward each lattice direction i with speed ci during time ∆t. It
enables the formulation of macroscopic fluid parameters, such as pressure, temperature,
and velocity. In addition, the fluid domain is discretized into homogeneous lattice nodes.
The inclusion of the BGK approximation into the LB equation results in the following
equations with an external force [18]:

For the flow field:

fi(x̄ + ēi∆t, t + ∆t) = fi(x̄, t)−
fi(x̄, t)− f eq

i (x̄, t)
τv

+ ∆tF̄i (10)

For the temperature field:

gi(x̄ + ēi∆t, t + ∆t) = gi(x̄, t)−
gi(x̄, t)− geq

i (x̄, t)
τα

(11)

Here, τv = 3ν + 0.5, and τα = 3α + 0.5 are the single-relaxation times (SRTs) that define
the approaching rate to the equilibrium state. Meanwhile, kinematic viscosity ν and thermal
diffusivity α are presented as the following:
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ν =

(
τv −

1
2

)
c2

s ∆t (12)

α =

(
τc −

1
2

)
c2

s ∆t (13)

where cs is the speed of sound, cs = c/
√

3, and c is the spacing among the lattice.
The external force term F̄i consists of three forces: FM

i (for MHD), FP
i (for porous

media, which is the Brinkman–Forcheimer model), and finally, Fb
i (buoyancy term):

Fi = FM
i + FP

i + Fb
i (14)

On the other hand, magnetic force FM
i acts in x and y directions, and is expressed as

the following [44]:

FM
i = Fx + Fy (15)

Fx =
Ha2µ

L2 (v sin φ cos φ− u sin2 φ) (16)

Fy =
Ha2µ

L2 (u sin φ cos φ− v sin2 φ) (17)

The buoyancy force term can be expressed as

Fb
i = ρgyβ(Th − Tc) (18)

The applied magnetic field does affect the force term. The present study considers
the external magnetic field is applied in different directions. The direction is horizontal,
vertical, or in other angles (for example, θ = 0, 45, 90). The external MHD forces acting in x
and y directions are presented as the following:

Fx = 3ωkρεA[(v sin θ cos θ)− (u sin2 θ)] (19)

Fy = 3ωkρε(gyβ(T − Tre f )) + A[(u sin θ cos θ)− (v cos2 θ)] (20)

The magnetic buoyancy force in terms of weighting factor is written as

Fb
i = 3ωkρεgyβ(T − Tm) (21)

Here, Tm = (Th + Tc)/2.
The body force for porous media, FP

i, is expressed through Ergun’s equation [45]:

F̄i = −
εvk
K

ū− εFε√
K
|ū|ū + εḠ (22)

where, Fε represents the geometric function (Fε = 1.75√
150

), K is the permeability (K = Da · H2)

with H symbolizing the domain height, vk represents the kinematic viscosity, and Ḡ represents
the external body force term.

An alternative equation of force term, FP
i, for porous media was proposed by Mo-

hamad [46] to obtain the accurate solution of hydrodynamics, which is the following:

FP
i = −wk

[
9

(
εv
K

)
(uex + vey) +

Fεε√
K
(|ū|uex + |v̄|vey)

]
(23)

The present study considers D2Q9, i.e., two-dimensional nine-velocities, model [47].
Therefore, the equilibrium distribution functions ( f eq

i ) for the D2Q9 model of porous media
is written as the following:
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f eq
i = ωkρ

[
1 +

ēi.ū
c2

s
+

(ēi.ū)2

2εc4
s
− |ū|

2

2εc2
s

]
(24)

Here, ε is denoted as the porosity. The discrete velocities ēi for the D2Q9 model have
different parametric values and are expressed as mentioned by [48]:

ēi =


(0, 0) for i = 0
cos[(i− 1)π/4], sin[(i− 1)π/4] for i = 1– 4√

2(cos[(i− 1)π/4 + π/4], sin[(i− 5)π/2 + π/4]) for i = 5–8
(25)

The values of the weighting factor ωk are the following:

ωk =


4/9 for i = 0
1/9 for i = 1–4
1/36 for i = 5–8

(26)

The thermal equilibrium energy function can be expressed as the following [48]:

geq
i = ωkT

[
1 +

1
c2

s
ēi.ū

]
(27)

3.3. Boundary Conditions

Boundary conditions were defined for the four walls of the rectangular cavity for
the purpose of simulation. Boundary conditions are generally described as distribution
functions (DFs) in LBM. It is required to determine the DFs at the boundary nodes according
to the macroscopic conditions. The procedure is attributed with ensuring the stability and
accuracy of the mathematical model [49].

3.3.1. Boundary Conditions for Fluid Flow

The no-slip (also known as bounce-back) boundary condition was applied on the walls
of the rectangular cavity. As an aftermath of the particles’ collision, the outgoing DF goes
in the reverse direction of the incoming DF at a particular position within the boundary.
The following expressions represent the boundary conditions of this study:

At right wall: f3,m = f1,m, f7,m = f5,m, and f6,m = f8,m
At left wall: f1 = f3, f5 = f7 and f8 = f6
At top wall: f4,n = f2,n, f8,n = f6,n and f7,n = f5,n
At bottom wall: f2 = f4, f5 = f7 and f6 = f8

where m and n represent the domain’s lattice for length and height, respectively.

