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Abstract: Extreme learning machines (ELMs) have recently attracted significant attention due to their
fast training speeds and good prediction effect. However, ELMs ignore the inherent distribution of
the original samples, and they are prone to overfitting, which fails at achieving good generalization
performance. In this paper, based on expectile penalty and correntropy, an asymmetric C-loss
function (called AC-loss) is proposed, which is non-convex, bounded, and relatively insensitive to
noise. Further, a novel extreme learning machine called L1 norm robust regularized extreme learning
machine with asymmetric C-loss (L1-ACELM) is presented to handle the overfitting problem. The
proposed algorithm benefits from L1 norm and replaces the square loss function with the AC-loss
function. The L1-ACELM can generate a more compact network with fewer hidden nodes and
reduce the impact of noise. To evaluate the effectiveness of the proposed algorithm on noisy datasets,
different levels of noise are added in numerical experiments. The results for different types of artificial
and benchmark datasets demonstrate that L1-ACELM achieves better generalization performance
compared to other state-of-the-art algorithms, especially when noise exists in the datasets.

Keywords: extreme learning machine; asymmetric least square loss; expectile; correntropy; robustness

MSC: 65E99; 68T01; 68U01

1. Introduction

The single hidden-layer feedforward neural network (SLFN) is one of the most im-
portant learning algorithms in data mining and machine learning fields. SLFN has only
one hidden layer that connects the input and output layers. Generally, gradient-based
algorithms are used to train SLFNs similar to back-propagation algorithms [1], which
often leads to slow convergence, overfitting, and local minima. To overcome these prob-
lems, Huang et al. [2,3] proposed a widely used method based on the structure of SLFN
called extreme learning machine (ELM). Compared to the traditional single hidden layer
feedforward neural network, the input weights and thresholds of the hidden layer nodes
in ELM are randomly generated, and there is no need for repeated adjustment via itera-
tions. ELM identifies the output weight vector with the smallest norm by calculating the
Moore-Penrose inverse. Therefore, the training speed of ELM is much higher than that of
SLFN. Moreover, ELM also requires minimal training error and norm of the weights, which
facilitates good generalization performance. Since ELM has a higher learning speed and
better generalization performance, it has been successfully applied in many fields [4–6].
However, ELM still has several shortcomings. For example, ELM is based on empirical risk
minimization (ERM) [7] which often leads to overfitting.

To address this issue, many scholars have proposed various algorithms based on
ELM to improve the generalization performance. In [8], Deng et al. introduced the weight
factor γ into ELM for the first time and proposed the regularized extreme learning machine
(RELM). By adjusting the weight factor γ, the proportion of empirical risk and structural risk
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in the actual prediction risk can be optimal, thereby avoiding model overfitting. However,
RELM uses the L2 norm which is sensitive to outliers. To reduce the influence of outliers,
Rong et al. proposed the pruned extreme learning machine (P-ELM) [9], which can remove
irrelevant hidden nodes. P-ELM is only used for classification problems. To further address
the regression problem, the optimally pruned extreme learning machine (OP-ELM) [10]
was proposed. In OP-ELM, The L1 norm is used to remove irrelevant output nodes and
select the corresponding hidden nodes, and then the weight of the corresponding hidden
nodes is calculated using the least squares method. Given that the L1 norm is robust to
outliers, it is used in various algorithms to improve the generalization performance [11,12].
Balasundaram et al. [13] proposed the L1 norm extreme learning machine, which produces
sparse models such that decision functions can be determined using fewer hidden layer
nodes. Generally speaking, RELM is composed of empirical risk and structural risk.
Structural risk can effectively avoid overfitting, and structural risk is determined by loss
function. Traditional RELMs use the squared loss function, which is symmetric and
unbounded. The symmetry makes the model unable to take into account the distribution
characteristics within the training samples, while unboundedness will cause the model
to be sensitive to noise and outliers. In real life, the distribution of data is unbalanced,
and noise is generally mixed in the process of data collection. Therefore, it is particularly
important to choose an appropriate loss function to construct the model.

Quantiles can reflect completely the distribution of random variables without missing
any information Quantile regression can more accurately describe the distribution charac-
teristics of random variables for comprehensive analysis. Therefore, quantile regression is
more robust and has been successfully applied to statistical prediction [14,15]. Quantile loss
can be thought of as a pinball penalty. Expectile loss is an asymmetric least squares loss,
which is the square of the quantile loss function. It is often used in regression problems
with imbalanced data [16]. However, the unboundedness of the expectile loss leads to a
lack of robustness.

From [17], the bounded loss function is less sensitive to noise and outliers than the
unbounded loss function, whereas convex functions are usually unbounded. To further im-
prove the robustness of ELM, researchers have proposed various non-convex loss functions
to replace the convex loss functions [18–20]. Examples of common convex loss functions
include square loss, hinge loss, and Huber loss, which allow for the determination of
global optimal solutions and are easy to solve. However, the unboundedness of the convex
loss function implies that it is not suited for handling outliers. Compared to convex loss
functions, non-convex loss functions are more robust to outliers. Recently, Singh et al. [21]
proposed a correntropy-based loss function called C-loss. Based on information theory and
the kernel method, correntropy [22,23] is considered to be a generalized local similarity
measure between two random variables. As a non-convex, bounded loss function, the
C-loss function has been widely used in machine learning to improve robustness. In 2019,
Zhao et al. [24] applied the C-loss function to ELM for the first time. They proposed the
C-loss based ELM (CELM), and also experimentally demonstrated that the generalization
performance was better compared to that of other algorithms.

In real life, the distribution of datasets tends to be asymmetric, and the training
samples are easily contaminated by noise. In order to better consider the distribution
characteristics inside the data and improve the generalization ability of the algorithm, a
non-convex robust loss function is proposed, called asymmetric C-loss (AC-loss). A robust
extreme learning machine based on the asymmetric C-loss and L1-norm (called L1-ACELM)
is then developed. The main contributions of this report are as follows:

(1) Based on the expectile penalty and correntropy loss function, a new loss function
(AC-loss) is developed. AC-loss retains some important properties of C-loss such as
non-convexity and boundedness. AC-loss is asymmetric, and it can handle unbal-
anced noise.

(2) A novel approach called the L1-norm robust regularized extreme learning machine
with asymmetric C-loss (L1-ACELM) is proposed by applying the proposed AC-loss
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function and the L1-norm in the objective function of ELM to enhance robustness
to outliers.

(3) The non-convexity of the AC-loss function makes it difficult for L1-ACELM to be
solved. The half-quadratic optimization algorithm [25–27] is used to address these
problems. Moreover, the convergence of the proposed algorithms is analyzed.

