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Abstract: We show that Special and General Relativity lead to the introduction of an observer mani-
fold, in addition to the usual event manifold. Axiomatics that require that manifolds be Hausdorff
are not appropriate for the observer manifold. We propose an alternative axiomatics and show how
most of the usual local computations extend to this framework without difficulty. The derivation
of the Lorentz transformation takes a new meaning in this context, enabling the identification of
the representations of several observers and hence reducing the observer manifold to the event
manifold. However, we show in an example relevant to the radiation of accelerated electrons that this
identification is not always correct. This appears to be relevant in any situation where gravitational
fields in remote locations have to be measured on Earth, such as the detection of gravitational waves,
or when high accelerations are involved, such as in electron radiation or laser cooling.
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1. Introduction

The axiomatics of manifold theory is still in flux because not all authors agree on
whether manifolds should share all the local or global properties of Euclidean space, such
as the Hausdorff separation axiom, or whether one should postulate the existence or a
covering by an increasing sequence of compact sets. Such subtleties are well-known to be
necessary in some mathematical questions [1], (p. 11, [2]), including some model space-
times (pp. 173–174, [3]), [4]; however, they did not arise in the problems that were tackled
during the early history of manifold theory [5]. We discuss another setting here, relevant
for all models of space-time, that requires yet another modification of the axiomatics of
manifold theory, eschewing all axioms of a global nature: the mathematization of the
notion of observer manifold in General Relativity. Élie Cartan had suggested that “local”
observers should have “infinitesimal” features that have no mathematical counterpart in
the definition of what we now call the event manifold [6]. However, he did not pursue
these ideas towards a modification of the axiomatics of manifolds, although he reiterated,
in his lectures on Riemannian manifolds, that the notion of manifold is still “difficult” to
define (p. 57, [7]). The later discussion of the forms of the Equivalence Principle [8] that we
shall recall at greater length below showed that the distinction of the event and observer
manifolds was necessary for the physical interpretation of General Relativity, leading to
the C-equivalence principle [9,10]. Any situation in which gravitational fields at different
points are being compared, such as the Pound–Rebka experiment, cannot be interpreted
without C-equivalence. The postulate that General Relativity reduces to Special Relativity
at the linear approximation must therefore be relaxed because, otherwise, there would be no
way to infer a difference in gravitational fields by a redshift measurement. Mathematically,
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this leads to relaxing the Strong Equivalence principle into the C-equivalence principle,
while keeping the Weak Equivalence principle [9,10].

Our goal here is to revisit these developments from a purely mathematical point of view,
showing that a proper axiomatic formulation still allows for most of the usual calculations
of a local nature to go through unchanged. The essential new element is the integration
into the mathematical formalism of physical aspects of C-equivalence [9,10], leading to a
modification of the axiomatics of manifolds. As an application, we determine the evolution
of the conformal factor relating two observers in a simple model of a beam of accelerated
electrons that could be a prototype for related situations involving strong accelerations
and/or strong gravitational fields.

We restrict attention to smooth differential manifolds, although some obvious general-
izations to topological, PL manifolds (“piecewise-linear”, such as polyhedra) or analytic
manifolds could be formulated; however, such extensions do not seem relevant to General
Relativity at the present time.

We first recall in Section 2 the evolution of the physical postulates of General Relativity,
focusing on the strong and weak equivalence principles, and show how the C-equivalence
principle gives a mathematically consistent expression of these physical postulates. We then
give two axiomatic definitions for the event and observer manifold, respectively (Section 3).
Section 4 shows that the usual axiomatics of manifold theory is only relevant for the event
manifold. In particular, the Hausdorff axiom, which requires, intuitively, that small enough
neighborhoods of two distinct points will not intersect if they are taken small enough, should
be given up because the local space-times of observers attached to different particles that
happen to meet at one point are not necessarily locally reducible to the same Minkowski
space by the choice of an orthonormal tetrad. Nonetheless, the new definition is sufficient
for introducing tensor calculus and, therefore, for performing most usual calculations of
a local nature. As an example, we show that the derivation of the fact that the Lorentz
transformation does not require reciprocity between observers [11] may be transferred
verbatim to this setting, just as the characterization of conformal transformations in the
context of C-equivalence [12,13]. An application to electron radiation is outlined in Section 5.

The two main points of this paper are that the observer manifold is not the event
manifold, and that the observer manifold need not be Hausdorff. They may be explained
in intuitive terms as follows.

