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Abstract: In this paper, we present the upper and lower bounds on Sombor index SO(G) among all
connected graphs (respectively, connected bipartite graphs). We give some sharp lower and upper
bounds on SO(G) among connected graphs in terms of some parameters, including chromatic, girth
and matching number. Meanwhile, we characterize the extremal graphs attaining those bounds. In
addition, we give upper bounds on SO(G) among connected bipartite graphs with given matching
number and/or connectivity and determine the corresponding extremal connected bipartite graphs.
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1. Introduction

In this paper, we only consider finite, undirected and simple connected (respectively,
connected bipartite) graphs. Let G be a graph with vertex set V(G) and edge set E(G).
Let S (respectively, F) be a vertex (respectively, an edge) subset of G. Then G− S denotes
the graph obtained from G by deleting S and the edges incident with them, and G − F
denotes the graph obtained from G by deleting F. If S = {v} and F = {uv}, the subgraphs
G− S and G− F will be written as G− v and G− uv for short, respectively. For any two
nonadjacent vertices x and y of a graph G, we let G + xy be the graph obtained from G by
adding an edge xy. For a positive integer n, we will use the notation [n] = {1, 2, . . . , n}.

Recently, Gutman [1] devised two new topological indices. For a graph G, its Sombor
index SO(G) and reduced Sombor index SOred(G) are defined, respectively, as follows:

SO(G) = ∑
uv∈E(G)

√
d2

G(u) + d2
G(v),

SOred(G) = ∑
uv∈E(G)

√
(dG(u)− 1)2 + (dG(v)− 1)2.

Gutman et al. [1] studied the problem of finding graphs attaining the maximum
(respectively, minimum) Sombor index from the class of all trees (respectively, graphs and
connected graphs) with given order n. Réti et al. [2] characterized the extremal graphs
having the maximum Sombor index in the classes of all connected unicyclic, bicyclic,
tricyclic, tetracyclic, and pentacyclic graphs with order n.

Liu et al. [3] obtained some bounds for the reduced Sombor index of graphs with given
several parameters and some special graphs. F. Wang and B. Wu [4] proved a conjecture
on the reduced Sombor index proposed by Liu et al. in [3]. They gave an upper bound for
the reduced Sombor index of a bipartite graph and determined the extremal graph among
all k-chromatic graphs with maximum reduced Sombor index. F. Wang and B. Wu [5]
characterized the extremal molecular tree on the reduced Sombor index and exponential
reduced Sombor index.

Some authors made a more extensive study to determine the extremal values of the
Sombor index of graphs with given some parameters. Sun et al. [6] characterized extremal

Axioms 2023, 12, 203. https://doi.org/10.3390/axioms12020203 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12020203
https://doi.org/10.3390/axioms12020203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12020203
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12020203?type=check_update&version=1


Axioms 2023, 12, 203 2 of 13

graphs having extremal values of the Sombor index in terms of the domination number.
In [7], Zhou et al. characterized the extremal trees and unicyclic graphs with the extremal
Sombor index in terms of the matching number. They also considered the extremal Sombor
index in the same graph family with given maximum degree in [8]. Das et al. [9] gave some
bounds on the Sombor index of trees in terms of order, independence number, and number
of pendent vertices, and characterized the extremal cases. Liu et al. [10] collected the
existing bounds and extremal results related to the Sombor index and its variants. Aashtab
et al. [11] found an interesting property of the Sombor index. Let G be a connected graph
of order n and size m, if for each G′ with order n and size m, SO(G) ≤ SO(G′), then G is an
almost regular graph. Using this property, Liu et al. [12] determined the minimum Sombor
index of tricyclic and tetracyclic graphs.

If there exists a vertex v ∈ V(G) such that G− v is a tree (respectively, unicycle), then
the graph G is said to be a quasi-tree (respectively, quasi-unicyclic). Das et al. [9] determined
the extremal graphs in the set of quasi-trees. Ning et al. [13] gave an upper bound of the
Sombor index of the set of quasi-unicyclic graphs with order n, and characterized the
corresponding extremal graph. Horoldagva et al. [14] gave some lower or upper bounds on
the Sombor index of connected graphs in terms of some parameters, such as the maximum
degree. Das et al. [15] gave an upper bound of the Sombor index of connected graphs
with a given independence number. Some authors obtained a series of results related to
Nordhaus–Gaddum relations for the Sombor index in [14–16].

The extremal values of the Sombor index of chemical graphs are also studied by
several authors. A chemical graph is a graph with the degree of each vertex of this graph
at most 4. Deng et al. [17] gave an upper bound of the Sombor index in chemical trees
with n vertices. Cruz et al. [18] characterized the extremal connected chemical graphs
of order n, and determined the extremal graphs in catacondensed hexagonal systems.
Liu et al. [19] gave lower and upper bounds of the Sombor index in chemical trees with n
vertices and k pendent vertices, and characterized the corresponding extremal chemical
trees. Liu et al. [20] determined the first fourteen minimum chemical trees, the first four
minimum chemical unicyclic graphs, the first three minimum chemical bicyclic graphs, and
the first seven minimum chemical tricyclic graphs.

Some authors considered the relationships between the Sombor index and other
indices. Filipovski et al. [21] considered the relations between the Sombor index and some
degree-based topological indices. Rata et al. [22] considered the relationship between the
Sombor index and the Second Zagreb index.