The remainder of this paper is structured as follows. Section 2 briefly reviews ELM,
RELM, C-loss function, and the half-quadratic optimization algorithm. In Section 3, we
propose the asymmetric C-loss function and the L1-ACELM model. Next, the half-quadratic
optimization algorithm is used to solve L1-ACELM. In addition, we analyze the conver-
gence of the algorithm. The experimental results for the artificial and benchmark datasets
are presented in Section 4. Section 5 summarizes the main conclusions and further study.

2. Related Work
2.1. Extreme Learning Machine (ELM)

ELM is a new single hidden layer feedforward neural network that is first proposed by
Huang et al. [2]. Unlike traditional SLFN, the input weights and thresholds of the hidden
layer in ELM are randomly generated and the output weights can be determined using the
least square method. Hence, it is much faster than traditional SLFN. In addition, ELM has
good generalization ability.

Given N arbitrary distinct samples {X, Y} = {xi, yi}
N
i = 1, xi = [xi1, xi2, . . . , xim]

T ∈
Rm and yi = [yi1, yi2, . . . , yin]

T ∈ Rn are the input samples and the corresponding output
vectors, respectively. The output of a standard SLFN with L hidden nodes can be expressed
as follows:

f(xi) =
L

∑
j = 1

βjh
(
αj, bj, xi

)
, i = 1, . . . , N (1)

where αj =
[
αj1, αj2, . . . , αjm

]T ∈ Rm is the input weight vector that connects the in-
put node to the j-th hidden layer node and bj ∈ R is the bias of the j-th hidden node.

βj =
[
β j1, β j2, . . . , β jn

]T ∈ Rn is the output weight vector that connects the j-th hidden
layer node to the output node, and h

(
αj, bj, xi

)
is the output of the j-th hidden layer node

with respect to the input xi. f(·) denotes the actual output vector of SLFN.
For ELM, the input weight vector and the bias that connects the input node to the

hidden layer node are randomly assigned instead of being updated. Therefore, it can be
converted to a linear model:

F = Hβ (2)

where

H =

h(x1)
...

h(xN)

 =

 h(α1, b1, x1) . . . h(αL, bL, x1)
...

. . .
...

h(α1, b1, xN) . . . h(αL, bL, xN)


N×L

, β =

βT
1
...

βT
L


L×n

and F =

 f(x1)
T

...
f(xN)

T


N×n

Here, H is the output matrix of the hidden layer. Thus, the output weight vector
that connects the hidden layer node to the output node can be determined by solving the
following equation:

min
β
‖Hβ − Y‖2 (3)

ELM requires the approximation of the training samples with zero error. Therefore,
Equation (3) can be written as:

Hβ = Y (4)

The output weight β is the least squares solution of Equation (4), which can be obtained
as follows:

β = H+Y (5)
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where H+ is the Moore-Penrose generalized inverse of the matrix H.
To avoid overfitting of the model, regularized ELM is proposed, which facilitates

better generalization performance by minimizing the sum of the training error and the
norm of the output weights [28]. RELM can be expressed as follows:

min
β
‖Hβ − Y‖2

2 +
γ

2
‖β‖2

2 (6)

The optimal solution to RELM is computed as follows:

β =

{(
HTH + γI

)−1HTY i f N ≥ L
HT(HHT + γI

)−1Y i f N < L
(7)

where I is an identity matrix.

2.2. Correntropy-Induced Loss (C-Loss)

Correntropy is a generalized similarity measure between two random variables in a
small neighborhood defined by the kernel width σ. For a regression problem, the choice of
the loss function could ensure that the similarity between the actual output and the target
value is maximized, which is equivalent to the maximization of correntropy. Thus, the
C-loss function [21] is proposed by Singh et al., which is defined as:

LC(yi, f (xi)) = 1 − exp

{
− (yi − f (xi))

2

2σ2

}
(8)

As a bounded non-convex loss function, the C-loss loss function is more robust to
outliers than the traditional squared loss function.

2.3. Half-Quadratic Optimization

The half-quadratic optimization algorithm based on the conjugate function theory [29]
is usually used for convex optimization and non-convex optimization problems. This
method transforms the original non-convex objective function into a half-quadratic objec-
tive function by introducing auxiliary variables. As such, the objective function cannot be
solved directly, and a two-step alternating minimization method is required. The specific
operations are as follows: given the original variables, the auxiliary variables are optimized.
The variables are then optimized, and the original variables are determined.

The minimization problem is as follows:

min
v

φv(v) + F(v) (9)

where v = [v1, v2, . . . , vN ]
T ∈ RN , φ(·) is a potential loss function with φ(v) =

N
∑

i = 1
φ(vi)

and F(·) is a convex penalty function.
Considering the half-quadratic optimization algorithm, we introduce an auxiliary

variable p = [p1, p2, . . . , pN ]
T ∈ RN into φ(·), which can then be expressed as:

φ(vi) = min
pi
{Q(vi, pi) + ϕ(pi)} (10)

where Q(vi, pi) is a half-quadratic function, which can be represented in the additive form
QA(vi, pi) = 1

2
(√

cvi − pi/
√

c
)2 or the multiplicative form QM(vi, pi) = 1

2 pivi
2.

Substituting Equation (10) into Equation (9), we obtain the following optimization problem:

min
v

φv(v) + F(v) = min
v,p
{Q(v, p) + ϕ(p) + F(v)} (11)
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where pi is determined using a function g(·), which is the conjugate function of φ(·).
Alternatively, Equation (11) can then be optimized as follows:

pt+1 = g(v) (12)

vt+1 = argmin
v

{
Q
(

v, pt+1
)
+ F(v)

}
(13)

where t represents the t-th iteration.

3. Main Contributions
3.1. Asymmetric C-Loss Function (AC-Loss)

As a measure of risk, the expectile is an extension of the quantile, which represents the
distributional information of a random variable. The expectile loss is essentially a squared
pinball loss, which can also be considered as an asymmetric squared loss. The asymmetric
least square loss function can be expressed as:

Lτ(yi, f (xi)) =

{
τ(yi − f (xi))

2

(1 − τ)(yi − f (xi))
2

i f yi − f (xi) ≥ 0
i f yi − f (xi) < 0

(14)

However, given that the asymmetric least square loss is an unbounded loss function,
it is more sensitive to outliers. Therefore, we construct an asymmetric C-loss (AC-loss)
function, based on the C-loss function and the expectile loss function, which is a non-
convex, asymmetric, and bounded function for dealing with outliers and noise. The
AC-loss function is defined as follows:

Lals
C (yi, f (xi)) =


1 − exp

{
−τ(yi − f (xi))

2

2σ2

}
i f yi − f (xi) ≥ 0

1 − exp
{
−(1 − τ)(yi − f (xi))

2

2σ2

}
i f yi − f (xi) < 0

(15)

The plot of the AC-loss function is shown in Figure 1.
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3.2. L1-ACELM

To improve the generalization performance of RELM, the proposed loss function is
introduced to replace the squared loss function. To further enhance robustness to outliers,
the L2 norm of structural risk in RELM is replaced with the L1 norm. Therefore, we propose
a new robust ELM (called L1-ACELM):

min
β

J(β) =
N

∑
i = 1

Lals
C (yi − h(xi)β) + γ‖β‖1 (16)

where γ > 0 is a regularized parameter.
Since AC-loss is a non-convex loss function, it is difficult to directly optimize the

objective function. The half-quadratic optimization algorithm is usually applied to optimize
non-convex problems. Therefore, we chose the half-quadratic optimization algorithm to
find the optimal solution of the objective function.