3.3.2. Thermal Boundary Conditions

As described earlier, the top (Tc) and the bottom walls (Th ) have constant temperatures,
but they have different values. The other walls are adiabatic and, therefore, are not
participating in the mass transfer.

At isothermal cold top wall: g4,n = −g2,n
At isothermal hot bottom wall: g2 = Twall (w2+w4)−g4
Here, Tw is used for the 2nd-order Zou-He boundary conditions
At adiabatic west wall: gi,0 = gi,1, for i = 1–8
At adiabatic east wall: gi,m = gi,m−1, for i = 1–8

where, m and m− 1 are the boundary lattice and the lattice inside the enclosure near the
boundary, respectively.

3.4. Rate of Heat Transfer

In the numerical investigation of the convective heat transfer problem, the Nusselt
number (Nu) is an important parameter. The Nu number describes the heat transfer rate



Axioms 2023, 12, 199 8 of 29

due to temperature gradient. The local Nu number at hot walls and the average Nu number
(Nuavg) calculated for the entire domain are formulated as the following [47,50]:

Nu(x) = − H
∆T

∂T
∂y

(28)

Nuavg =
1
H

∫ H

0
Nu(x).dx (29)

where L denotes the length of the cavity.
Clever and Busse [51] defined a modified formulation for the average Nusselt number,

N̄u in their work, and it is written as

Nu = 1 +
< ῡ · T̄ >√
Ra∆Tα/H

(30)

where H represents the distance between the bottom and top walls, ∆T is difference
between temperature of top and bottom walls, < · > shows the average over whole flow
domain, and υ denotes the velocity component of the vertical direction.

For the RB convection, He at al. [52] formulated an equation for the average Nusselt
number Nu in terms of critical Rayleigh Rac and Rayleigh number Ra:

N̄uEM = 1.56× (Ra/Rac)
0.296 (31)

where Rac = 1707.06.

3.5. LM Algorithm

The LBM-MHD-RB data-driven work in this study is analyzed by the LM algorithm. It
is a hybrid method that considers both the Gauss–Newton and steepest descent approaches
for the convergence criteria to reach an optimal solution. There is an inherent trade-
off between Gauss–Newton and the steepest descent based on the requirements of the
problem. For instance, if Gauss–Newton alone cannot solve a problem, the LM algorithm
links the steepest descent approach for traversing the design space and determining the
optimal solution. This technique is most effective in solving non-linear equations. The
correlations to predict the output parameter by considering the influential parameters of
LBM are typically non-linear, and therefore, the LM algorithm was a suitable option for the
surface analyses.

LM develops the trust region for different computational applications. In the LM
method, the difference in the weights (wi) is obtained by determining the following [53]:

α′∆ = −1/2(∇)λ (32)

where α’ is the matrix of the optimization field, and λ is the mean-squared network error.
The term λ is achieved by the following equation [53]:

λ = 1/N
N

∑
k=1

[~q(xk)− ~dk]
2 (33)

where N is the number of examples;~q(xk) is the output of the network aligning with the
example xk; and ~dk is the expected outcome.

Finally, the matrix α’ elements are obtained by the following [53]:

α′ij = (1 + ζδij)
z

∑
r=1

N

∑
k=1

[
∂yr(xk)

∂wi

∂yr(xk)

∂wj

]
(34)

where z is the number of the desired output from the network.
At the commencement of the algorithm, α′ and∇(λ) are a major part of the evaluation,

followed by the obtained solution on wi. The LBM-obtained data were initially analyzed
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in the R programming environment using library packages “dplyr” [54], followed by
“pracma” [55] to optimise the matrix α. The analyzed, clean dataset was fed into OriginPro
to perform the non-linear surface analyses. In each step of iteration, the λ value was
calculated through the model, and the iteration was not terminated unless an optimal
solution was reached. The convergence criteria were set if a coefficient of determination
(R2) was reached above 0.8 for any specific function. A separate function was chosen for
the iteration if the required R2 was not obtained despite adjusting the iteration cycle ζ. It
should be mentioned here that the present study does not aim to perform an AI approach,
such as neural networks, due to the limited data for the analysis, and since the solution
was reached by the LM algorithm by solving the non-linear least squares curve fitting, the
process was terminated once a standard R2 was achieved, subject to further validations.
Therefore, once the solution at wi was reached, the equation was obtained to validate the
accuracy. The obtained equation was initially checked through the interpolated dataset,
which was at least 3000, depending on the percentage of outliers. The fundamental aim was
to always have R2 more than 0.95, and hence the outlier detection test was conducted on the
obtained dataset. The initial process is known as the LM iteration/learning cycle, with each
step destined to reduce the error from the previous one. The ζ parameter is an adjustment
at each cycle. The process keeps on running unless a good correlation coefficient is reached.
Once the iteration was terminated, the equation was obtained and immediately tested for
the accuracy.

3.6. Code Convergence Criteria

In the LBM simulations, all the computations were terminated when the velocity field,
as well as temperature, reached the following convergence criteria:

∑ |ψn+1 − ψn|
∑ |ψn+1| < 10−15 (35)

where ψ is either the velocity u or the temperature T, n represents the iteration index, and
finally, the summation was applied over the whole domain of interest.

Meanwhile, the LM algorithm followed an iterative method unless an accurate corre-
lation coefficient was obtained as described in Figure 2.