Recently, Réti et al. [2] introduced a new notion, called k-Sombor index of a graph as
follows. For a positive real number k, the k-Sombor index of graph G, denoted by SOk(G),
is defined as

SOk(G) = ∑
uv∈E(G)

k
√

dG(u)k + dG(v)k.

F. Wang, B. Wu [23] presented the extremal values of the k-Sombor index of trees with
some given parameters, such as matching number, the number of pendent vertices, and
diameter. Some related results about the Sombor index can be found in [24–26].

In this paper, we present the upper and lower bounds on SO(G) among all connected
graphs (respectively, bipartite graphs). In Section 3, we consider some extremal problems
on SO(G) with given parameters, such as chromatic number, girth and matching number
among connected graphs. In Section 4, we give some sharp upper bounds on the SO(G) in
bipartite graphs with given matching number and connectivity. In addition, we characterize
the extremal graphs attaining these bounds. In Section 5, we conclude our paper.

2. Preliminaries

For two sets A and B of vertices of G, we write [A, B] for the set of edges uv ∈ E(G)
with u ∈ A and v ∈ B. An induced subgraph G[A] is the subgraph of G whose vertex
set is A and whose edge set consists of all edges of G which have both ends in A. If F
is a set of edges, the edge-induced subgraph G[F] is the subgraph of G whose edge set
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is F and whose vertex set consists of all ends of edges of F. If V(G1) ∩ V(G2) = ∅, we
denote by G1 ∪ G2 the graph, which consists of two components G1 and G2. The join of
G1 and G2, denoted by G1 ∨ G2, is the graph with vertex set V(G1) ∪ V(G2) and edge
set E(G1) ∪ E(G2) ∪ {uv|u ∈ V(G1), v ∈ V(G2)}. A matching of G is a subset of mutually
independent edges of G. For a graph G, the matching number β(G) is the maximum
cardinality among the independent sets of edges in G.

A graph G is called k-connected if G− X is connected for every subset X ⊆ V(G) with
|X| < k. The greatest integer k such that G is k-connected is the connectivity κ(G) of G.

Throughout this paper, we use Pn, Sn, Cn, Kn and Kn to denote the path graph, star
graph, cycle graph, complete graph, and independence set on n vertices, respectively.

In what follows, we give some lemmas which will be used frequently in the proofs of
the main results.

Proposition 1. Let G be a connected graph with at least three vertices.
(a) If G 6∼= Kn, then SO(G + e) > SO(G), where e ∈ E(G);
(b) If G has an edge e not being a cut edge, then SO(G− e) < SO(G).

Lemma 1 ([1]). Let Pn be the path of order n. Then for any connected graph G of order n,

SO(Pn) ≤ SO(G) ≤ SO(Kn).

Equality holds if and only if G ∼= Pn or G ∼= Kn. Moreover, SO(P2) =
√

2, whereas SO(Pn) =
2
√

5 + 2(n− 3)
√

2 for n ≥ 3.

Lemma 2 ([1]). Let Sn be the star of order n. Then for any tree T of order n.

SO(Pn) ≤ SO(T) ≤ SO(Sn).

Equality holds if and only if T ∼= Pn or T ∼= Sn. Moreover, SO(Sn) = (n− 1)
√

n2 − 2n + 2.

Lemma 3 ([27]). Every k-chromatic graph has at least k vertices of degree at least k− 1.

Lemma 4. (The Tutte-Berge Formula) For any graph G:

β(G) =
1
2

min{n− (o(G− S)− |S|) : S ⊂ V(G)}

Lemma 5. Suppose that G0 is a nontrivial connected graph. Let G be a graph obtained from G0 by
connecting a central vertex v ∈ Ss+1 to a vertex u ∈ V(G0). Let G′ be a graph obtained from G
by deleting all edges of G[V(Ss+1)] and connecting each vertex of V(Ss+1), apart from v, to u, see
Figure 1. Then

SO(G′) > SO(G).

u v

v1

v2

vs

u

v

v1
v2

vs

G0
G0

G G′

Figure 1. The graphs used in the proof of the Lemma 5.
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Proof. Consider the difference between SO(G′) and SO(G).

SO(G′)− SO(G)

= ∑
uv∈V(G′)

√
d2

G′(u) + d2
G′(v)− ∑

uv∈V(G)

√
d2

G(u) + d2
G(v)

= (s + 1)
√
(s + 1 + dG0(u))

2 + 1 + ∑
x∈NG0 (u)

√
d2

G0
(x) + (dG0(u) + s + 1)2

− s
√
(s + 1)2 + 1−

√
(s + 1)2 + (dG0(u) + 1)2 − ∑

x∈NG0 (u)

√
d2

G0
(x) + (dG0(u) + 1)2

= ∑
x∈NG0 (u)

(√
d2

G0
(x) + (dG0(u) + s + 1)2 −

√
d2

G0
(x) + (dG0(u) + 1)2

)
+
(√

(s + 1 + dG0(u))
2 + 1−

√
(s + 1)2 + (dG0(u) + 1)2

)
+ s
(√

(s + 1 + dG0(u))
2 + 1−

√
(s + 1)2 + 1

)
> 0.