3.3. Solving Method

For the function f (u) = exp(u), there exists a convex function g(v), which is ex-
pressed as follows:

g(v) = −v log(−v) + v (17)

where v < 0, and the conjugate function g∗(u) of the function g(v) is defined as:

g∗(u) = sup
v
{uv + v log(−v) − v} (18)

where
v = − exp(−u) < 0 (19)

By substituting Equation (19) into Equation (18), we have

g∗(u) = exp(−u) (20)

Now, let u =


τe2

i
2σ2 i f ei ≥ 0

(1 − τ)e2
i

2σ2 i f ei < 0
and ei = yi − h(xi)β, then Equation (18) can

be expressed as:

g∗(u) =


sup

v

{
τe2

i
2σ2 v + v log(−v) − v

}
sup

v

{
(1 − τ)e2

i
2σ2 v + v log(−v) − v

} =


exp

(
− τe2

i
2σ2

)
i f ei ≥ 0

exp
(
− (1 − τ)e2

i
2σ2

)
i f ei < 0

(21)

where

vi =


− exp

(
− τe2

i
2σ2

)
i f ei ≥ 0

− exp
(
− (1 − τ)e2

i
2σ2

)
i f ei < 0

(22)

By combining Equations (21) and (16), we have

min
β,v

J(β, v) =


N
∑

i = 1

(
1 − sup

vi

{
exp

(
− τe2

i
2σ2

)
vi + g(vi)

})
+ γ‖β‖1 i f ei ≥ 0

N
∑

i = 1

(
1 − sup

vi

{
exp

(
− (1 − τ)e2

i
2σ2

)
vi + g(vi)

})
+ γ‖β‖1 i f ei < 0

s.t. βh(xi) = yi − ei, i = 1, 2, . . . , N

(23)



Axioms 2023, 12, 204 7 of 22

where v = [v1, v2, . . . , vN ]
T . Equation (23) can be simplified as:

min
β,v

J′(β, v) =


sup

v

{
N
∑

i = 1

(
− τe2

i
2σ2 vi − vi log(−vi) + vi

)}
+ γ‖β‖1 i f ei ≥ 0

sup
v

{
N
∑

i = 1

(
− (1 − τ)e2

i
2σ2 vi − vi log(−vi) + vi

)}
+ γ‖β‖1 i f ei < 0

s.t. h(xi)β = yi − ei, i = 1, 2, . . . , N

(24)

The optimal solution β can be obtained by solving Equation (24) using the alternating
optimization method.

Firstly, given the original variables βt, we can obtain the optimal solution for the
auxiliary variables vt+1. When βt is given, the minimization problem is given as follows:

min
v

J(v) =


N
∑

i = 1

(
− τ(yi − f (xi))

2

2σ2 vi − vi log(−vi) + vi

)
i f ei ≥ 0

N
∑

i = 1

(
− (1 − τ)(yi − f (xi))

2

2σ2 vi − vi log(−vi) + vi

)
i f ei < 0

(25)

According to the half-quadratic optimization algorithm, the auxiliary variables vt+1

can be obtained by solving Equation (24). Thus, we have:

vt+1
i =


− exp

(
− τ(yi − f t(xi))

2

2σ2

)
i f ei ≥ 0

− exp
(
− (1 − τ)(yi − f t(xi))

2

2σ2

)
i f ei < 0

, i = 1, 2, . . . , N (26)

Secondly, the auxiliary variables vt+1 are fixed and the optimal solution of the original
variable βt+1 can be obtained by solving the following minimization problem:

min
βt+1

J
(

βt+1) =


N
∑

i = 1

(
− τvi

2σ2 e2
i

)
+ γ

∥∥βt+1
∥∥

1 i f ei ≥ 0

N
∑

i = 1

(
− (1 − τ)vi

2σ2 e2
i

)
+ γ

∥∥βt+1
∥∥

1 i f ei < 0

s.t. βt+1h(xi) = yi − ei, i = 1, 2, . . . , N

(27)

Equation (27) is equivalent to

min
βt+1

J
(

βt+1) =


N
∑

i = 1

(
− τvt+1

i
2σ2

(
yi − h(xi)βt+1)2

)
+ γ

∥∥βt+1
∥∥

1 i f yi ≥ h(xi)βt+1

N
∑

i = 1

(
− (1 − τ)vt+1

i
2σ2

(
yi − h(xi)βt+1)2

)
+ γ

∥∥βt+1
∥∥

1 i f yi < h(xi)βt+1
(28)

Since the L1 norm exists in the objective function, the proximal gradient descent
(PGD) algorithm is applied to solve the optimization problem Equation (28). The objective
function J

(
βt+1) can be written as

J
(

βt+1
)

= S
(

βt+1
)
+ γ

∥∥∥βt+1
∥∥∥

1
, (29)

where

S
(

βt+1
)

=


N
∑

i = 1

(
− τvt+1

i
2σ2

(
yi − h(xi)βt+1)2

)
i f yi ≥ h(xi)βt+1

N
∑

i = 1

(
− (1 − τ)vt+1

i
2σ2

(
yi − h(xi)βt+1)2

)
i f yi < h(xi)βt+1

(30)
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S
(

βt+1) is differentiable and its derivative is as follows:

∇S
(

βt+1
)

=


N
∑

i = 1

(
τvt+1

i
σ2 hT(xi)

(
yi − h(xi)βt+1)) i f yi ≥ h(xi)βt+1

N
∑

i = 1

(
(1 − τ)vt+1

i
σ2 hT(xi)

(
yi − h(xi)βt+1)) i f yi < h(xi)βt+1

(31)

Since∇S
(

βt+1) satisfies the L-Lipschitz continuity condition, there is a constant η > 0
such that ∥∥∥∇S(β) − ∇S

(
βt+1

)∥∥∥2

2
≤ η

∥∥∥β − βt+1
∥∥∥2

2
, ∀
(

β, βt+1
)

(32)