The axiomatics of Special Relativity, recalled in Section 2, make two postulates. First, it is
assumed that there are inertial observers attached to material systems in uniform translation
away from gravitational or other fields. These observers are supposed to have access to a
standard apparatus that includes standard rods and clocks, and to be able to communicate
with each other through the exchange of light signals that travel at the speed c, a speed that
does not depend on the observer. By assumption, they are able to assign to any event a set of
four coordinates that do not necessarily have any direct meaning, but that do provide unique
labels. Second, one also assumes that it is possible to transform the coordinates of each
observer into the coordinates (x0, x1, x3, x4) of a Minkowski space, in which coordinates now
have a metrical meaning, and the metric takes the form d(x0)2 − d(x1)2 − d(x2)2 − d(x3)2.
Another inertial observer may do the same, but in the framework of Special Relativity, its
transformed coordinates, say x′k (k = 0, 1, 2, 3), may be transformed into the xk of the
first observer by a Lorentz transformation, possibly after a change of origin. The physical
consequences derived from this notion of “inertial observer” are numerous and very well
supported by experiment. However, interpretation requires one to assign to an elementary
particle with nonzero rest mass, such as a meson, a local inertial observer that travels with it.
That is how we account for the fact that the lifetime of a meson in its inertial system differs
from its lifetime in the lab system. Now, no human observer exists that would so to say “ride
along an elementary particle", and could perform the operations allowed by the postulates
of Special Relativity. The observers of the theory are therefore notional observers, rather than
actual observers: the operations of coordinate assignment and coordinate change are never
actually carried out, except possibly for the “laboratory system”. When several observers in
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relative uniform motion meet at a spacetime point, their notional observers are related by
Lorentz transformation, so that there is for them only one Minkowski space in which all their
translational motions take place, but this identification of notional observers has no reason
to hold for non-uniform motions. It is possible to circumvent this difficulty by postulating
instead that the de Broglie wave of a particle includes, through its dynamics, the elements of
a local system attached to it [14]. This wave is a purely material object that is represented in
the theory by the notional observer associated with the particle. The observers in the sequel
are always understood in this sense; they do not require human intervention and, indeed,
such intervention is generally not feasible.

Since there is no reason to identify all observers to one another, one must distinguish
two manifolds: the event manifold on the one hand, of which the points may be viewed as the
set of events labeled by coordinates by a given observer, say the “laboratory system”, and
the observer manifold on the other hand that consists of all the notional observers attached
in principle to every portion of the trajectory of any system that may be assimilated to
a particle.

Thus, the “points” MA of an observer manifold M are actually themselves Hausdorff
manifolds in the usual sense: to every spacetime point A of the trajectory of a particle, we
associate an observer representing the system in which it would be at rest; for this observer,
events in some neighborhood of A form a small part of a Lorentzian Manifold MA that
contains the point A. It may not be possible to assign a well-defined observer to any object
of large extension since the notion of rigid body does not make sense in Special or General
Relativity, and it may not be defined by a single de Broglie wave, with the significant
exception of the de Broglie wave of a Bose–Einstein condensate.

In general, if A is one of the points on the trajectory of a given particle, there is no
reason to assume that the manifold MA is independent of the state of motion of the particle,
or the gravitational field around it—in fact, C-equivalence shows that it must depend on the
local gravitational field through a conformal factor, and the discussion of Section 2 shows
that, given the current experimental evidence, there is no other freedom. If all events A
corresponding to the successive positions of the particle under consideration happen to be
recorded by another observer, such as the “laboratory observer” with origin O, we obtain
the event manifold if we replace all the manifolds MA with the manifold MO.

From the point of view of the “laboratory system”, the event manifold is the set of
events as recorded in this laboratory, but each of these events is viewed by other observers
in terms of different manifolds. Therefore, the observer manifold is not a set of points, but a set
of local space-times of different observers, and these space-times are themselves manifolds
in the usual sense. Different observers compare their descriptions using transfer maps that
should not be confused with maps representing coordinate changes between coordinate
patches of the same manifold. The local space-times of observers are not locally reducible to
Minkowski space-time, but are conformally Minkowskian, reflecting the action of the local
gravitational field on the measurement apparatus—it is this feature that amounts to giving
up the Strong Equivalence Principle that explains the name of “C-equivalence”. Even when
the space-time paths of observers cross in the event manifold, their local space-times will
be different.

This intuitive view of the observer manifold immediately implies that the Hausdorff
axiom in the usual form cannot be correct. If two spacetime trajectories meet at some event,
called A for the first trajectory, and B for the second, we must have A = B, but not necessarily
MA = MB. Since the two particles involved represent all events in a neighborhood of A = B,
any neighborhood of the A-particle must contain the event B for the B-particle, see Figure 1.
Therefore, it is impossible to find non-intersecting neighborhoods of these two trajectories,
even though their local observers are different whenever MA 6= MB.

When several particles meet at one point at the same time, these notional observers
are therefore not necessarily the same. Only in the case of particles in relative translational
motion with constant velocity can we assert that the representations of the events by the
two observers are related by a Lorentz transformation, so that they may both be viewed as
evolving in the same Minkowski space, as we show next.
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Figure 1. Illustration of two elements in an observer manifold. Two observers record events and make
measurements in two different four-dimensional manifolds; represented schematically here are red
and blue surfaces. They meet here at a space-time point represented by the point common to the
two surfaces. The observers have space-time trajectories that are represented by traces on the event
manifold (the blue and red curves). The observer manifold consists of all four-dimensional manifolds
corresponding to all the states of all possible particles that are accessible to observation.