3. Connected Graphs with Given Parameters
3.1. Extremal Graphs with Regard to SO(G) in Terms of Order n and Chromatic Number c

Let X c
n be the set of connected graphs on n vertices with chromatic number c. A

c-partite graph is complete if any two vertices in different parts are adjacent. A simple
complete c-partite graph on n vertices whose parts are of equal or almost equal sizes (that
is, bn/cc or dn/ce) is called a Turán graph and denoted by Tn(c). We consider the extremal
value of SO(G) of graphs G from X c

n , and determine the corresponding extremal graphs.
In [28], Das et al. gave an upper bound on SO(G) in terms of order n and chromatic

number c, and characterized the extremal graphs in the following theorem. The extremal
graph is exactly the Turán graph Tn(c).

Theorem 1 ([28]). Let G ∈ X c
n , q = b n

c c and r = n− cq. Then

SO(G) ≤ SO(Tn(c)),

the equality holds if and only if G ∼= Tn(c).

Moreover, SO(Tn(c)) = r(c − r)
⌊ n

c
⌋⌈ n

c
⌉√(

n−
⌊ n

c
⌋)2

+
(
n−

⌈ n
c
⌉)2

+√
2(r

2)
[ n

c
⌉2(n− ⌈ n

c
⌉)

+
√

2(c−r
2 )
⌊ n

c
⌋2(n− ⌊ n

c
⌋)

.

In what follows, we give a lower bound on SO(G) in terms of order n and chromatic
number c, and characterize the extremal graph in the following theorem. Denote by KP(n, c)
a connected graph obtained from Kc by attaching a path Pn−c+1 to a vertex v ∈ Kc.

Theorem 2. Let G ∈ X c
n with 2 ≤ c ≤ n− 1. Then

SO(G) ≥ SO(KP(n, c)),

the equality holds if and only if G ∼= KP(n, c).

Proof. Suppose that G(∈ X c
n) is a graph having minimum value of SO(G). Let V(G) =

{v1, v2, . . . , vn}. Since G has chromatic number c, by Lemma 3, there is a vertex subset
S ⊆ V(G) with cardinality at least c. Moreover, the degree of each vertex v ∈ S is at least
c− 1. According to the definition of SO(G) and Proposition 1, it is easy to see that the value
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of SO(G) decreases when deleting edges in G. It implies that the value SO(G) of G reaches
its minimum when the graph G contains as few edges as possible. Based on these facts, we
conclude that G[S] is a complete subgraph Kc. Note that the graph G contains as few edges
as possible, and each vertex v belongs to S with dG(v) ≥ c− 1. We have that G− E(G[S])
contains as few edges as possible. Thus, G− E(G[S]) must be a union of some trees. Thus,
G − E(G[S]) =

⋃t
i=1 Tvij

, where Tvij
is a tree containing vij as its root in G − E(G[S]) for

1 ≤ j ≤ t and t ≤ c. Denote by G1 the graph obtained from G[S](∼= Kc) by attaching a
vertex of tree Tvij

to a vertex vij of G[S] for 1 ≤ j ≤ t.

Without loss of generality, suppose that G − E(G[S]) =
⋃t

i=1 Tvi , 1 ≤ i ≤ t. Let
|V(Tvi )| = ni for 1 ≤ i ≤ t and t ≤ c.

For each subscript i ∈ [t], by repeating the use of Lemma 5, we obtain a new graph
G2 obtained from G[S](∼= Kc) by attaching a path Pni to ui(∈ G[S]) for 1 ≤ i ≤ t. It is not
difficult to see that SO(G2) < SO(G1).

Replacing the clique G[S](∼= Kc) in G2 with a copy of K1, namely v0, we obtain a new
star-like tree G3 with |G3| = n− c + 1. In fact, G3 is isomorphic to a tree T. By Lemma 2,
we can obtain a new tree T′ from T such that T′ ∼= Pn−c+1 and SO(T′) ≤ SO(T). In what
follows, we consider two cases of whether v0 is an end vertex of T′ or not.

Case 1. dT′(v0) = 1.
In this case, we replace v0 ∈ T′ (respectively, T) by Cg to obtain a graph G3 (respectively,

G1). According to the result obtained above, we obtain SO(G3) ≤ SO(G1) immediately. It
is easy to see that G3 ∼= KP(n, c). The result holds.

Case 2. dT′(v0) = 2.
In this case, we replace v0 ∈ T′ by Kc to obtain a new graph G4. Let p and q be two

positive integers. The graph G4 can be viewed as a graph obtained from Kc by attaching
two paths Pp and Pq to two distinct vertices vi and vj of Kc for 1 ≤ i < j ≤ t.

Let Pq = Pu0,u1,...,uq and Pp = Pw0,w1,...,wp . Suppose that 1 ≤ q ≤ p < n− c. Consider
the Sombor index of G4. Let G4 = G(q, p) and consider the Sombor index of G(q, p).

SO(G4) = ∑
uv∈V(G)

√
d2

G(u) + d2
G(v)

= 2
√

2(p + q− 4) + 2
√

5 + 2
√

4 + c2 +
√

2c

+ 2(c− 2)
√

2c2 − 2c + 1 +
√

2
(

c− 2
2

)
(c− 1)

= 2
√

2(n− c− 4) + 2
√

5 + 2
√

4 + c2 +
√

2c

+ 2(c− 2)
√

2c2 − 2c + 1 +
√

2
(

c− 2
2

)
(c− 1).