Figure 2. Flowchart of LM algorithm using LBM data for the correlation development.
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4. Materials and Methods

LBM simulations for MHD-RB convection were performed in Fortran 90 [56] by using
Microsoft Visual Studio CodeTM. Boundary conditions, collision operators, streaming
functionality, and convergence criteria were all included as subroutines. The base code
considered all those subroutines for the iterations. The iterations continued until the
convergence criteria were obtained. The computations were performed on a Windows
10 computer in an 11th Gen Intel(R) CoreTM i9 2.60 GHz processor with 64 GB RAM.
The streamlines and isotherms were visualized by using Tecplot 360 2022 R1 version
(https://www.tecplot.com).

As mentioned earlier, the LM algorithm was performed through the R programming
language [57] by RStudioTM open source software using library packages pracma [55],
followed by data organising, equations validation, and correlation development in Orig-
inPro [58]. The library package pracma determines a large number of functions from the
numerical analysis for any math function. Prior to that, the popular dplyr [54] package
was used for data manipulation and visualization. It should be mentioned here that the
same computer was utilized for LM algorithm development, which was also used for the
LBM simulations. However, both RStudio and OriginPro were operated with NVIDIA
RTX A3000 GPU power for fast implementation of the model optimization and correlations
development.

5. Results

The primary purpose of the present study is to develop the correlation among the
important variables to quantitatively predict Nu number, which is representative of the
average heat transfer rate. Therefore, the results will discuss the numerical correlations
based on LBM-MHD data interpretation through the LM algorithm. Each segment demon-
strates the obtained outcome from the non-linear surface analysis, followed by validations
with literature to showcase the accuracy of the obtained equations. However, two separate
comprehensive analyses are first conducted to pinpoint some of the significant changes in
the streamlines and isotherms.

5.1. Effect of Numerical Parameters on Streamlines

The impact of Ra and Ha numbers, as well as ε on streamlines, is illustrated in Figure 3
under a constant θ = 0. The combined analysis will depict each variable’s influence on the
streamlines’ pattern.

Figure 3a is assigned with Ra = 105, Da = 10−2, ε = 0.4, and Ha = 0, leaving entirely
no impact of the external magnetic field. As per Figure 3a, three separate circular rolls
distributed within a symmetry within the cavity were observed. However, the circular
rolls in the left and right locations of the cavity exhibited almost similar characteristics
with the maximum contour values at the center. However, the circular roll in the middle
demonstrated the opposite and negative contour values. This behavior could be attributed
to side-heated adiabatic walls and the top and bottom walls being active in the heat transfer
process. Therefore, the circular roll in the middle directly depicted the effect of convective
characteristics instead of conductive ones [18]. However, as the Ha number increased
from 0 to 50, the shape and contour values changed significantly, as seen in Figure 3b.
The Bénard cell reduced from 3 to 1 and started to stretch from the central region. The
maximum contour value also reduced from 8 to 6, which is almost a 25% reduction due to
the 50% augmentation in the Ha number. Therefore, it was expected that increasing Ha
number would keep on reducing the heat conduction. The hypothesis was confirmed from
Figure 3c, where the maximum contour value at the center plummeted to 1. By increasing
the Ha number from 50 to 100, the maximum contour value reduced by approximately
83.33%, indicating the negative influence of the external magnetic field and the existence of
restriction within the cavity to reduce the heat transfer mobility.

https://www.tecplot.com
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Figure 3. Illustrations of streamlines as Ra, Ha numbers, and ε varied under θ = 0, and Da = 10−2: (a) Ra = 105, ε = 0.4, and Ha = 0, (b) Ra = 105, ε = 0.4, and
Ha = 50, (c) Ra = 105, ε = 0.4, and Ha = 100, (d) Ra = 104, ε = 0.4, and Ha = 0, (e) Ra = 105, ε = 0.6, and Ha = 100.
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In the second part of this analysis, the influence of Ra numbers and ε was observed.
By comparing Figure 3a and Figure 3d, the impact of the Ra numbers could be observed
by keeping Ha and ε constant. As Ra decreased from 105 to 104, the maximum contour
value decreased from 8 to 0.3, which is a rapid 96.25% reduction. With this observation,
the impact of buoyancy in the RB convection could be understood. In the next part, all
the variables, namely Ra and Ha numbers, and ε were increased concurrently as shown
in Figure 3e. According to Figure 3e, three Bénard cells reduced to one but demonstrated
strong attraction toward the thermal walls by showing similarity with the thermal dipole.
The maximum contour value was 20% reduced from 0.3 to 0.24, and no negative value was
recorded. While the increased Ha number was directly responsible for negative contour
values, the increased ε and Ra numbers enhanced the heat transfer phenomena, leading
to 0 as the lowest contour value within the cavity. The impact of ε was also tested by
keeping Ha and Ra numbers constant. By comparing Figure 3c,e, the influence of ε could
be analyzed, where the maximum contour value decreased from 1 to 0.24. However, in both
Figure 3c,e, the Ha number is 100, which repelled the heat transfer application. Therefore,
the contour value reduced significantly by about 140%.

5.2. Isothermal Changes

The final section of the results focuses on the changes in the isotherms, similar to the
previous section. Figure 4 represents such changes in five different frames.