2. C-Equivalence as a Mathematical Expression of Einstein’s Equivalence Principle

C-equivalence builds on attempts to give a mathematical form to Einstein’s physical
views about the equivalence principle. The evolution of ideas involved three steps: First,
Einstein’s modification of Special Relativity to take into account non-inertial systems led
him to introduce what we now call the Strong Equivalence Principle. Second, closer analysis,
mostly by Dicke and his coworkers, showed that it was necessary to introduce a second
postulate, the Weak Equivalence Principle. Third, the fact, well-supported by experiments,
that all material objects, including the measurement apparatus, are affected by gravitational
fields led to the replacement of the Strong Equivalence Principle by the C-equivalence
Principle. We examine these steps in order.

2.1. Einstein’s Physical Picture

Let us revisit the early arguments that go back to Einstein’s analysis of the devolution
of his own reasoning [15], in the light of later developments.

Special Relativity is based on measurements performed in inertial systems. Dynamics
cannot be developed within Special Relativity from the point of view of an observer S
exterior to a system S0 that is subject to applied forces. At the same time, the comoving
system attached to S0, however one defines it, cannot be considered as an inertial system,
neither globally—since the velocity S relative to S0 varies at every instant and every point
of the trajectory of S0—nor locally—since the measuring apparatus {A} of S0 is subject
to the same forces. As a consequence, the laws of Special Relativity are of no avail to S0.
Nonetheless, a generalization of Special Relativity is necessary since all material objects,
including instruments used for measurement, are always subject to a gravitational field—
say, of the Earth—and this field is universal—it affects all material particles, not just those
possessing a certain “charge” or “color”, etc. Therefore, Special Relativity may only enjoy
partial, local validity.

This inability to keep the notion of an inertial system in the presence of a universal field
suggests giving up the equivalence of observers at rest relative to each other—that is, the
very basis of the notion of an inertial system. The goal of the theory is then to coordinate the
observations carried out by different observers, taking into account the influence of physical
fields on the observed phenomena and on the measuring devices. A theory that realizes
this program ipso facto yields a theory of space and time as well as a theory of “universal”
fields of forces and, in particular, of the gravitational field. Einstein put forth such a theory
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by suggesting that one should extend the Principle or Relativity to accelerated motions,
hence the name of General Relativity that this theory has received. Let us now see how this
extension leads to a first form of the equivalence principle, and how later facts showed the
need for a scrutiny of its postulational basis, both physically and mathematically.

2.2. Early Arguments Leading to the First Form of the Equivalence Principle

Recall that there are three notions of mass: inertial mass, passive gravitational mass,
and active gravitational mass. When we write Newton’s law for a particle A falling freely
in the Earth’s gravitational field, we write the familiar equation

m
d2~x
dt2 = −GmM~x/r3. (1)

Here, the mass m of A occurs on both sides of this equation: on the left, it is an inertial mass;
on the right, a (passive) gravitational mass subject to the attraction of the mass M of the
Earth. By contrast, the mass M plays in this equation the role of an active gravitational mass.
In addition, m would be interpreted as an active gravitational mass if we considered the
motion of the Earth under the (tiny) gravitational field of the particle. Let us assume that
all three masses are the same. In that case, m cancels out of the equations of motion and,
furthermore, in a domain in which the gradient of the gravitational field is negligible, all
bodies fall with the same acceleration, irrespective of their nature. It follows that the action
of gravity on test particles should admit of a purely geometrical representation, based, as
Einstein showed, on a Lorentzian manifold.

If we disregard the difference between events, the coordinates that label them, and
the observers that assign these coordinates, one may be tempted to say that achieving a
representation of the relation between gravity and Special Relativity is to perform a local
(nonlinear) change of coordinates such that, with respect to the new system, equations
of motion have the same form as in Special Relativity. This amounts to eliminating the
local force field by choosing as a local inertial system the inertial system instantaneously
dragged by a material point subject to this field. Then, if one disregards the behavior of the
measurement devices, one may postulate that the laws of Physics should be generalized so
as to satisfy the following postulate:

Strong equivalence principle. In a domain in which the gradient of the universal
force field is negligible, one may always perform a change of local coordinate
chart that ensures that Special Relativity remains locally valid.

However, if we take this form of strong equivalence too literally, it is at variance with
another desirable requirement, namely general covariance:

Principle of general covariance. Laws of Physics should be covariant by general
changes of coordinates.

This contradiction, or more precisely, the fact that the current mathematical expression
of Einstein’s equivalence principle was not satisfactory, was perceived very early [13,16,17],
(p. 69, [18]), [19]. Indeed, general covariance is unable to provide a specific principle for
any physical theory, since coordinates need not have any direct physical meaning—only
scalars and geometric objects do. Einstein immediately concurred but kept appealing to it
as an intuitive basis of his theory.