The expression of SO(G4) is independent of p and q. This implies that SO(G(q, p)) =
SO(G(q− 1, p + 1)) = · · · = SO(G(1, p + q− 1)). In what follows, compare the difference
between SO(G(1, p + q− 1)) and SO(G(0, p + q)):

SO(G(1, p + q− 1))− SO(G(0, p + q))

=

[√
1 + c2 + (c− 2)

√
c2 + (c− 1)2 +

√
2c2 +

√
5
]

−
[
(c− 2)

√
2(c− 1)2 +

√
(c− 1)2 + c2 +

√
8 +
√

5
]

≥ 0.

Thus, SO(G(1, p + q− 1)) ≥ SO(G(0, p + q)). Since G(0, p + q) ∼= KP(n, c), we know
that KP(n, c) is exactly the extremal graph with a minimum value of SO(KP(n, c)) in
this case.

Combining the two cases above, we complete the proof of Theorem 2.
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3.2. Extremal Graphs with Regard to SO(G) in Terms of Order n and Girth g

Let Gg
n be the set of all connected graphs with given order n and girth g. In this

subsection, we characterize the extremal graph having a minimum value of the Sombor
index in Gg

n .
Let Cg be a cycle of length g. Denote by CP(n, g) the graph obtained by connecting a

pendent vertex of a path Pn−g with one vertex v ∈ Cg.

Theorem 3. Let G ∈ Gg
n . Then

SO(G) ≥ SO(CP(n, g)),

and the equality holds if and only if G ∼= CP(n, g). Moreover, SO(CP(n, g)) = 2
√

2n− 8
√

2 +√
5 + 2

√
13.

Proof. Suppose that G ∈ Gg
n is a graph with a minimum value of SO(G). Let Cg be the

shortest cycle of G. We first claim that the cycle Cg is the only cycle of G. In fact, suppose,
to the contrary, that there exists another cycle Ct different from Cg, where t ≥ g. By
Proposition 1, we know that deleting edges will decrease the value of SO(G). Delete an
edge of Ct, and then we obtain a new graph G1 satisfying G1 ∈ Gg

n . It is easy to see that
SO(G1) < SO(G), a contradiction.

By Proposition 1 and the choice of G, it is easy to see that G− E(Cg) contains as few
edges as possible. Based on the analysis above, we know that G− E(Cg) must be a forest.
Let V(Cg) = {u1, u2, . . . , ug}. Denote by Tuij

the tree containing uij in G− E(Cg), where

ij ∈ [g]. There exist some trees being single vertices. Without of loss generality, suppose
that Tu1 , Tu2 , . . . , Tua are trees of order at least 2, where a ≤ g.

Replace the cycle Cg in G by a copy of K1 and denote it by v0. We obtain a new graph
G2 with |G2| = n− g + 1. In fact, G2 is isomorphic to a tree T. By Lemma 2, we can obtain
a new tree T′ from T such that T′ ∼= Pn and SO(T′) ≤ SO(T). In what follows, we consider
two cases whether v0 is an end vertex of T′ or not.

Case 1. dT′(v0) = 1.
In this case, we replace v0 ∈ T′ (respectively, T) by Cg to obtain a graph G3 (respectively,

G1). According to the result obtained above, SO(T′) ≤ SO(T), we obtain SO(G3) ≤ SO(G1)
immediately. It is easy to see that G3 ∼= CP(n, g). The result follows.

Case 2. dT′(v0) = 2.
Let b(≥ 1) and d(≥ 1) be two integers. We replace v0 by Cg to obtain a new graph G4.

We see that G4 can be viewed as two paths Pb and Pd connected to two distinct vertices u1
and u2 of cycle Cg, respectively. Note that b + d + g = n. Suppose that b ≤ d. Denote by G5
a new graph obtained by deleting the edge between u1 and the path Pb, and attaching Pb to
anther end vertex of Pd. We know that G5 can be viewed as a graph obtained by connecting
a path Pb+d to any vertex of Cg. Note that G5 ∼= CP(n, g). Next, compare the difference
between SO(G5) and SO(G4):

SO(G5)− SO(G4) = ∑
uv∈V(G′)

√
d2

G′(u) + d2
G′(v)− ∑

uv∈V(G)

√
d2

G(u) + d2
G(v)

= 4
√

4 + 4−
(√

1 + 4 + 3
√

4 + 9
)

= 8
√

2−
√

5− 3
√

13

< 0.

Thus, we have SO(G5) < SO(G4). In this case, SO(G5)(∼= CP(n, g)) has the minimum
value of SO(CP(n, g)).

Combing the two cases, we conclude that CP(n, g) has a minimum value of SO(CP(n, g))
in Gg

n . This completes the proof of this theorem.
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Let G ∈ G3
n. By Proposition 1, adding edges increases the value of the Sombor index.

It is easy to see that G contains as many edges as possible. Thus, SO(G) ≤ SO(Kn). The
equality holds if and only if G ∼= Kn. Moreover, SO(Kn) =

√
2

2 n(n− 1)2. If g ≥ 4, it is
difficult to determine the extremal graphs having a maximum value of the Sombor index
in Gg

n .