The second-order Taylor expansion of the function S
(

βt+1) can be expressed as

S
(

β; βt+1) ≈ S
(

βk+1
)
+∇S

(
βk+1

)(
β − βk+1

)
+ η

2

∥∥∥β − βk+1
∥∥∥

= η
2

∥∥∥β −
(

βk+1 − 1
η∇S

(
βk+1

))∥∥∥2

2
+ δ
(

βk+1
) (33)

where δ
(

βt+1) is a constant that is independent of βt+1.
Introducing

∥∥βt+1
∥∥

1 into the objective function, the iterative equation of the proximal
gradient descent can be expressed as

βt+1 = argmin
βt+1

η

2

∥∥∥∥β −
(

βt+1 − 1
η
∇S
(

βt+1
))∥∥∥∥2

2
+ γ

∥∥∥βt+1
∥∥∥

1
(34)

Let z = βt+1 − 1
η∇S

(
βt+1). Then, the closed-form solution of Equation (34) can be

written as:

β
t+1

i =


zi − γ/η γ/η < zi

0 |zi| ≤ γ/η
zi + γ/η zi < − γ/η

, i = 1, 2, . . . , N (35)

where β
t+1

i and zi represent the i-th component of βt+1 and z, respectively. We develop a
half-quadratic optimization to solve the proposed model, and the pseudo code is presented
in Algorithm 1.

Algorithm 1. Half-quadratic optimization for L1-ACELM

Input: The training dataset T = {(xi, yi)}N
i = 1, the number of hidden layer nodes L, the

activation function h(x), the regularization parameter γ, the maximum number of iterations tmax,
window width σ, a small number ρ and the parameter τ.
Output: the output weight vector β.
Step 1. Randomly generate input weight αi and hidden layer bias bi with L hidden nodes.
Step 2. Calculate hidden output matrix H(x).
Step 3. Compute β by Equation (7).
Step 4. Let β0 = β and β1 = β, set t = 1.
Step 5. While

∣∣J(βt) − J
(

βt − 1)∣∣ < ρ or t < tmax do
calculate vt+1

i by Equation (26).
update βt+1 using Equation (35).
compute J

(
βt+1) by Equation (29).

update t: = t + 1.
End while
Step 6: Output result given by β = βt − 1.
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3.4. Convergence Analysis

Proposition 1. The sequence
{

J
(

βt, vt), t = 1, 2, . . . , t
}

generated by Algorithm 1 is convergent.

Proof. Let βt and vt be the optimal solution to the objective function (23) after t itera-
tions. In the half-quadratic optimization problem, the conjugate function g∗(·) satisfies
{Q(βi, g∗(βi)) + ϕ(βi)} ≤ {Q(βi, g∗(vi)) + ϕ(vi)}. When βt is fixed, we can obtain the
optimal solution vt+1 of v at the (t + 1)-th iteration from Equation (26), then we have:

J
(

βt, vt+1
)
≤ J
(

βt, vt) (36)

Next, when vt+1 is fixed, we can optimize (28) to obtain the solution βt+1 of β at the
(t + 1)-th iteration. Then we have:

J
(

βt+1, vt+1
)
≤ J
(

βt, vt+1
)

(37)

Combining Inequation (36) with Inequality (37), we have:

J
(

βt+1, vt+1
)
≤ J
(

βt, vt+1
)
≤ J
(

βt, vt) (38)

Hence, the optimization problem J(β, v) is bounded, and the sequence{
J
(

βt, vt), t = 1, 2, . . . , t
}

is convergent. �

4. Experiments
4.1. Experimental Setup

To evaluate the performance of the proposed L1-ACELM algorithm, we performed
numerical simulations using two artificial datasets and ten standard benchmark datasets.
To show the effectiveness of the L1-ACELM algorithm compared to traditional algorithms
including extreme learning machine (ELM), regularized ELM (RELM), and C-loss based
ELM (CELM), several experiments were performed. All experiments were implemented in
Matlab2016a on a PC with an i5-7200U Intel(R) Core (TM) processor (2.70 GHz) 4 GB RAM.

To evaluate the prediction performance of the L1-ACELM algorithm, the regression
evaluation metrics are defined as follows:

(1) The root mean square error (RMSE)

RMSE =

√√√√ 1
N

N

∑
i = 1

(yi − ŷi)
2 (39)

(2) Mean absolute error (MAE)

MAE =
1
N

N

∑
i = 1
|yi − ŷi| (40)

(3) The ratio of the sum squared error (SSE) to the sum squared deviation of the sample
SST (SSE/SST) is given as:

SSE/SST =

N
∑

i = 1
(ŷi − yi)

2

N
∑

i = 1
(yi − yi)

2
(41)

(4) The ratio between the interpretable sum deviation SSR and SST (SSR/SST) is given by:
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SSR/SST =

N
∑

i = 1
(ŷi − yi)

2

N
∑

i = 1
(yi − yi)

2
(42)

where N is the number of samples. yi and ŷi denote the target values and the corresponding

predicted values, respectively. yi can be calculated from yi = 1
N

N
∑

i = 1
yi, which represents

the average value of y1, y2, . . . , yN . The sigmoid function is chosen as the activation function
for ELM, RELM, CELM, and L1-ACELM, and can be expressed as:

h(x) =
1

1 + exp
(
−aT

i x + bi
) (43)

Since the original algorithms and the proposed algorithm involve many parameters,
to ensure the best performance, ten-fold cross-validation is used to determine the optimal
parameters. In ELM and RELM, the number of hidden layer nodes L = 30 is fixed. For
RELM, CELM, and L1-ACELM, the optimal value of the regularization parameter γ is
selected from the set {2−50, 2−49, . . . , 249, 250}. For CELM and L1-ACELM, the window
width σ is selected from the range {2−2, 2−1, 20, 21, 22}. For L1-ACELM, the parameter τ is
obtained from the set {0.1, 0.2, . . . , 0.9}.

4.2. Performance on Artificial Datasets

To verify the robustness of the proposed L1-ACELM, two artificial datasets were
generated using six different types of noise, both of which consisted of 2000 data points.
Table 1 shows the specific forms of two artificial datasets and different types of noise.
λi ∼ N

(
0, s2) indicates that λi has a normal distribution with a mean of zero and variance

of s2, λi ∼ U(a, b) means that λi has a uniform distribution in the interval [a, b], λi ∼ T(c)
indicates that λi has a t-distribution with c degrees of freedom.

Table 1. Artificial datasets with different types of noise.