The impact of Ha can be observed from Figure 4a–c by increasing from 0 to 100 in
three separate frames. The distribution of isotherms is kept within 0 to 1. As per Figure 4a,
the isothermal lines demonstrate an oscillating pattern due to the heat transfer within the
cavity without the influence of Ha number. The pattern within 1 to 1.5 of the horizontal
axis is the opposite of what was observed within 0 to 1 of the same axis. This behavior
could be linked with the conduction and convective rolls observed in Figure 3a, where
the middle convective rolls represent the negative contour values. Therefore, the pattern
of the isotherm from 1 to 1.5 on the horizontal axis is the opposite. As the Ha number
increases from 0 to 50, the isothermal lines exhibit uniformity within the cavity, as the
oscillation disappears and all the lines start to become quasi-linear as seen in Figure 4b.
The presence of the Ha number leads to the presence of a magnetic field which develops
the Lorentz force within the cavity. Therefore, the instability within the thermal walls
is reduced. Further decreasing oscillation could be observed from Figure 4c, where the
isothermal lines edge closer to the linearity. While a wavy pattern could be seen at the
lowest contour, the isothermal lines are quite linear at the maximum contour values, which
are closer to the horizontal axis.

Meanwhile, the effect of plummeting Ra numbers could be observed from Figure 4d,
where decreasing Ra from 105 to 104 significantly impacts the isothermal patterns. It could
be observed that due to the decreased buoyancy, the isothermal lines show minor oscillation
with a minimal peak in each line. The isothermal line close to the horizontal axis show a
linear pattern due to the lack of buoyancy strength within the cavity. However, as Ha is
increased from 0 to 100, Ra is increased from 104 to 105, and finally, ε is also increased from
0.4 to 0.6. The isothermal lines are almost linear throughout the cavity due to the strong
influence of the Ha number in particular as seen in Figure 4e. In fact, keeping Ha = 100
constant and increasing ε from 0.4 to 0.6 does not significantly impact the isothermal lines
either, due to the existence of the Lorentz force. By comparing Figure 4c,e, the impact of
the Ha number in the RB convection could be well understood.
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Figure 4. Representation of isotherms as Ra, Ha numbers, and ε changed under constant θ = 0, and Da = 10−2: (a) Ra = 105, ε = 0.4, and Ha = 0, (b) Ra = 105,
ε = 0.4, and Ha = 50, (c) Ra = 105, ε = 0.4, and Ha = 100, (d) Ra = 104, ε = 0.4, and Ha = 0, (e) Ra = 105, ε = 0.6, and Ha = 100.
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5.3. Predicting Nu from Ha Number and θ

In this part of this study, individual equations to predict Nu under the influence of
an external magnetic field in an inclined rectangular cavity are developed for Ra = 104

and Ra = 105. The key element of this analysis is the consideration of the electrically
conducting fluid in RB convection. Different simulations were conducted at Ha number
∈ [0, 100] based on the LBM model at θ ∈ [0, 90]. The LM analysis was performed to build
the correlation, followed by the validation with well-cited literature from the past and
the recent. In general, good accuracy was established. The correlation is only valid for
Ra = 104, 105, which are the most preferred ones for laminar flows as per the data from
the literature.

5.3.1. Development of Correlation and Surface Analysis

Non-linear parabolic and power correlations were found to be the best-fitting ones
among different functions for Ra = 104 and Ra = 105, respectively, under the LM algorithm.
The correlation coefficients (R2) were found to be 0.89 and 0.966 for Ra = 104 and Ra = 105,
respectively. Figure 5 depicts the 3D contours for better visualization. It could be observed
that the high density of the points was more aligned with low θ, as most of the important
transition in the heat transfer takes place under low Ha and θ. This behavior could be
attributed to the effect of the magnetic field, which is directly controlled by the Ha number.
At an increasing Ha number, the rate of heat transfer declines due to the existence of both
an electric field and magnetic field, leading to the presence of a Lorentz force. Consequently,
increasing the Ha number lowers the values of Nu. However, as part of the validation, a
wide range of Ha numbers and θ was considered to demonstrate the accuracy of the model
and its ability to predict the heat transfer value outside the calibration zone.

As presented in Figure 5, Nu between 0.1140 and 5.280 was obtained from the surface
analysis. The equation, however, is expected to be valid to predict Nu beyond the obtained
range in the analysis due to the consideration of a broader range of Ha and θ. In order to
obtain the equation from the best-fitting simulated contour from the LM algorithm, the LBM-
simulated data were subject to several surface analyses for the purpose of interpolation
within the user-defined range, and the following equation provided the best R2:

Nu = f + aexp(−Ha/b)exp(−θ/c) (36)

where f, a, b, and c are fitting parameters with assigned values specifically under the
aforementioned condition. Table 1 contains the values of the fitting parameters obtained
through the LM algorithm with the best R2 value.

Table 1. Fitting parameters to predict Nu from Ha number and inclination angle θ at Ra = 104.