His position may be understood if one distinguishes two interpretations of the prin-
ciple. First, general covariance expresses the demand that the laws of Physics should not
depend on the way events are labeled by sets of coordinates; it can form the basis of no
specific theory. Second, this mathematical covariance is coupled with a physical covariance:
the independence of our theoretical formulation from the system of reference in which it
is formulated. Here, a system of reference S differs from another one S′ not by the choice
of coordinates, but by the fact that, relative to a third one S̄, they are in a different state of
motion. In this sense, for Einstein, this physical covariance achieves an extension of the
principle of Special Relativity, the latter being only valid for inertial systems in uniform
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translation. Einstein therefore restricted the class of possible systems of reference to those
that may locally be reduced to systems of inertia, allowing the local change of system of
reference to be nothing but a change of coordinates, so that physical covariance was not
distinguished from mathematical covariance. Analysis of this issue led to a scrutiny of the
finer structure of Einstein’s equivalence principle [20–23]. It became clear that Einstein’s
equivalence principle was the combination of three principles listed below, of which the
content is made precise in the next four subsections:

(a) The weak equivalence principle;
(b) The identity of local descriptions of phenomena, independently of the region of

homogeneous field under consideration;
(c) The identification of this local description with the one performed by Special Relativity,

that is, one postulates:

(c1) Local isotropy;
(c2) The existence of measuring devices having the same behavior as in a system of

inertia.

Let us examine these points in order.

2.3. Weak Equivalence

Weak equivalence essentially follows from the local identity of inertial mass and pas-
sive gravitational mass—an identity vouched for at a precision of 10−11 by the experiments
by Eötvös, revisited by Dicke et al. It postulates nothing as regards active gravitational
mass, since the principle of action and reaction is only valid in Newtonian Mechanics. A
precise formulation is the following:

Weak equivalence assumes that trajectories of test bodies in free fall are inde-
pendent of the mass or composition of these bodies. We may view them as
distinguished curves of the space-time of an observer that records this free fall.

All authors seem to take these curves to be geodesics of the space-time of this observer.

2.4. Identity of Local Descriptions

The issue is this: to what extent are ratios of physical magnitudes “of the same kind”
independent of the situation of the observer in the field of forces? This assumes one can define
such magnitudes of the same kind at different places. One may, with R.H. Dicke [24–28],
consider that the ratio of the masses of two bodies may be considered to be independent of
their localization with respect to the force field. Indeed, otherwise, when moving from one
point to the other, one of the bodies would undergo a modification of its internal energy, in a
proportion different from what the other would undergo, and this variation of energy should
correspond to the work of an additional force if both bodies are to describe a geodesic of
the local spacetime. Such anomalous forces are not observed. Naturally, this does not by
itself warrant the equality of the ratio of masses: in fact, one could, following R. H. Dicke,
imagine that these anomalous forces are compensated by an additional field. The upshot
of his analysis is that this field cannot be a tensor field if one also postulates the isotropy
of the local spacetime. It cannot be a vector field for this that leads to a contradiction with
weak equivalence. It cannot be a scalar field either if one also postulates that the constants of
Physics do not vary from point to point. We consider in the sequel that none of these fields
exist and the local descriptions of phenomena “of the same kind” are identical.

2.5. Isotropy of Local Spacetime

The assumption that spacetime should be locally isotropic is supported by the ex-
periments by Beltran-Lopez, Hughes and Robinson [29,30]. These experiments, the idea
of which goes back to Cocconi and Salpeter, conclude that the anisotropy of the energy
distribution in our galaxy has no influence on the inertial mass by showing:

1. That the Zeeman effect of O2 and Cl2 is independent of the orientation of the external
magnetic field ~H with respect to the center of our galaxy, despite the fact that, according
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to semi-classical theory, an electron of nonzero orbital momentum has, in the various
magnetic states, velocities of different directions with respect to ~H;

2. That the distribution of the magnetic states of the Lithium nucleus is not modified by
effects of mass anisotropy.

We shall therefore assume that the local space-time is isotropic. This allows for inho-
mogeneities in matter distribution so that space-time is neither homogeneous nor globally
isotropic, except possibly in (large-scale) cosmological models that do not concern us here.

2.6. Standard Measurement Devices and C-Equivalence

To postulate strong equivalence, that is, the inertial character of any local system
of reference, is to admit the existence at least theoretically of measurement devices that
have Minkowskian behavior everywhere even though one considers at the same time the
influence of the gravitational field on all physical objects, including measurement devices.
C-equivalence modifies the equivalence principle to avoid this contradiction. The physical
postulates of C-equivalence, to which we give a mathematical formulation in the other
sections of this paper, are therefore the following:

All local observers are provided with standard measuring devices (identical de-
vices having the same behavior at the same point when relatively at rest); however,
because of the presence of the field, these devices have a behavior that varies from
point to point. This may be expressed, taking into account the assumptions we
made in the previous three sections, by

(ds2)A = ΛAds
2
, (2)

where the elementary squared interval between two events is (ds2)A according to

an observer located at A, but would be ds
2

according to an inertial observer. The

quantity ΛA is not accessible to experiments, since ds
2

cannot be measured when
a nonzero field is present, but the ratio ΛA/ΛB comparing the deviations from
Special Relativity at two different points A and B is accessible to measurement.

According to this perspective, local spacetime is conformal to a neighborhood of
Minkowski spacetime (hence the name “C-equivalence”), and the local system of reference
will be called a pseudo-inertial system.