Artificial Dataset Function Definition Types of Noise

Sinc function yi = sin c(2xi) = sin(2xi)
2xi

+ λi Type A: x ∈ [−3, 3],λi ∼ N(0, 0.15̂2)
Type B: x ∈ [−3, 3],λi ∼ N(0, 0.5̂2)

Type C: x ∈ [−3, 3],λi ∼ U(−0.15, 0.15)
Type D: x ∈ [−3, 3],λi ∼ U(0.5, 0.5)

Type E: x ∈ [−3, 3],λi ∼ T(5)
Type F: x ∈ [−3, 3],λi ∼ T(10)

Self-defining function yi = ex2
i sin c(0.3πxi) + λi

Figure 2 shows different types of noise graphs, the graphs of the sinc function, and the
graphs of the sinc function with different noises.
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In our experiments, we randomly selected 1600 samples as the training dataset and
the remaining 400 samples as the testing dataset. To evaluate the effectiveness of the
proposed algorithm, we compared its performance to that of ELM, RELM, and CELM.
Table 2 shows the optimal RMSE, MAE, SSE/SST, and SSR/SST of the four algorithms that
were obtained based on the optimal parameters selected using the ten-fold cross-validation
method. Table 2 also lists the optimal parameters for each algorithm. The regression fitting
results of ELM, RELM, CELM, and L1-ACELM on two artificial datasets with noise are
shown in Figures 4 and 5.
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Table 2. Experiment results on artificial datasets with different types of noise.

Dataset Noise Algorithm (γ,σ,τ) RMSE MAE SSE/SST SSR/SST

Sinc function

Type A

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(220, /, /)

(210, 2−2, /)
(2−23, 2−2,

0.7)

0.2429
0.2341
0.2345
0.2109

0.1957
0.1942
0.1949
0.1690

0.6206
0.5768
0.5785
0.4680

0.3808
0.4263
0.4256
0.5359

Type B

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(22, /, /)

(2−19, 2−2, /)
(25, 2−2, 0.3)

0.5288
0.5270
0.5286
0.5221

0.4199
0.4186
0.4199
0.4143

0.9064
0.9004
0.9060
0.8838

0.0988
0.1004
0.0991
0.1246

Type C

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(2−42, /, /)
(210, 2−2, /)

(239, 2−2, 0.7)

0.1923
0.2019
0.1922
0.1595

0.1581
0.1677
0.1582
0.1309

0.4332
0.4776
0.4325
0.2978

0.5701
0.5233
0.5705
0.7023

Type D

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(212, /, /)

(2−38, 2−2, /)
(2−4, 2−2,

0.3)

0.3262
0.3246
0.3223
0.3199

0.2715
0.2709
0.2695
0.2678

0.6963
0.6890
0.6828
0.6706

0.7633
0.7578
0.7664
0.8571

Type E

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(212, /, /)

(2−12, 2−2, /)
(2−12, 2−2,

0.2)

0.1737
0.1766
0.1725
0.1349

0.1406
0.1441
0.1398
0.1175

0.2369
0.2451
0.2338
0.1431

0.7633
0.7578
0.7664
0.8571

Type F

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(2−2, /, /)

(2−1, 2−2, /)
(2−3, 2−2,

0.1)

0.1885
0.1746
0.1757
0.1753

0.1422
0.1412
0.1413
0.1416

0.2715
0.2328
0.2359
0.2346

0.7298
0.7681
0.7651
0.7663

Type A

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(2−8, /, /)

(2−7, 2−2, /)
(2−10, 2−2,

0.5)

0.1572
0.1569
0.1565
0.1560

0.1304
0.1301
0.1294
0.1241

0.0908
0.0893
0.0888
0.0800

0.9105
0.9120
0.9127
0.9211

Type B

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(226, /, /)

(215, 2−2, /)
(2−16, 2−2,

0.2)

0.4905
0.4862
0.4858
0.4849

0.3843
0.3850
0.3838
0.3795

0.4761
0.4766
0.4759
0.4641

0.5251
0.5249
0.5252
0.5369

Type C

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(225, /, /)

(217, 2−2, /)
(237, 2−2, 0.2)

0.0937
0.0950
0.0936
0.0934

0.0794
0.0803
0.0792
0.0791

0.0288
0.0296
0.0287
0.0286

0.9714
0.9706
0.9715
0.9716

Type D

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(215, /, /)

(2−34, 2−2, /)
(222, 2−2, 0.7)

0.3009
0.3006
0.2948
0.2929

0.2622
0.2614
0.2555
0.2534

0.2471
0.2466
0.2373
0.2342

0.7534
0.7539
0.7634
0.7665

Type E

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(2−26, /, /)
(22, 2−2, /)

(244, 2−2, 0.4)

0.0434
0.0426
0.0425
0.0415

0.0372
0.0367
0.0363
0.0335

0.0074
0.0071
0.0071
0.0068

0.9929
0.9932
0.9932
0.9935

Self−defining
function Type F

ELM
RELM
CELM

L1−ACELM

(/, /, /)
(25, /, /)

(212, 2−2, /)
(220, 2−2, 0.3)

0.0498
0.0761
0.0481
0.0513

0.0425
0.0586
0.0408
0.0372

0.0098
0.0230
0.0092
0.0104

0.9912
0.9779
0.9920
0.9908



Axioms 2023, 12, 204 15 of 22

Figures 4 and 5 demonstrate the fitting effect of the four algorithms on the two artificial
datasets. Based on these figures, it is observed that the fitting curve of L1-ACELM is the
closest to the real function curve compared to the other three algorithms. In Table 2, the
best test results are shown in bold.

The data in Table 2 demonstrate that L1-ACELM exhibits better performance in most
cases when compared to the other three algorithms for the two artificial datasets with
different noises. It is evident that L1-ACELM has smaller RMSE, MAE, and SSE/SST, and
larger SSE/SSR. This indicates that L1-ACELM is more robust to noise. For example, for the
sinc function, except for F noise, the performance of the proposed algorithm is superior to
that of the other algorithms for different types of noise. Moreover, it is seen that L1-ACELM
has better generalization performance in the case of unbalanced noise data. In conclusion,
L1-ACELM is more stable in a noisy environment.

4.3. Performance on Benchmark Datasets

To further test the robustness of L1-ACELM, experiments were performed on ten UCI
datasets [30] with different levels of noise, including noise-free datasets, datasets with 5%
noise, and datasets with 10% noise. Noise datasets were only added to the target output
value of the training datasets. Among them, datasets with 5% noise indicate that the noisy
data are 5% of the training dataset. The data in the noisy dataset are randomly taken from
the set [0, d], where d is the average of the target output values of the training datasets.

In the experiment, we randomly selected 80% of the data as the training dataset and the
remaining 20% as the testing dataset for each benchmark dataset. The specific description
is shown in Table 3.

Table 3. Description of benchmark datasets.