Empirical Parameters Fitting Values

f 0.87404
a 1.73303
b 30.0595
c 127.50

Statistical Accuracy Indicators Values

R2 0.966
p < 0.05
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Figure 5. Development of correlation through fitting surfaces for (a) Ra = 104, and (b) Ra = 105 under
the influence of external magnetic field at different inclination angles for electrically conducting fluid.
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As Ra increases from 104 to 105, the impact of buoyancy inside the enclosure augments
significantly. Therefore, Equation (36) is not an appropriate option to predict Nu as a
function of Ha numbers and θ. In fact, different functions were considered to determine
the best-fitting surface to obtain the equation to predict Nu at Ra = 105. The following
equation provided the best coefficient of determination to predict Nu:

Nu = f + aHa + bθ + c(Ha)2 + d(θ2) (37)

Table 2. Fitting parameters to predict Nu from Ha number and inclination angle θ at Ra = 105.

Empirical Parameters Fitting Values

f 5.26782
a −0.07321
b −0.03499
c 3.43333
d 0.000162

Statistical Accuracy Indicators Values

R2 0.897
p <0.05

It should be mentioned here that the p-value outlines the significance of the statistical
study implemented in this section. The lowest p-value indicates that the null hypothesis
was rejected, and the correlation is statistically significant. Overall, p < 0.05 was considered
to be a good indicator to validate the model’s accuracy.

5.3.2. Cross-Validation with Literature

The cross-validation was conducted with the literature with a similar objective. How-
ever, none of the literature provided any clear mathematical correlation among the parame-
ters. The data from the literature were not considered to calibrate the LM model. Hence,
the cross-validation serves as an independent validation to show unbiased agreement with
the LBM and LM data within the considered range of input parameters.

The validation plots presented in Figure 6 demonstrate good agreement between Nu
predicted from LBM and LM simulations. The majority of the points were obtained to be
within the ±5% error lines. To build the model, the validation dataset contained a similar
geometry considered in this study. The separate validation plots represent the agreement for
two different Ra numbers (Ra = 104, 105) considered in developing Equations (36) and (37).
The empirical parameters presented in Tables 1 and 2 were considered to obtain the Nu
as presented in Figure 6a,b, respectively. A separate Table 3 is presented to indicate the
accuracy individually with the literature data considered for the validation. As mentioned
in the caption of Table 3, some outliers were ignored in the individual R2 calculation
since it was already considered for the overall R2 determination. It should be mentioned
that filtering the outlier point is a common practice in statistical analysis, and hence the
influential negative point can be ignored.

Table 3. Obtained R2 in each validation with literature individually. Detected outliers were removed for
the correlation development.

Ra Rudraiah et al. [59] Kefayati [60] Sheikholeslami et al. [61] Sajjadi et al. [62] Ahmed et al. [16]

104 - - 0.9789 0.963 0.9789
105 0.9862 0.9878 0.9662 0.967 0.9858
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Figure 6. Cross validations with LBM data from the literature (a) Ra = 104 [16,61,62], and (b)
Ra = 105 [18,62–64] under the influence of external magnetic field at different inclination angles for
electrically conducting fluid.
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5.4. Correlations among Nu, Ha Numbers, and Da Numbers Under Constant Porosity

The major focus of this section is to predict Nu as a function of the Da number (0.1 ≤
Da ≤ 0.0001) and the Ha number (Ha ≤ 30), at constant variables, such as porosity (ε = 0.4)
and inclination angle (θ = 45). The data were obtained through LBM RB simulation, and
a correlation was developed through the LM algorithm. Two different Ra numbers Ra =
104, 105 were considered in this section of the study.

5.4.1. 3D Fitting Curves and Statistical Parameters

Repeated LM algorithm simulations were performed to obtain the best-fitting results.
As per Figure 7, the fitting curves are presented for Ra = 104 (Figure 7a) and Ra = 105

(Figure 7b), where the distribution of the LBM-obtained data is shown. At higher Ha
numbers, it was anticipated to have the lower Nu; therefore, Ha ≤ 30 was considered
for the model calibration. However, the independent validation was conducted with the
published literature, where the Ha number was expanded up to 50, and still, significant
agreement was established. On the other hand, a wide range of Da numbers was considered
in this part of the simulation. Therefore, the model could still develop a correlation at a
higher Da number.

Figure 7. Independent validation plots by comparing with LBM data: (a) Ra = 104, and (b) Ra = 105,
while ε = 0.4, θ = 45 were constant.
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The obtained equation to predict Nu is the following (for Ra = 104):

Nu = f + aexp(−Da/b)exp(−Ha/c) (38)

The equation to predict Nu at Ra = 105 yielded the best R2 under the power function,
which was found as the following:

Nu = f + abDa + cdHa + ebdDaHa (39)

where f , a, b, c, d, and e are empirical parameters to adjust the fitting surface and build the
correlation. Tables 4 and 5 show the quantitative values of those parameters and statistical
information of the LM model, which were the foundations of obtaining Equations (38)
and (39).

Table 4. Quantitative values of empirical parameters to predict Nu from Ha and Da numbers at
ε = 0.4, θ = 45, and Ra = 104.

Empirical Parameters Fitting Values

f 0.93997
a 0.19833
b −0.06512
c 14.6836

Statistical Accuracy Indicators Values

R2 0.90
p < 0.05

According to Tables 4 and 5, the numerical values obtained from the LM algorithm are
presented. The correlations were obtained to be R2 = 0.9 and R2 = 0.99, for Ra = 104 and
Ra = 105, respectively.

Table 5. Quantitative values of empirical parameters to predict Nu from Ha and Da numbers at
ε = 0.4, θ = 45, and Ra = 105.