We shall say that a theory is compatible with C-equivalence if it is consistent with

1. Weak equivalence;
2. The identity of local descriptions of identical phenomena;
3. Isotropy of local spacetime;
4. The pseudo-inertial character of the local system of reference.

Remark 1. It is apparent that Λ2
A in (2) does not determine any additional scalar field because it is

not a function on the event manifold.

Remark 2. Since C-equivalence requires a change of coordinates (to transform locally g to η) and a
gauge change (to replace Λ2

A by 1) for the local system to be inertial, it allows for distinguishing
between mathematical covariance and physical covariance. However, this transformation does not
take place on the event manifold, but on a manifold MA that plays the role of a “point” in the
observer manifold, so that there is no contradiction with general covariance.

We now proceed to a mathematical framework that gives expression to these physical
principles. In a nutshell, since the local systems of different observers cannot be identified
as tangent spaces of a single event manifold because their metric cannot be reduced to the
Minkowski metric, it is necessary to introduce one manifold for each observer in each state
of motion. This leads to an observer manifold that is not a manifold in the usual sense. Its
“points” are themselves manifolds in the usual sense. The comparison of the measurement
of different observers is achieved via transfer maps that are not coordinate changes.
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3. Axiomatics of the Event and Observer Manifolds

Let us consider the axiomatic frameworks that give mathematical expression to the
postulates of the previous section. We begin with the notion of manifold in the usual sense.
Most authors would agree that “manifolds are spaces that locally look like n-space”. The
usual definition (p. 2, [31]) may be spelled out as follows, recalling standard terminology
in the process.

Definition 1. A (differential) manifold M of dimension n and of class Ck, where k ≥ 1 or k = ∞,
is a set equipped with a family (Uα, ϕα)α∈Z, called an atlas, indexed by an arbitrary set Z such that

(Cov) (Covering axiom.) For every α ∈ Z, the set Uα is a subset of M. Furthermore, any point of M
belongs to at least one Uα.

(CA) (Coordinate axiom.) Each ϕα(Uα) is an open subset of Rn, the latter being endowed with
its usual topology, and the ϕα are one-to-one. Therefore, each point P of Uα may be written
P = ϕ−1

α (x1, . . . , xn) for some α, where (x1, . . . , xn) ∈ Rn is uniquely determined by α.
These n numbers are called the local coordinates of P in the coordinate chart (Uα, ϕα).

(CC) (Axiom on coordinate changes.) If two coordinate charts (Uα, ϕα) and (Uβ, ϕβ) are such
that Uα ∩Uβ 6= ∅, the map ϕβ ◦ ϕ−1

α is of class Ck on its domain of definition, and so is its
inverse ϕα ◦ ϕ−1

β .

One defines a topology on M by saying that a set X ⊂ M is open if, for any coordinate chart
(Uα, ϕα), the sets ϕα(X) are open in Rn. Submanifolds are defined in the obvious way.

By construction, each map ϕα is a homeomorphism between Uα and ϕα(Uα). We shall
deal throughout with smooth manifolds (k = ∞) for simplicity. The definitions of geometric
objects, including tensors and connections, are standard [3,32], including more general
“geometric objects” such as Lie derivatives (p. 18 sq., [33]). In particular, a Lorentzian
manifold is a manifold endowed with a metric tensor with signature (1, 3) (with three
negative squares).

Even though Rn satisfies the Hausdorff separation axiom, M may not. An example
(see e.g., (Figure 5, p. 14, [3])) is given by M = A ∪ B ∪ C, where A = {(x, 0) | x ∈ R∗−},
B = {(x, 1) | x ∈ R+} and C = {(x,−1) | x ∈ R+}. One may endow it with an atlas
((U1, ϕ1), (U2, ϕ2)), where U1 = A ∪ B and U2 = A ∪ C. Let the map ϕ1 : U1 → R send
(x, 0) to x if x < 0, and (x, 1) to x if x ≥ 0. Similarly, let ϕ2 : U2 → R, ϕ2(x, 0) = x if x < 0,
and ϕ2(x, 1) = x if x ≥ 0. For the topology on M induced by this atlas, any open set in
M that contains (1, 0) necessarily contains (−1, 0) because any neighborhood of 0 in the
real line contains both positive and negative points. However, (1, 0) 6= (−1, 0). M does not
satisfy the Hausdorff axiom.

For such reasons, some authors require further topological conditions of a local or
global nature (p. 1, [34]), [32] that all imply the Hausdorff separation axiom. Some of
them are so strong that any manifold in this sense may be embedded in a space RN of
sufficiently high dimension [35], (p. 12, [34]). Still, Élie Cartan was not satisfied with these
developments (p. 57, [7]); he thought another formalism would be better suited to General
Relativity and stressed the need for an observer manifold without formalizing it. Bourbaki,
also aware of the difficulty of the subject, remained non-committal, and merely published
a list of results on manifolds [36]; the only non-conventional feature in this booklet is to
allow local charts in which the Uα may be open sets in a space Eα that could depend on the
chart (§ 5.1.1., p. 34, [36]).

We focus on four dimensions for simplicity, since we shall need no other. Similarly,
we only consider Lorentz metrics even though the extension to Riemannian metrics is
straightforward. We now define the notions of event manifold and observer manifold.