Dataset Number of Training Data Number of
Testing Data

Number of
Features

Boston Housing 404 102 13
Air Quality 7485 1872 12
AutoMPG 313 79 7
Triazines 148 38 60
Bodyfat 201 51 14
Pyrim 59 15 27
Servo 133 34 4

Bike Sharing 584 147 13
Balloon 1600 401 1

NO2 400 100 7

To better reflect the performance of the proposed algorithm L1-ACELM, the RMSE,
MAE, SSE/SST, and SSR/SST were compared with those of ELM, RELM, and CELM. The
evaluation indicators and the ranking of each algorithm for different noise environments
are listed in Tables 4–6, and the best test results are shown in bold. From Table 4 to Table 6,
it is observed that the performance of each algorithm decreases as the noise level increases.
However, compared to the other algorithms, the performance of L1-ACELM is still the best
in most cases. From Table 4, it can be concluded that L1-ACELM performs best on nine
datasets out of a total of ten datasets in term of the RMSE and SSR/SST values. Similarly,
for the MAE and SSE/SST values, L1-ACELM exhibits the best performance on all the
datasets. Table 5 shows that after adding 5% noise, the performance of each algorithm
decreases, and according to the RMSE value, the proposed algorithm performed well on
eight of the ten datasets. For the MAE, SSE/SST, and SSR/SST values, L1-ACELM performs
better for nine datasets. Moreover, for the RMSE, MAE, and SSR/SST values, it exhibits
superior performance in nine cases and for the SSE/SST values, it has better performance
in all ten datasets.
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Table 4. Performance of different algorithms under noise-free environment.

Dataset Algorithm (γ,σ,τ) RMSE MAE SSE/SST SSR/SST

Boston Housing

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−16, /, /)

(2−31, 2−2, /)
(2−24, 2−2, 0.4)

4.4449(4)
4.1636(3)
4.1511(2)
4.0435(1)

3.1736(4)
2.9660(2)
2.9847(3)
2.9236(1)

0.2438(4)
0.2068(3)
0.2067(2)
0.1965(1)

0.7682(4)
0.7998(3)
0.8002(2)
0.8097(1)

Air Quality

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−32, /, /)

(2−37, 2−2, /)
(2−36, 2−2, 0.4)

8.3167(4)
7.4516(1)
7.5140(3)
7.4574(2)

6.5439(4)
5.7812(3)
5.7604(2)
5.7383(1)

0.0297(4)
0.0215(2.5)
0.0215(2.5)
0.0212(1)

0.9705(4)
0.9786(2)
0.9785(3)
0.9788(1)

AutoMPG

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−57, /, /)

(2−43, 2−2, /)
(2−32, 2−2, 0.5)

2.8296(4)
2.6859(3)
2.6590(2)
2.5914(1)

2.0956(4)
1.9632(3)
1.9582(2)
1.8949(1)

0.1352(4)
0.1205(3)
0.1202(2)
0.1143(1)

0.8710(4)
0.8845(2)
0.8840(3)
0.8907(1)

Triazines

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−49, /, /)

(2−19, 2−2, /)
(2−31, 2−2, 0.5)

0.0664(4)
0.0557(3)
0.0529(2)
0.0490(1)

0.0465(4)
0.0410(3)
0.0393(2)
0.0365(1)

0.0816(4)
0.0545(3)
0.0526(2)
0.0416(1)

0.9283(4)
0.9547(3)
0.9573(2)
0.9645(1)

Bodyfat

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−10, /, /)

(2−6, 2−2, /)
(2−16, 2−2, 0.1)

1.3123(4)
1.1374(3)
1.1352(2)
1.0036(1)

0.7449(4)
0.6904(3)
0.6858(2)
0.5936(1)

0.0298(4)
0.0233(2)
0.0234(3)
0.0189(1)

0.9732(4)
0.9794(2)
0.9787(3)
0.9820(1)

Pyrim

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−1, /, /)

(2−20, 2−2, /)
(2−10, 2−2, 0.1)

0.1085(4)
0.0759(2)
0.0800(3)
0.0728(1)

0.0688(4)
0.0548(2)
0.0552(3)
0.0502(1)

0.6897(4)
0.3535(2)
0.3839(3)
0.2956(1)

0.6143(4)
0.8034(2)
0.7718(3)
0.8284(1)

Servo

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−40, /, /)

(2−41, 2−2, /)
(2−46, 2−2, 0.4)

0.7367(4)
0.6769(3)
0.6733(2)
0.6593(1)

0.5220(4)
0.4750(3)
0.4730(2)
0.4491(1)

0.2826(4)
0.2075(3)
0.2061(2)
0.1917(1)

0.7874(4)
0.8148(3)
0.8214(2)
0.8270(1)

Bike Sharing

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−10)

(2−16, 2−2, /)
(2−9, 2−2, 0.2)

287.615(4)
236.107(2)
241.917(3)
217.385(1)

206.507(4)
178.976(2)
180.856(3)
160.747(1)

0.0230(4)
0.0157(2)
0.0161(3)
0.0130(1)

0.9773(4)
0.9851(2)
0.9844(3)
0.9873(1)

Balloon

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−29, /, /)

(2−25, 2−2, /)
(2−24, 2−2, 0.9)

0.0850(4)
0.0796(3)
0.0782(2)
0.0773(1)

0.0543(4)
0.0528(3)
0.0527(2)
0.0525(1)

0.3452(4)
0.2991(3)
0.2806(2)
0.2790(1)

0.7026(4)
0.7147(3)
0.7335(1)
0.7304(2)

NO2

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−9, /, /)

(2−15, 2−2, /)
(2−17, 2−2, 0.2)

0.5272(4)
0.5154(2)
0.5161(3)
0.5132(1)

0.4128(4)
0.4034(2)
0.4047(3)
0.4028(1)

0.5157(4)
0.4844(2)
0.4910(3)
0.4823(1)

0.5060(4)
0.5298(2)
0.5271(3)
0.5338(1)
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Table 5. Performance of different algorithms under 5% noise environment.

Dataset Algorithm (γ,σ,τ) RMSE MAE SSE/SST SSR/SST

Boston Housing

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−17, /, /)

(2−6, 2−2, /)
(2−5, 2−2, 0.5)

6.5817(4)
6.2972(3)
6.2155(2)
6.1256(1)

4.1292(4)
3.9095(3)
3.8937(2)
3.8185(1)

0.4196(4)
0.3835(3)
0.3756(2)
0.3675(1)

0.5962(4)
0.6327(3)
0.6407(2)
0.6478(1)

Air Quality

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−32, /, /)

(2−39, 2−2, /)
(2−39, 2−2, 0.8)

12.0381(4)
11.6199(2)
11.6303(3)
11.5540(1)

7.5222(4)
7.1866(3)
7.1554(2)
7.1145(1)

0.0531(4)
0.0496(2)
0.0499(3)
0.0489(1)

0.9471(4)
0.9504(2)
0.9501(3)
0.9511(1)

AutoMPG

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−21, /, /)

(2−28, 2−2, /)
(2−30, 2−2, 0.9)

5.6949(4)
5.5923(2)
5.6502(3)
5.4775(1)