Empirical Parameters Fitting Values

f 3.47307
a −0.00128
b −0.75661
c −3.4519× 10−9

d 5.79634
e 8.81812× 10−13

Statistical Accuracy Indicators Values

R2 0.99
p < 0.05

5.4.2. Independent Validation

The independent validation was conducted with the literature to showcase the ability
of the correlation with data. The purpose of such an approach is to validate the present
approach with well-cited data from the past and the recent, collectively.

Figure 8 presents the validation results obtained through the present approach for
Ra = 104 (Figure 8a) and Ra = 105 (Figure 8b), respectively. It was found that the majority
of the points were near the 1:1 line, and the agreement was within the ±5% error lines.
The agreement plot also demonstrated the range of the Nu being as high as 4, which is
mostly observed at a lower or no Ha number. Therefore, the present approach was able to
predict LBM results within multifarious ranges with a low percentage of error. The R2 of
each comparison in the validation is presented in Table 6, where 0.9113 ≤ R2 ≤ 0.9928 was
obtained, which provides more confidence in the accuracy of the present approach. Due to
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the limited data in the literature, the number of points presented in Figure 8a is less than
those of Figure 8b.

Figure 8. Surface fitting curves obtained from LBM data by LM algorithm for (a) Ra = 104 [18,64],
and (b) Ra = 105 [16,44,59,61,62], while ε = 0.4, θ = 45 were constant.
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Table 6. Obtained R2 in each validation segment.

Ra Seta et al. [63] Ghasemi et al. [64] Sajjadi et al. [62] Himika et al. [18]

104 - 0.9946 0.9113 -
105 0.9994 0.9362 0.967 0.9928

5.5. Equation to Predict Nu under Variable Porosity

In this segment of statistical analysis, porosity (ε) is considered as a variable under
the fixed θ, and Ra numbers. The primary focus is to establish a correlation under variable
porosity (ε), which is quite sensitive to other variables concurrently. Therefore, Ra = 105

and Da = 10−1 are considered for the sensitivity analysis.

5.5.1. 3D Fitting over a Planar Surface

It was anticipated that under constant Da and Ra numbers, and θ, the increasing rate
of Nu will be linear as a function of ε and Ha, considering the fact that Ha remains constant
in each step while ε varies. For example, it was pinpointed earlier that the increasing Ha
number significantly plummets the heat transfer rate. However, if Ha remains unchanged,
yet ε increases, the Nu will increase linearly due to the improved convection inside the
cavity since the Da number is also unchanged.

Figure 9 serves as a testimony of the aforementioned statement, where a planar
correlation was obtained through the LM algorithm. The R2 = 0.91 depicts the accuracy of
the correlation, which can be improved further with more relevant data within the plane.
The distribution of the points within the surface implies that a suitable range was taken
into account to predict Nu over the multifarious 0.4 ≤ ε ≤ 1.0 and 0 ≤ Ha ≤ 50.

Figure 9. Fitting parametric development over a planar surface to predict Nu under constant
Ra = 105, θ = 60, and Da = 10−1.

The equation to predict Nu under this circumstance was obtained to be the following:

Nu = f + aε + bHa (40)
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The values of the empirical parameters from Equation (40) are presented in Table 7. The
simplified version of the equation was also found to be effective at elevated Ha numbers;
however, due to the insufficient data in the literature, the validation was not conducted
beyond Ha = 50.

Table 7. Parametric values to predict Nu from Equation (40).

Empirical Parameters Fitting Values

f 2.6105
a 2.13773
b −0.02639

Statistical Accuracy Indicators Values

R2 0.91
p <0.05

5.5.2. Validation Result

The immediate validation was conducted to assess the accuracy of Equation (40). The
independent validation data were obtained from the literature reported by Himika et al. [18]
and Sajjadi et al. [62]. The ±5% error lines were also included in a similar manner for better
visualization of the agreement.

Figure 10 illustrates the agreement between the literature (LBM data) and the present
LM method. In general, most of the points were found within the error lines. The statistical
accuracy indicators presented in Table 7 suggest that the agreement was still acceptable.
The range of Nu was found to be close to 5 (LBM-obtained result), which was, in fact,
obtained at Ha = 0 and the highest porosity considered in this research pipeline, i.e.,
ε = 0.9.

Figure 10. Fitting parametric development over a planar surface to predict Nu under constant
Ra = 105, θ = 60, and Da = 10−1 [18,62] .
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Table 8 shows the R2 values found from the agreement presented in Figure 10. The
values of R2 were found between 0.85 and 0.93 in comparison with the literature data
mentioned earlier. All the relevant points were considered for validation. The specific point
located beyond the +5% error line was still considered, and hence the R2 was found to be
0.85 when comparing with Himika et al. [18]. However, if those specific data were left out,
the R2 increased significantly to 0.92.

Table 8. Coefficient correlations (R2) obtained in comparison with individual literature as presented
in Figure 10.