Definition 2. An event manifold is a (smooth, differential) manifold M of dimension 4 and of
class C∞. An observer manifold M , over the event manifold M, is a family (SI)I∈I , indexed by
an arbitrary set I , such that
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1. Each SI is a Lorentzian manifold (typically consisting of only one chart) with a distinguished
origin AI ∈ M.

2. Each SI has a trace XI on M that contains AI . This trace represents the trajectory of AI on
the event manifold M.

3. If two I and J are such that XI ∩ XJ 6= ∅, then there are open sets UI and UJ , in SI and SJ ,
respectively, related by a diffeomorphism φI J .

4. φI J(AI) = AJ .

Each of the SI will be called the system of reference of the observer at AI , or observer for
short. These are not necessarily associated with a human observer in any sense, but to a splitting of
space and time provided by a local de Broglie wave [14]. The map φI J connects the representations
of events in systems SI and SJ ; it will be called a transfer map. It should not be confused with
coordinate changes on a manifold.

Thus, the observer manifold is not, in general, a manifold, but a collection of manifolds
that may not have any simple global structure. An intuitive picture may be given by Figure 1
in which two systems SI and SJ are represented as surfaces (in red and blue, respectively).
Their traces XI and XJ on M are indicated by lines of the same colors, but M itself is
not represented to avoid clutter. In this example, AI and AJ coincide, but they belong to
different systems so that it is not possible to find a neighborhood of AI that would exclude
AJ . It is therefore impossible to reduce the observer manifold to the event manifold without
removing all the information about the observers other than their instantaneous position.
Therefore, the event manifold does not contain, in general, all the physical or mathematical
information in the observer manifold. As we shall see next, there is an exception: various
observers may all be related to one another to form a global Minkowski space if we are
within Special Relativity.

4. The Postulational Basis of Special Relativity

Let us briefly relate the mathematical postulates from a physical viewpoint. The
primitive notion in any physical theory is that of a reference system. For example, system S
consists of an observer located at the origin O of this system and that can determine, using
standard clocks and rods:

a. The time interval separating two given events;
b. The interval of length separating these two events.

Standard rods and clocks are those that have the same behavior when they stand at
the same point and are at rest relatively to one another. Their existence is an unprovable
postulate of Special Relativity. In this section, we identify such systems with the systems of
an observer manifold in the sense of the previous section; we shall define a mathematical
notion of inertial observer and show the following result.

Theorem 1. Let M be an observer manifold in which the following hold:

(In) All observers are inertial, meaning that, for every I, the manifold SI is a Minkowski space
with coordinates (xα), and any point that moves in uniform rectilinear motion in SI also has
the same property with respect to any SJ in which the same motion may be represented (that is,
for those such that XI ∩ XJ 6= ∅).

(UTr)Any two observers S and S′ are in uniform translation with respect to one another. Mathe-
matically, this means that, if (xα) are the coordinates of the origin of S′ in system S, then its
3-velocity βi = dxi/dx0 measured in S is constant. A similar property holds for S′.

(VL) With respect to any inertial system, light propagates in vacuo isotropically and with the same
speed c.

Then, the transfer maps, in the sense of Definition 2, between any two observers S and S′

are Lorentz transformations. In addition, the velocity of S with respect to S′ is equal in length to
that of S′ with respect to S: reciprocity between inertial systems is a mathematical consequence of
the postulates.
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Remark 3. Galilean kinematics also postulates an equivalence of inertial systems for the determina-
tion of space and time, but it is not compatible with postulate (VL) of the constancy of the velocity
of light.

Remark 4. The proof of the theorem follows those in [11,37] very closely, the main difference being
the introduction of the observer manifold as a purely mathematical concept.

Proof. Let us consider two inertial systems S and S′ on M , with local coordinates (xα) and
(xα′) (α or any Greek index = 0, 1, 2, 3, Latin indices run from 1 to 3); we are interested
in the correspondence between the representations of any event in both systems. All
considerations are local, in a small neighborhood of the origins of S and S′, and all functions
involved are assumed to be smooth. This transfer map φ has the form

xα′ = φ(xσ, βi), (3)

since it depends on the spatial velocity βi of the origin of S′ as measured in S. The conven-
tions of tensor calculus, including the summation convention, all apply. Let aα′

β = ∂φα′/∂xβ.

The matrix a = |aα′
β | is therefore the Jacobian matrix of the map φ. Since φ is a diffeomor-

phism,
det(|aα′

β |) 6= 0. (4)

Axioms (In) and (UTr) then ensure [13,37,38] that there is a covariant vector ϕα such that
aα′

β may be written

∂γaα′
β = aα′

β ϕγ + aα′
γ ϕβ. (5)

Here, the ϕα are functions of xα. The proof of this result is recalled at the end of this section.
Assumption (VL) ensures that space-time intervals ds2 and ds′2 corresponding to the

same elementary light path are proportional. In other words, there is a scalar Λ(xα, βi)
such that

ds′2 = ηα′β′dxα′dxβ′ = Λ(xα, βi)ηρσdxρdxσ = Λ(xα, βi)ds2. (6)

Since both metrics must have the same signature, Λ is positive. Since both observers are
inertial by (In), we may also assume

ηα0 = δα0, ηij = −δij, ηα′0 = δα′0, ηi′ j′ = −δi′ j′ . (7)

Therefore, we have
ηα′β′ a

α′
ρ aβ′

σ = Λ(xα, βi)ηρσ. (8)

Differentiating (8) with respect to xγ, and taking (5) into account, we obtain

ηα′β′

[
(aα′

ρ ϕγ + aα′
γ ϕρ)aβ′

σ + aα′
ρ (aβ′

σ ϕγ + aβ′
γ ϕσ)

]
= ∂γΛ(xα, βi)ηρσ.