3.3. Extremal Graphs with Regard to ξd(G)− D′(G) in Terms of Matching Number

Let Gβ
n be the set of connected graphs of order n and matching number β. In what

follows, we will determine the extremal graph G in Gβ
n with maximum SO(G), and calculate

the corresponding value of SO(G).
Firstly, consider some special cases. If n ≥ 3 and β = 1, then SO(G) = SO(Sn) =

(n− 1)
√

n2 − 2n + 2. If n = 4 and β = 2, then SO(P4) ≤ SO(G) ≤ SO(K4). Moreover,
SO(P4) = 2

√
2 + 2

√
5 and SO(K4) = 18

√
2. So, in what follows, we always assume that

β ≥ 2 and n ≥ 5.
If β =

⌊ n
2
⌋

and n ≥ 5, then SO(Pn) ≤ SO(G) ≤ SO(Kn). The left equality holds
if and only if G ∼= Pn and the right equality holds if and only if G ∼= Kn. Moreover,
SO(Pn) = 2

√
2(n− 3) + 2

√
5 and SO(Kn) =

√
2

2 (n3 − 2n2 + n).

Theorem 4. Let G ∈ Gβ
n . If 2 ≤ β <

⌊ n
2
⌋

and n ≥ 5, then

SO(G) ≤ SO(Kβ ∨ Kn−β),

the equality holds if and only if G ∼= Kβ ∨ Kn−β.
Moreover, SO(Kβ ∨ Kn−β) = β(n− β)

√
β2 + 1 + β(β− 1)(n− 1).

Proof. We characterize the structure of extremal graph G(∈ Gβ
n ) with maximum SO(G).

Suppose t and s are two positive integers. Let ni, 1 ≤ i ≤ t be all odd positive integers.
We first show that SO(G) ≤ SO(Ks ∨ (

⋃t
i=1 Kni )). Let Ḡ = Ks ∨ (

⋃t
i=1 Kni ). Suppose

that there exists a graph G∗∗(� Ḡ) having the maximum SO(G∗∗). According to Lemma 4,
we conclude that there exists a set S ⊆ V(G∗∗) with |S| = s, such that G∗∗ − S contains t
odd components G1, G2, . . . , Gt and β(G∗∗) = 1

2 (n− t + s). Note that ∑t
i=1 |V(Gi)| ≤ n− s,

and then t ≤ n− s. Since β(G∗∗) = 1
2 (n− t + s), we have n + s− 2β(G∗∗) = t ≤ n− s.

Thus, β(G∗∗) ≥ s.
Suppose that |V(G1)| ≤ |V(G2)| ≤ · · · ≤ |V(Gt)|. Let G0 = G∗∗ − S− (

⋃t
i=1 Gi). It is

easy to see that G0 is a union of even components of G− S. If V(G0) 6= ∅, we add edges
to G∗∗[V(G0) ∪V(Gt)] until there are no edges to add to this induced subgraph. That is,
the induced subgraph G∗∗[V(G0) ∪V(Gt)] is a clique K|G0|+|Gt |. Denote by G′ the resulting
graph obtained from G∗∗ by adding as many edges as possible in G∗∗[V(G0) ∪V(Gt)]. By
Lemma 4, we have β(G′) ≤ 1

2 (n− t + s) = β(G∗∗). According to the fact that adding edges
in any graph does not reduce the matching number, we have β(G′) ≥ β(G∗∗). Then, we
have β(G′) = β(G∗∗). Thus, G′ ∈ Gβ

n . Since the number of edges in G′ are more than the
number of edges in G∗∗. By Proposition 1, we have SO(G′) < SO(G∗∗). This contradicts
the choice of G∗∗.

If V(G0) = ∅, then V(G∗∗) = S
⋃
(
⋃t

i=1 V(Gi)). According to the assumption that
G∗∗ � Ks ∨ (

⋃t
i=1 Kni ), we can obtain a new graph G′′ from G∗∗ by adding edges between

each pair vertex sets S and V(Gi), 1 ≤ i ≤ t, and adding edges in G∗∗[S] and G∗∗[V(Gi)].
According to Proposition 1, we have SO(G′′) > SO(G∗∗). This contradicts the maximality
of SO(G∗∗).

Combining above two cases, we have SO(G) ≤ SO(Ks ∨ (
⋃t

i=1 Kni )).
According to the fact above, we know that Ḡ(∼= Ks ∨ (

⋃t
i=1 Kni )) is the extremal

structure in Gβ
n with maximum value of SO(Ks ∨ (

⋃t
i=1 Kni )).
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Next, let us conduct further analysis to determine the specific value of each ni for
i ∈ [t] and optimize the graph Ks ∨ (

⋃t
i=1 Kni ) such that the value of SO(Ks ∨ (

⋃t
i=1 Kni ))

becomes as large as possible. Consider the value of SO(Ks ∨ (
⋃t

i=1 Kni )), and we have

SO(Ks ∨ (
t⋃

i=1

Kni )) = ∑
uv∈E(Ḡ)

√
d2

Ḡ(u) + d2
Ḡ(v)