Sajjadi et al. [62] Himika et al. [18]

0.93 0.85

6. Discussion
6.1. Significance of the Study

The LBM is a powerful and efficient alternative to solving fluid dynamics problems.
LBM simulations can provide an accurate outcome within a shorter time scale compared to
other relevant techniques, such as finite difference, finite element, and finite volume. All of
the methods are accurate and have pros/cons. However, the explanation of the correlation
among the input variables to quantitatively predict heat transfer was hardly reported. The
present study utilizes input variables, such as Ra number, Da number, ε, Ha number, and
θ to predict MHD-RB convection within a porous enclosure. The input parameters in the
relevant study were mostly chosen to showcase the impact of buoyancy or porosity for
the purpose of visualization. Nevertheless, there was always a gap in having equations
numerically predict Nu, which can be further validated with well-cited literature.

LBM data are highly non-linear. The current study considered the LM algorithm as
one of the ML training methods to build non-linear surface analyses to develop three-
dimensional correlation among the variables to predict Nu. In each segment of the correla-
tion development, validations were conducted, and statistical parameters were mentioned
as part of the accuracy indicators. Furthermore, the empirical parametric values are pro-
vided in a tabular form after the statistical analyses, which will allow the researchers to
reproduce the work based on the requirements. The reproducibility of the work by the
LM algorithm could be established in different ways. One of them could be to perform
direct LBM simulations by varying the input parameters to build the dataset, followed by
correlation development to predict Nu. In that case, the process could be time-consuming.
The dataset could be split into 80% for the model development, and the rest 20% for the
validation. However, validations with relevant well-cited literature need to be performed
to understand the efficacy of the approach. It is recommended to consider a sample size of
100 for this approach. Alternatively, the interpolation of a limited dataset could be another
option. However, this part also requires the initial model development and creating a
dataset through simulations. However, the approach should consider the highest and
lowest possible range of each parameter within the geometry to interpolate. The LM algo-
rithm combined with the R library package “dplyr” assists the data manipulation without
any involving any complicated steps. It is possible to establish a dataset with 3000 points
through interpolation without the need to run LBM simulations varying each parameter.
The present study considered both aforementioned approaches.

The current study aims to fulfill such requirements by interpolating datasets for the
purpose of validations. The validations by comparing with identical geometries and
physical properties with relevant literature provide another form of evidence on a high
level of accuracy of the present approach. Some of the similar approaches in fluid dynamics
study are worth mentioning. Recently, Islam et al. [6] presented correlations to predict
Nu by considering input variables, such as Darcy (Da) numbers, Rayleigh (Ra) numbers,
and porosities to predict Nu by the LM algorithm. At the same time, the equation and
associated empirical parameters were utilized to validate the GPU-optimized LBM model.
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However, the work of Islam et al. [6] was fairly restricted to heat-transfer phenomena
of the nanofluid without the influence of an external magnetic field or representative
non-dimensional parameter, such as the Ha number. Meanwhile, the present approach
did not consider any machine learning or deep learning approach for the data-driven
approach, but the inclusion of artificial intelligence in fluid dynamics study has become
widely popular recently and should represent the state-of-the-art approach. It can be stated
that no approach can be considered a direct validation yardstick, as numerical methods
are not 100% correct, but the concept of correlation development as an additional form
of validation has been reported. For example, the ANN modeling of nanofluid under
magnetic field influence by Shah et al. [42], Alqaed et al. [41], and He et al. [43] attest
to the purpose of the data-driven approach being included in LBM simulations of fluid
flow. Nevertheless, this is the first work which has provided validations in each segment
to showcase the potential of the data-driven approach in fluid dynamics by correlations
development through the LM algorithm without the need for implementing machine
learning methods or high computational resources.

Experimental fluid dynamics is time-consuming, delicate, and expensive [65,66]. If
the boundary conditions, simulated data, and final representative contours are not fully
understood numerically, the experimental approaches could cost a fortune. In an industrial
setup, it will always be beneficial if numerical modeling contains correlations that are
repeatable and reproducible. Based on the equations, the researchers will be able to test
and tune the parameters within the domain to obtain the best-performing model to meet
the scientific requirements. Then the final model development can be established through
the original fluid flow simulations with the best-fitting input parameters to save time and
increase productivity as well as profitability. The equations presented in this study had
coefficients of determination (R2) between 0.85 and 0.99, which are within the standard
acceptable range.

6.2. Factors Affecting the Accuracy of the Equations

The present study is based on LBM data. To build a proper correlation, a wide range
of datasets is required. While the present study established the correlations with a large
number of the dataset, those did not cover the whole domain of the input parameters due
to a lack of data for the validation. For example, the Ha number could be as large as 200
or even more, which could reduce the Nu < 0.001. The LM algorithm will not be a viable
option for this approach. A machine learning or deep learning approach should be an
appropriate method for such an option. Figure 5 correlations represented 0 ≤ Ha ≤ 100,
and while model calibration was feasible, there were no relevant data found in the literature
for comparison. Furthermore, the present study considered laminar flow only. The Ra
number could be more than 107, and it can cover a wide range of turbulence through
the increased buoyancy. Nevertheless, a lack of efficient data in the literature within the
considered geometry restricted the present study to explore further options. Since machine
learning or deep learning was not considered in this study, further extension of the input
parameters was not explored. Some of the references had only 3–4 relevant points (for
example, Figure 6a), and therefore, the limited data could have affected the accuracy of the
respective equation. While the surface analyses were conducted based on interpolation
of the dataset with at least 3000 data, more validation data would have improved the
R2 values of independent validations. For instance, Figure 8b contained 31 points for
the independent validation, and R2 = 0.99 was obtained by comparing with three of the
references [18,62,63].