3.2315(4)
3.1677(3)
3.1189(2)
3.0347(1)

0.4024(4)
0.3919(3)
0.3915(2)
0.3688(1)

0.6204(4)
0.6337(2)
0.6299(3)
0.6558(1)

Triazines

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−16, /, /)

(2−39, 2−2, /)
(2−22, 2−2, 0.5)

0.0937(4)
0.0790(3)
0.0779(2)
0.0725(1)

0.0618(4)
0.0549(3)
0.0515(2)
0.0489(1)

0.1510(4)
0.1031(3)
0.0989(2)
0.0834(1)

0.8719(4)
0.9199(3)
0.9172(2)
0.9273(1)

Bodyfat

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−16, /, /)

(2−36, 2−2, /)
(2−11, 2−2, 0.6)

4.1325(4)
3.9255(3)
3.8868(2)
3.7288(1)

2.0890(4)
2.0575(3)
2.0413(2)
1.9119(1)

0.2414(4)
0.2115(3)
0.2095(2)
0.1986(1)

0.7783(4)
0.8027(2)
0.8078(3)
0.8149(1)

Pyrim

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−12, /, /)

(2−3, 2−2, /)
(2−13, 2−2, 0.8)

0.1019(4)
0.0825(2)
0.0871(3)
0.0743(1)

0.0722(4)
0.0591(2)
0.0609(3)
0.0562(1)

0.6711(4)
0.4008(2)
0.4435(3)
0.3720(1)

0.6685(4)
0.7537(2)
0.7153(3)
0.7762(1)

Servo

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−46, /, /)

(2−42, 2−2, /)
(2−49, 2−2, 0.7)

0.8424(4)
0.7753(3)
0.7598(1)
0.7724(2)

0.5868(4)
0.5473(3)
0.5252(1)
0.5299(2)

0.3224(4)
0.2794(3)
0.2763(1)
0.2983(2)

0.7235(4)
0.7742(3)
0.7752(2)
0.7778(1)

Bike Sharing

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−1, /, /)

(2−9, 2−2, /)
(2−6, 2−2, 0.9)

1130.04(4)
1093.85(2)
1094.35(3)
1085.27(1)

497.051(4)
453.720(2)
461.094(3)
441.646(1)

0.2730(4)
0.2556(3)
0.2545(2)
0.2526(1)

0.7352(4)
0.7505(3)

0.7523(1.5)
0.7523(1.5)

Balloon

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−16, /, /)

(2−9, 2−2, /)
(2−5, 2−2, 0.9)

0.0874(4)
0.0850(3)
0.0799(2)
0.0782(1)

0.0546(3)
0.0544(2)
0.0549(4)
0.0536(1)

0.3815(4)
0.3444(3)
0.3086(2)
0.2704(1)

0.6794(4)
0.7170(2)
0.7135(3)
0.7368(1)

NO2

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−31, /, /)

(2−19, 2−2, /)
(2−19, 2−2, 0.5)

0.9489(1)
0.9698(3)
0.9737(4)
0.9611(2)

0.5767(2)
0.5781(3)
0.5856(4)
0.5708(1)

0.7594(2)
0.7754(3)
0.7844(4)
0.7515(1)

0.2803(1)
0.2692(3)
0.2644(4)
0.2790(2)
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Table 6. Performance of different algorithms under 10% noise environment.

Dataset Algorithm (γ,σ,τ) RMSE MAE SSE/SST SSR/SST

Boston Housing

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−30, /, /)

(2−36, 2−2, /)
(2−48, 2−2, 0.9)

8.6315(4)
8.2456(3)
8.2437(2)
8.1718(1)

5.1524(4)
5.1512(3)
4.9250(2)
4.8090(1)

0.5873(4)
0.5177(3)
0.5151(2)
0.5123(1)

0.4557(4)
0.4999(3)
0.5006(2)
0.5074(1)

Air Quality

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−39, /, /)

(2−45, 2−2, /)
(2−4, 2−2, 0.6)

14.7386(4)
14.5651(3)
14.5412(2)
14.4355(1)

8.8277(4)
8.4928(3)
8.4737(2)
8.4236(1)

0.0778(4)
0.0759(3)
0.0754(2)
0.0748(1)

0.9223(4)
0.9241(3)
0.9246(2)
0.9253(1)

AutoMPG

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−28, /, /)

(2−27, 2−2, /)
(2−39, 2−2, 0.1)

7.0139(3)
7.0729(4)
6.9306(2)
6.9151(1)

4.0307(2)
4.0592(3)
4.0792(4)
3.9845(1)

0.5218(3)
0.5278(4)
0.5147(2)
0.5032(1)

0.5009(4)
0.5068(3)
0.5183(1)
0.5169(2)

Triazines

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−37, /, /)

(2−21, 2−2, /)
(2−29, 2−2, 0.6)

0.1166(4)
0.1068(2)
0.1074(3)
0.0963(1)

0.0776(4)
0.0703(2)
0.0705(3)
0.0638(1)

0.2077(4)
0.1693(2)
0.1729(3)
0.1378(1)

0.8116(4)
0.8536(2)
0.8501(3)
0.8815(1)

Bodyfat

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−23, /, /)

(2−22, 2−2, /)
(2−8, 2−2, 0.4)

6.5116(3)
6.5075(2)
6.5343(4)
6.3088(1)

3.4749(2)
3.4977(3)
3.5697(4)
3.4931(1)

0.4184(4)
0.4094(2)
0.4119(3)
0.3743(1)

0.6129(4)
0.6180(3)
0.6182(2)
0.6515(1)

Pyrim

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−23, /, /)

(2−10, 2−2, /)
(2−24, 2−2, 0.5)

0.1263(4)
0.1136(2)
0.1137(3)
0.1010(1)

0.0903(4)
0.0804(2)
0.0812(3)
0.0717(1)

0.9389(4)
0.7002(2)
0.7098(3)
0.4848(1)

0.5540(4)
0.6048(3)
0.6515(2)
0.7080(1)

Servo

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−34, /, /)

(2−39, 2−2, /)
(2−45, 2−2, 0.9)

0.8648(4)
0.8253(3)
0.8025(2)
0.7486(1)

0.6291(3)
0.6889(4)
0.5487(2)
0.5332(1)

0.3719(4)
0.2863(3)
0.2788(2)
0.2412(1)

0.7042(4)
0.7633(2)
0.7557(3)
0.7960(1)

Bike Sharing

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−39, /, /)

(2−42, 2−2, /)
(2−49, 2−2, 0.1)

1614.52(4)
1587.01(3)
1582.54(2)
1562.74(1)

755.097(4)
716.147(2)
718.328(3)
714.710(1)

0.4224(4)
0.4052(3)
0.4012(2)
0.3952(1)

0.5926(4)
0.6055(3)
0.6089(2)
0.6194(1)