=

(
s
2

)√
2(n− 1)2 +

t

∑
i=1

(
ni
2

)√
2(s + ni − 1)2 +

t

∑
i=1

sni

√
(n− 1)2 + (s + ni − 1)2

= (n− 1)
(

s
2

)√
2 +
√

2
t

∑
i=1

(
ni
2

)
(s + ni − 1) + s

t

∑
i=1

ni

√
(n− 1)2 + (s + ni − 1)2

Define a function f (n1, n2, . . . , nt) with t variables as the following.
f (n1, n2, . . . , nt) =

√
2 ∑t

i=1 (
ni
2 )(s + ni − 1) + s ∑t

i=1 ni
√
(n− 1)2 + (s + ni − 1)2,

where s(≥ 1) is constant. Suppose 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt, and 2 ≤ ni < nj for
1 ≤ i < j ≤ t. Consider the following formula:

f (n1, n2, . . . , ni, . . . , nj, . . . , nt)− f (n1, n2, . . . , ni − 1, . . . , nj + 1, . . . , nt)

=

[√
2
(

ni
2

)
(s + ni − 1) + sni

√
(n− 1)2 + (s + ni − 1)2 +

√
2
(

nj
2

)
(s + nj − 1)

+ snj

√
(n− 1)2 + (s + nj − 1)2

]
−
[

s(ni − 1)
√
(n− 1)2 + (s + ni − 2)2

+
√

2
(

ni − 1
2

)
(s + ni − 2) +

√
2
(

nj + 1
2

)
(s + nj) + s(nj + 1)

√
(n− 1)2 + (s + nj)2

]
Define two functions as following h(x) =

√
2(x

2)(s + x− 1)−
√

2(x−1
2 )(s + x− 2).

g(x) = sx
√
(n− 1)2 + (s + x− 1)2 − s(x− 1)

√
(n− 1)2 + (s + x− 2)2.

Taking the first derivative, we have h′(x) =
√

2
2 (2s− 3) > 0.

g′(x) = s
√
(n− 1)2 + (s + x− 1)2 + sx s+x−1√

(n−1)2+(s+x−1)2
− s
√
(n− 1)2 + (s + x− 2)2 −

s(x− 1) s+x−2√
(n−1)2+(s+x−2)2

> 0.

Since 2 ≤ ni < nj, we have h(ni) < h(nj) and g(ni) < g(nj). It is easy to see that
f (n1, n2, . . . , ni, . . . , nj, . . . , nt) < f (n1, n2, . . . , ni − 1, . . . , nj + 1, . . . , nt).

From the above, we see that the function f (n1, n2, . . . , ni, . . . , nj, . . . , nt) increases when
the pair (ni, nj) changes by the following chain (ni, nj) → (ni − 1, nj + 1) → · · · →
(1, nj + ni + 1).

For any pair (ni, nt), 1 ≤ i < t, if ni ≥ 2, we repeat the above process until the graph
Ḡ (i.e., Ks ∨ (

⋃t
i=1 Kni )) becomes a new graph Ĝ (i.e., Ks ∨ ((t− 1)K1

⋃
Kn−s−t+1)). The

graphs G̃ and Ĝ are given in Figure 2. By Proposition 1, we obtain SO(Ḡ) < SO(Ĝ).

Ks

Kn1 Kn2 Knt

Ḡ

Ks

Kn−s−t+1

Ĝ

Kβ

G∗

t− 1 n− β

Figure 2. The graphs used in the proof of the Theorem 4.
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Next, continue to increase the value of SO(Ĝ). Notice that β(Ĝ) = β = 1
2 (n + s− t).

We calculate this value by the following:

SO(Ks ∨ ((t− 1)K1 ∪ Kn−s−t+1)) = ∑
uv∈E(Ĝ)

√
d2

Ĝ
(u) + d2

Ĝ
(v)

= s(t− 1)
√
(n− 1)2 + s2 + s(n− s− t + 1)

√
(n− 1)2 + (n− t)2

+

(
s
2

)√
2(n− 1)2 +

(
n− s− t + 1

2

)√
2(n− t)2

= s(t− 1)
√
(n− 1)2 + s2 + s(n− s− t + 1)

√
(n− 1)2 + (n− t)2

+
√

2
(

s
2

)
(n− 1) +

√
2
(

n− s− t + 1
2

)
(n− t)

= s(n + s− 2β− 1)
√
(n− 1)2 + s2 + s(2β− 2s + 1)

√
(n− 1)2 + (2β− s)2

+
√

2
(

s
2

)
(n− 1) +

√
2
(

2β− 2s + 1
2

)
(2β− s)

Let g1(x) = x(n+ x− 2β− 1)
√
(n− 1)2 + x2 + x(2β− 2x + 1)

√
(n− 1)2 + (2β− x)2

+
√

2(x
2)(n− 1) +

√
2(2β−2x+1

2 )(2β− x), with 1 ≤ x ≤ β < n−1
2 . Taking the first deriva-

tive, we have g′1(x) = (n + 2x − 2β − 1)
√
(n− 1)2 + x2 + x3+(n−2β−1)x2√

(n−1)2+x2
+ (2β − 4x +

1)
√
(n− 1)2 + (2β− x)2 + (2βx − 2x2 + x) x−2β√

(n−1)2+(2β−x)2
+
√

2
2 (2x − 1)(n − 1)−

√
2(2β−2x+1

2 )−
√

2(2β− x)(2β− 2x)−
√

2(2β− x)(2β− 2x + 1).
For 1 ≤ x ≤ β < n−1

2 , we check that g′1(x) > 0. That is, the function g1(x) is increasing
when x ∈ [1, β]. Then, we conclude that g1(x) reaches its maximum value at x = β with
1 ≤ x ≤ β < n−1

2 . Note that G∗ = Ks ∨ ((n + s− 2β− 1)K1 ∪ K2β−2s+1) ∼= Kβ ∨ Kn−β (see
Figure 2) for x = s = β, and then SO(Ĝ) < SO(G∗).