Now, by (8), terms such as ηα′β′ aα′
ρ aβ′

γ or ηα′β′ aα′
γ aβ′

σ may be simplified. After performing
these simplifications, we are left with

(2Λϕγ − ∂γΛ)ηρσ + ϕρηγσ + ϕσηγρ = 0. (9)

This holds for all values of the indices. Let us fix an arbitrary value for index σ: σ = σ0,
and choose γ = ρ = γ0, where γ0 6= σ0. For these index values, we have, since ηrhoσ is
diagonal, ηρσ = ηγσ = 0 and ηγρ = ηγ0γ0 6= 0. Equation (9) therefore yields ϕσ0=0. However,
since σ0 was arbitrary, we obtain ϕσ = 0 for all values of σ. A similar argument, letting
γ = ρ = σ = σ0 in (9), shows that ∂γΛ/Λ = 2ϕγ = 0, for all values of γ. In addition,
substituting ϕσ = 0 into (5) yields ∂γaα′

β = 0. To summarize, we have proved that (again for
all values of the indices),
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ϕα = 0 and ∂α ln Λ = 0, (10)

∂γaα′
β = 0. (11)

The xα′ are therefore affine functions of the xα:

xα′ = aα′
σ xσ + bα′ (12)

and, conversely, we may write:
xα = aα

σ′x
σ′ + bα, (13)

where
aα′

σ aσ
β′ = δα′

β′ , bα = −aα
σ′b

σ′ . (14)

We now proceed to show that
Λ(βi) = 1. (15)

First, note that a change of the direction of the space axes of S leaves the factor Λ(βi)
unchanged, so that, with a convenient abuse of notation,

Λ(βi) may be written Λ(β2), β2 = δijβ
iβj. (16)

On the other hand, since the two inertial systems S and S′ play symmetric roles, we also
have

ds2 = Λ(β′2)ds′2, β′2 = δi′ j′β
i′βj′ , (17)

where βi′ is the velocity of S with respect to S′. Since, by (6), we also have ds′2 = Λ(β2)ds2,
it follows that

Λ(β2)Λ(β′2) = 1; (18)

Equations (8) and (17) then yield

ηα′β′ a
α′
ρ aβ′

σ = Λ(β2)ηρσ, (19)

ηαβaα
ρ′ a

β
σ′ = Λ(β′2)ηρ′σ′ , (20)

whence
ηα′β′ a

α′
ρ = Λ(β2)ηρσaσ

β′ (21)

and, in particular,
a0′

0 = Λ(β2)a0
0′ . (22)

Now, Equation (13) expresses that any fixed point in S′ has coordinates in S that are affine
functions of x0′ . It follows that the 3-velocity βi of S with respect to S′ is equal to ai

0′/a0
0′ .

We therefore have an expression for βi (and, similarly, for the 3-velocity βi′ of S′ w.r.t. S):

βi =
dxi

dx0 =
dxi/ds
dx0/ds

=
ai

0′

a0
0′

, βi′ =
ai′

0

a0′
0

. (23)

Let us now relate the 3-velocities of S w.r.t. S′ and S′ w.r.t. S. Letting ρ = σ in (19) and
ρ′ = σ′ = 0′ in (20), and using (23), we obtain

(1− β′2)(a0′
0 )

2 = Λ(β2), (24)

(1− β2)(a0
0′)

2 = Λ(β′2). (25)

Indeed, setting ρ = σ = 0 in (19), we obtain

Λ(β2) = (a0′
0 )

2 −
3

∑
i=1

(ai′
0 )

2 = (a0′
0 )

2(1− β2). (26)
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Equation (25) is obtained similarly.
Equation (24) now yields, after taking (22) into account, Λ(β2) = (1− β′2)(a0′

0 )
2 =

(1− β′2)Λ(β2)2(a0
0′)

2. Using now (25), we obtain Λ(β2) = (1− β′2)Λ(β2)2Λ(β′2)/(1− β2).
Simplifying this using (18), we obtain 1 = (1− β′2)/(1− β2), hence

β′2 = β2 (27)

and, consequently,
Λ(β′2) = Λ(β2) = 1, (28)

QED.
We have therefore proved that the passage from the xα to the sα′ is a Lorentz transfor-

mation, and that β′2 = β2, which is what we set out to prove.