In addition, the LM algorithm is susceptible to noise and may downgrade the efficiency
of the neural network. However, those impacts are most visible for complex geometries.
Since the present study considers a 2D porous cavity, the error percentage was acceptable.
The re-tuning of the parameter would have been more efficient by considering any step
associated with supervised machine learning model development. However, machine
learning models require more data to train and test and cannot provide any equation for the
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direct implementation in the study. The data considered in this study were sufficient for the
LM algorithm and correlations development. The good agreement with the independent
validations attest to such a statement.

6.3. Future Recommendations

The key findings of this study offer a major hint that a machine learning model can
be developed to train LBM data into a well-suited model. Therefore, building correla-
tions to predict an output parameter by considering multiple input parameters to build
multifarious LBM models is highly recommended and is under strong consideration by
the authors. Furthermore, the present study aimed to provide equations under different
input parameters to predict Nu. In most of the fluid dynamics research, entropy gener-
ation is also determined to demonstrate the fluid irreversibility. Both heat transfer and
fluid friction are responsible for fluid irreversibility, particularly for nanofluid study. The
correlation development to predict total entropy will also lead to another highly correlated
parameter, the Bejan number (Be), which is the ratio of the heat transfer irreversibility
to total irreversibility due to heat transfer and fluid friction. Therefore, determining the
total entropy generation is one of the major indices in heat transfer application and should
require involving more input parameters. Considering the multifarious input parameters
involved in affecting entropy generation, machine learning is a suitable method and will
be further explored.

Finally, the present study was validated with the simulated results from CPU-based
computing. Considering the multivariate model development discussed above, CPU-based
computing will be tedious in terms of the machine learning approach. In addition, a 3D
implementation will be required to replace the 2D model, which could also consider more
complicated lattice models, such as D3Q15 and D3Q19, replacing the D2Q9 of the present
study. The possible implications of GPU-based LBM simulations will significantly reduce
the computational time and increase the efficiency of the model. Considering a parallel
computing platform, such as the Compute Unified Device Architecture (CUDA), could be a
better method for implementing the MHD-LBM hybrid machine learning model. Some of
the relevant works minus the machine learning have been published by the authors [14,67].
Therefore, developing a machine learning model through GPU computing for LBM cross-
validations, possibly in a 3D geometry, will be a milestone within LBM research.

7. Conclusions

This study developed an LBM-MHD data-driven method to numerically predict the
average Nu number (Nu) as a non-dimensional representative value of the average rate
of heat transfer by the LM algorithm. The mathematical correlations to predict Nu by
considering Ha numbers, Ra numbers, inclination angles (θ), Da numbers, and ε were
explored, followed by validations with the literature. The coefficients of determinations
were found within 0.85 ≤ R2 ≤ 0.99, and this provides compelling evidence for the
accuracy of the equations. The streamlines and isotherms were also presented to visually
demonstrate the impact of the above-mentioned numerical parameters on the heat transfer
phenomena. The equations presented in this study could be taken into account to validate
any existing LBM-MHD model which considers RB convection within a 2D rectangular
porous cavity. More options could be explored by directly developing a machine learning
model to add extra features within the LBM model to establish benchmark solutions, which
are under strong consideration for future study.
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Abbreviations
The following abbreviations are used in this manuscript, shown in the order that they appear in
the texts:

LBM Lattice Boltzmann method
MHD Magnetohydrodynamics
RB Rayleigh–Bénard
LM Levenberg–Marquardt
2D Two-dimensional
Ha Hartmann
Ra Rayleigh
Darcy Da
ANN Artificial Neural Network
Nu Nusselt
HPC High-performance computing
AI Artificial intelligence
ML Machine learning
NLSM Nonlinear least squares minimization
TLBM Thermal LBM
BGK Bhatnagar–Gross–Krook
SRT Single-relaxation times
DF Distribution functions
Nomenclature
English symbols
a, b, c, d, e, f Fitting parameters for LM-obtained equations
B Magnitude of magnetic field
Ci Lattice speed
Cs Speed of sound
dk Expected outcome
ei Discrete velocities
fi Distribution function for flow fields
f eq
i Equilibrium distribution function

Fi Force terms
FM

i Force term for MHD
FP

i Force term for porous media
Fb

i Buoyancy term
gi Distribution function for temperature fields
gy Gravitational force acting in y-direction
geq

i Thermal equilibrium function
H Height of the cavity
K Permeability
m Lattice on the boundary
N Sample number
n Iteration index
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Nu Nusselt number
Nu Average Nusselt number
t Time
∆t Time interval
T Temperature
∆T Temperature difference
Tc Cold temperature
Th Hot temperature
v Velocity component
wi Solution of the interpolation
xk Random example for the output network
z Number of anticipated outcome from the network
Greek symbols
α Thermal diffusivity
α′ Optimization field matrix
β Thermal expansion coefficient
ε Porosity
λ Mean-squared network error
µ Dynamic viscosity
ν Kinematic viscosity
ω Weighting factor
φ Angle of inclination
ψ Either velocity or temperature in the convergence
ρ Fluid density
σ Electrical conductivity
θ Dimensionless angle of inclination
ζ Adjustment parameter in each iteration cycle
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