That is, SO(Ks ∨ ((t− 1)K1 ∪ Kn+s−t+1)) < SO(Kβ ∨ Kn−β).
This completes the proof.

4. Bipartite Graphs with Given Parameters
4.1. Extremal Bipartite Graphs with Regard to SO(G) in Terms of Matching Number β

Let Bβ
n be the class of all bipartite graphs of order n and matching number β. In

this subsection, we give some upper bounds on SO(G) of all connected graph G ∈ Bβ
n .

Meanwhile, we determine the corresponding extremal graphs.

Theorem 5. Let G ∈ Bβ
n . Then

SO(G) ≤ SO(Kβ,n−β),

the equality holds if and only if G ∼= Kβ,n−β. Moreover, SO(Kβ,n−β) = β(n− β)
√

n2 − 2βn + 2β2.

Proof. Suppose that G ∈ Bβ
n is an extremal graph with maximum SO(G). Let A, B be the

bipartition of the vertex set of G, |A| = a and |B| = b. Let M be a maximal matching of G,
and |M| = β. Suppose a ≥ b ≥ β. Let A0 = A

⋂
V(G[M]), and B0 = B

⋂
V(G[M]). It is

easy to see that |A0| = |B0| = β. Since β ≤ b n
2 c, we consider two cases depending on the

value of β. If β = b n
2 c, then A = d n

2 e and B = b n
2 c. We claim that G ∼= Kβ,n−β. Suppose,

to the contrary, that G � Kβ,n−β. Construct a new graph G′ obtained from G by adding
edges between two sets A and B. According to Proposition 1, adding edges will increase
the value of the Sombor index, and then we have SO(G′) > SO(G). This contradicts the
choice of G. Thus, G ∼= Kβ,n−β.
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If β < b n
2 c and b = β, then G ∼= Kβ,n−β. In what follows, we assume that b > β.

We show that [A \ A0, B \ B0] = ∅. Otherwise, if there exists an edge e ∈ [A \ A0, B \ B0],
then we find a new matching M′ = M

⋃{e}. Thus, |M′| = β + 1. This is a contradiction.
Construct a new graph G∗ from G by adding as many edges as possible between the two
sets A0 and B0 (respectively, A0 and B \ B0, B0 and A \ A0). We have SO(G∗) > SO(G).
Note that G∗[A0

⋃
B0] = Kβ,β and β(G∗[A0

⋃
B0]) = β. It is easy to see that |B \ B0| = b− β,

and |A \ A0| = a− β. Choose M0 as a proper subset of maximum matching of G∗[A0
⋃

B0].
That is, |M0| < β. Since β(G∗[A0

⋃
B \ B0]) ≥ β− |M0| and β(G∗[B0

⋃
A \ A0]) ≥ β− |M0|,

we can find maximal matching with order |M0|+ 2(β− |M0|) = β + (β− |M0|) ≥ β + 1
in G∗. Hence, G∗ /∈ Bβ

n and G∗ 6= G. Next, construct a new graph Ĝ from G∗ by deleting
red edges and adding blue edges such that [A0, B \ B0] = ∅, and Ĝ[B0

⋃
(B \ B0)] = Kb−β,β.

The graphs G∗ and Ĝ are given in Figure 3. It is easy to check that Ĝ ∈ Bβ
n with β(Ĝ) = β.

In what follows, we claim that Ĝ ∼= Kβ,n−β. Compare the difference between SO(Ĝ)
and G∗:

SO(G∗)− SO(Ĝ) = ∑
uv∈V(G∗)

√
d2

G∗(u) + d2
G∗(v)− ∑

uv∈V(Ĝ)

√
d2

Ĝ
(u) + d2

Ĝ
(v)

= (b− β)β
√

β2 + b2 + β2
√

a2 + b2 + (a− β)β
√

a2 + β2 − β2
√

β2 + (a + b− β)2

− (b− β)β
√

β2 + (a + b− β)2 − (a− β)β
√
(a + b− β)2 + β2

< 0.

Thus, SO(G∗) < SO(Ĝ). This implies that Ĝ ∼= G ∼= Kβ,n−β.
We complete the proof of the Theorem 5.

G∗

B

A0

B0

A \ A0

B \ B0

Ĝ

A

B

B0

A \A0

B \B0

A

A0

Figure 3. The graphs used in the proof of the Theorem 5.