Balloon

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−34, /, /)

(2−39, 2−2, /)
(2−42, 2−2, 0.5)

0.0785(1)
0.0807(4)
0.0793(3)
0.0788(2)

0.0547(3)
0.0549(4)
0.0545(2)
0.0544(1)

0.2749(2)
0.2871(3)
0.2931(4)
0.2682(1)

0.7321(2)
0.7206(3)
0.7127(4)
0.7398(1)

NO2

ELM
RELM
CELM

L1-ACELM

(/, /, /)
(2−16, /, /)

(2−27, 2−2, /)
(2−23, 2−2, 0.2)

1.2576(4)
1.2718(2)
1.2478(3)
1.2408(1)

0.7013(1)
0.7259(4)
0.7164(3)
0.7080(2)

0.8752(3)
0.8908(4)
0.8639(2)
0.8566(1)

0.1643(4)
0.1663(3)
0.1770(2)
0.1882(1)

To further illustrate the difference between the proposed algorithm and traditional
algorithms, we conducted statistical analysis on the experimental results. Friedman’s
test [31] is a well-known test for comparing the performance of various algorithms on
datasets. Tables 7–9 list the average ranks of four algorithms on four performance measures
under a noise-free environment and noisy environment.
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Table 7. Average ranks of benchmark algorithms under noise-free environment.

Algorithm RMSE MAE SSE/SST SSR/SST

ELM 4 4 4 4
RELM 2.5 2.6 2.55 2.4
CELM 2.4 2.4 2.45 2.5

L1-ACELM 1.1 1.0 1.0 1.1

Table 8. Average ranks of benchmark algorithms under 5% noise environment.

Algorithm RMSE MAE SSE/SST SSR/SST

ELM 3.7 3.7 3.8 3.7
RELM 2.6 2.7 2.8 2.5
CELM 2.5 2.5 2.3 2.65

L1-ACELM 1.0 1.1 1.1 1.15

Table 9. Average ranks of benchmark algorithms under 10% noise environment.

Algorithm RMSE MAE SSE/SST SSR/SST

ELM 3.5 3.1 3.6 3.8
RELM 2.8 3.0 2.9 2.8
CELM 2.6 2.8 2.5 2.3

L1-ACELM 1.1 1.1 1.0 1.1

The Friedman statistic variable can be expressed as follows:

χ2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(44)

which is distributed according to χ2
F with k − 1 degrees of freedom, where Rj is the average

rank of the algorithms as listed in Tables 7–9. N = 10 and k = 4 are the number of
datasets and the number of the algorithms, respectively. The Friedman statistic follows
an F-distribution:

FF =
(N − 1)χ2

F
N(k − 1) − χ2

F
(45)

with k − 1 and (k − 1)(N − 1) degrees of freedom. Table 10 shows the results of the
Friedman test on the dataset without noise, with 5% noise, and with 10% noise. For
α = 0.05, the critical value of Fα(3, 27) is 2.960. For the four algorithms, ELM, RELM,
CELM, and L1-ACELM, FF > Fα is achieved by comparing the results from Table 10.
Therefore, the assumption that all the algorithms perform the same is rejected. To further
contrast the differences between paired algorithms, the Nemenyi test [32] is often used as a
post hoc test.

Table 10. Relevant values in the Friedman test on benchmark datasets.

Ratio of
Noise

χ2
F FF

CD
RMSE MAE SSE/SST SSR/SST RMSE MAE SSE/SST SSR/SST

Noise-
free 25.32 27.12 27.03 25.32 48.69 84.75 81.91 48.69 1.4832

5% noise 16.20 20.64 22.68 19.71 10.57 19.81 27.89 17.24 1.4832

10% noise 18.36 15.96 21.72 22.68 14.20 10.23 23.61 27.89 1.4832
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The critical difference can be expressed as:

CD = qα

√
k(k + 1)

6N
= 2.569×

√
4× (4 + 1)

6× 10
= 1.4832 (46)

where the critical value of q0.05 is 2.569. Here, we can compare the average rank difference
between the proposed algorithm and other algorithms using the CD value. If the average
rank difference is greater than the CD value, this implies that the proposed algorithm
is superior to the other algorithms. Otherwise, there is no difference between the two
algorithms. Therefore, we can analyze the difference between the proposed algorithm and
other algorithms in the following three cases:

(1) Under noise-free environment. For the RMSE and SSR/SST index, the performance of
L1-ACELM is better than that of ELM (4 − 1.1 = 2.9 > 1.4832). For the MAE index,
the performance of L1-ACELM is better than that of ELM (4 − 1.0 = 3.0 > 1.4832)
and RELM (2.6 − 1.0 = 1.5 > 1.4832). There is no significant difference between
L1-ACELM and CELM.

(2) Under 5% noise environment. For the RMSE index, the performance of L1-ACELM is bet-
ter than that of ELM (3.7 − 1.0 = 2.7 > 1.4832), RELM (2.6 − 1.0 = 1.6 > 1.4832),
and CELM (2.5 − 1.0 = 1.5 > 1.4832). For the MAE and SSE/SST index, the per-
formance of L1-ACELM is better than that of ELM (3.7 − 1.1 = 2.6 > 1.4832,
3.8 − 1.1 = 2.7 > 1.4832) and RELM (2.7 − 1.1 = 1.6 > 1.4832, 2.8 − 1.1 =
1.7 > 1.4832). For the SSR/SST index, the performance of L1-ACELM is better than that
of ELM (3.7 − 1.15 = 2.55 > 1.4832) and CELM (2.65 − 1.15 = 1.5 > 1.4832).

(3) Under 10% noise environment. Similarly, for the RMSE, MAE, and SSE/SST index,
the performance of L1-ACELM is better than that of ELM, RELM, and CELM. For the
SSR/SST index, the performance of L1-ACELM is better than that of ELM and RELM.

5. Conclusions

In this paper, a novel asymmetric, bounded, smooth non-convex loss function based
on the expected loss and the correntropy loss is proposed, termed AC-loss. The AC-loss loss
function and L1 norm are introduced into the regularized extreme learning machine, and an
improved robust regularized extreme learning machine is proposed for regression. Owing
to the non-convexity of the AC-loss function, it is difficult to solve L1-ACELM. As such, the
half-quadratic optimization algorithm is applied to address the nonconvex optimization
problem. To prove the effectiveness of L1-ACELM, experiments are conducted on artificial
datasets and benchmark datasets with different types of noise, respectively. The results
demonstrate the significant advantages of L1-ACELM in generalization performance and
robustness, especially when the data distribution with noise and outliers are asymmetric.

The PGD algorithm is used to solve the L1-ACELM in this paper. Since it is an iterative
process, the training speed is reduced. In the future, we will research a faster method to
solve this optimization problem.
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