4.2. Extremal Bipartite Graphs with Regard to SO(G) in Terms of Connectivity k

Let Bk
n be the class of all bipartite graphs of order n and connectivity k. In what follows,

we determine the extremal graphs in Bk
n with the maximum Sombor index. Denote by Ka,b

the complete bipartite graph with two partitions A and B. Let a = |A| ≥ |B| = b. In [29],
Li et al. gave two definitions of two operations ∨1 and ∨2. Denote by Ks ∨1 (Kn1,n2

⋃
Km1,m2)

the graph obtained by connecting each vertex of Ks to each vertex of one partition with
order n1 (respectively, m1) of Kn1,n2 (respectively, Km1,m2 ). Denote by Ks ∨2 (Kn1,n2

⋃
Km1,m2)

the graph obtained by connecting each vertex of Ks to each vertex of one partition with
order n2 (respectively, m2) of Kn1,n2 (respectively, Km1,m2 ).
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Theorem 6. Let G ∈ Bk
n with 1 ≤ k ≤ b n−1

2 c.
(I) If k = b n−1

2 c or b n−3
2 c, then G ∼= Ks,n−s.

Moreover, SO(Ks,n−s) = s(n− s)
√
(n− s)2 + s2.

(II) If 1 ≤ k ≤ b n−5
2 c, then G ∼= Ks ∨1 (K1

⋃
Kp,q) for some p and q.

Moreover, SO(Ks ∨1 (K1
⋃

Kp,q)) = s
√

s2 + (p + 1)2 + sp
√
(s + q)2 + (p + 1)2+

pq
√
(s + q)2 + p2.

Proof. Suppose that G is a graph in Bk
n with maximum SO(G). Let S be a minimal vertex

cut set with |S| = k, and G1, G2, . . . , Gt be the connected components of G − S, where
t ≥ 2. If there exists i ∈ [t] such that |Gi| ≥ 2, then G[Gi] must be a complete bipartite
subgraph. Otherwise, we can obtain a new graph G′ obtained from G by adding edges in
G[Gi]. By Proposition 1, adding edges increases the value of the Sombor index, we have
SO(G′) > SO(G). This contradicts the choice of G. If there exists j ∈ [t] such that |Gj| = 1,
then G[Gj, S] must be a complete bipartite subgraph K1,s. Otherwise, we can find a smaller
vertex cut set than S such that the connectivity of G is less than k. This is a contradiction.
Moreover, G[S] = Ks. If there exists an edge e ∈ G[S], then we can find a triangle in G,
a contradiction.

Case 1 k = b n−1
2 c or b n−3

2 c.
In this case, each component of G− S must be a single vertex K1. Otherwise, suppose

that there exists a component Gi with |Gi| ≥ 2 for i ∈ [t]. Obviously, G[Gi] is a complete
bipartite subgraph. Denote by A the partition of G[Gi] such that A and S are in different
partition of G. It is easy to see that A is a vertex cut set with |A| < s. This is a contradiction.
Thus, G− S = Kn−s. Then, G ∼= Ks,n−s.

Case 2 1 ≤ k ≤ b n−5
2 c.

We claim that G − S contains exactly two components G1 and G2. Otherwise, sup-
pose that t ≥ 3. Since each component Gi with order at least 2 is a complete bipartite
subgraph, we can obtain a new graph G′′ obtain from G by adding edges in G[

⋃t
i=2 Gi]

such that G[
⋃t

i=2 Gi] becomes a complete bipartite subgraph. By Proposition 1, we obtain a
contradiction that SO(G′′) > SO(G).

Without loss of generality, let |G1| ≥ 2, and |G2| = 1. Let X, Y be two partitions of G1
with |X| = p, |Y| = q and p ≥ q. Let G′′′ = Ks ∨1 (K1

⋃
Kp,q). It is easy to see that p ≥ s.

Otherwise, X is a vertex cut set with |X| = p < s. This is a contradiction.
Calculate the Sombor index of Ks ∨1 (K1

⋃
Kp,q).

SO(Ks ∨1 (K1
⋃

Kp,q)) = ∑
uv∈E(G′′′)

√
d2

G′′′(u) + d2
G′′′(v)

= s
√

s2 + (p + 1)2 + sp
√
(s + q)2 + (p + 1)2 + pq

√
(s + q)2 + p2.

5. Concluding Remarks

In this paper, we give some further results on SO(G). We determine the upper
and lower bounds on SO(G) among general connected graphs in terms of several graph
parameters, i.e., chromatic number, and characterize the extremal graphs. In addition, we
consider the extremal value of the Sombor index in bipartite graphs in terms of connectivity
and matching number, and determine the corresponding extremal bipartite graphs.

Naturally, it is interesting to consider the extremal connected bipartite graphs in terms
of other parameters. We state a few challenging open problems on Sombor index for
connected graphs and connected bipartite graphs.

Problem 1. Determine an upper bound on Sombor index for connected graphs in terms of girth.



Axioms 2023, 12, 203 12 of 13

Problem 2. How can we determine lower and upper bounds on Sombor index for connected
bipartite graphs in terms of diameter.

Problem 3. Determine lower and upper bounds on Sombor index for connected bipartite graphs in
terms of radius.

Problem 4. Determine lower and upper bounds on the Sombor index for connected bipartite graphs
in terms of domination.

Our research on the Sombor index among connected graphs and connected bipartite
graphs with some given parameters is just the beginning. We will continue to conduct
research along this line in the future.
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