We conclude this section by recalling the gist of the proof of Equation (5). It is a conse-
quence of axiom (UTr) that expresses that uniform motions are the same in both systems. A
direct proof is as follows [37]. Consider a point M in uniform motion with respect to both S
and S′. Its trajectory may be written xα = bα + uαs, where bα, uα are constants. Similarly, it
may be represented in S′ in the form xα′ = bα′ + uα′ s′. The corresponding 3-velocities are
therefore βi = ui/u0 and βi′ = ui′/u0′ . Since dxα′ = aα′

σ dxσ, we obtain

βi′ =
ui′

u0′ =
dxi′/ds′

dx0′/ds′
=

ai′
σdxσ/ds′

a0′
σ dxσ/ds′

=
ai′

σuσ

a0′
σ uσ

. (29)

This quotient is therefore a constant. Taking a logarithmic derivative of this expression
with respect to xρ and multiplying through by uρ, we obtain

∂ρai′
σuσuρ

ai′
σuσ

=
∂ρa0′

σ uσuρ

a0′
σ uσ

. (30)

Now, viewing this equality as an equality between rational functions of uσ, Equation (30)
expresses that the quadratic forms in the numerator are divisible by linear functions.
Therefore, the common value of the fractions in (30) is a linear form 2ϕρuρ, where ϕρ does
not depend on uρ. We then have

∂ρaα′
σ uσuρ = (2ϕρuρ)(aα′

σ uσ). (31)

This is an equality between quadratic forms. Therefore, their (symmetrized) coefficients
must be equal. Now, ∂ρaα′

σ = ∂ρ∂σφ is already symmetric. It follows that

∂ρaα′
σ = aα′

σ ϕρ + aα′
ρ ϕσ, (32)

QED.
A shorter but less satisfactory proof is to observe that, since straight lines are geodesics

in this case, the map φ is a correspondence that maps geodesics to geodesics. If we pull the
connection of S′ back to S, we obtain two connections Γα

βγ and Γα
βγ in the same space. It is

known (eq. (40.6), p. 132, [39]) that the Christoffel coefficients are then related by a formula
of the form Γα

βγ − Γα
βγ = δα

β ϕγ + δα
γ ϕβ. This yields the desired expression, after taking into

account the transformation of Christoffel symbols through the map φ. This proof, while
correct, may be misleading since the two connections naturally live on different manifolds,
and this point is essential for the physical interpretation.

5. C-Equivalence and Accelerated Motion

We have seen that the observer manifold may essentially be reduced to Minkowski
space and, therefore, to an ordinary manifold, if we remain within Special Relativity. Let
us give an example of a situation where this is not the case. To be specific, let us consider
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the model of electron radiation in Sections 4–6 of [40], where it was suggested that the
metric in the system of an accelerated electron in Minkowski space is not the Minkowski
metric, but differs from it by a conformal factor. One considers a beam of electrons defining
a congruence of world-lines with a vector field ~u = (uα) of unit tangents to electron
trajectories for the Minkowski metric ds2. It is natural to assume that the observers SI
attached to electron trajectories are not inertial and, therefore, have different metrics, so
that the metric on each manifold MI of the definition of the observer manifold differs from
the metric on the event manifold. A simple choice is to take a conformal metric:

d
∗
s

2
= Λ2ds2 (Λ > 0), (33)

where Λ is such that

L (
−→∗
u )ηαβ = (Λ2 − 1)ηαβ,

∗
u

α
= Λ−1uα := λuα. (34)

The introduction of
∗
u

α
corresponds to the change of metric introduced by (33). Here, L

denotes the Lie derivative. For the reasons why this assumption, based on C-equivalence
principle, seems natural, and more importantly, does not conflict with any of the established
facts to date, see the discussion in [9,40]. We merely show here that this assumption leads
to a relaxation of the conformal factor.

Theorem 2. With the above assumptions, we have

L (~u)ηαβ =
λ−2 − 1

λ
ηαβ − (uα∂β + uβ∂α) ln λ. (35)

Then, the conformal factor tends to unity as proper time goes to infinity. Before this relaxation, it is
possible to detect through measurements the difference between the observer metric and the metric
on the event manifold.

Remark 5. The intuitive meaning of this result is that when two systems, such as a non-inertial
system and the laboratory system interact, it takes some time before the two systems merge into one
system, with the same metric. This would explain why the measurement of gravitational fields from
remote parts of the universe can be measured at all. For a detailed analysis of the actual measurement
process, see the discussion in [9].

Proof. Recall
∗
u

α
= λuα, where λ = 1/Λ. Let

∗
ηαβ = Ληαβ. Throughout, indices are raised

using ηαβ. We have
∗
uα = λua and

∗
ηαβ = ληαβ, and

ηαβuαuβ =
∗
ηαβ ∗uα

∗
uβ = 1. (36)

We now prove (35):

L (~u)ηαβ = ∂αuβ + ∂βuα (37)

= ∂α(λ
−1 ∗uβ) + ∂β(λ

−1 ∗ua) (38)

= λ−1L (
−→∗
u )ηαβ −

∗
uβλα/λ2 − ∗uαλβ/λ2 (39)

=
λ−2 − 1

λ
ηαβ − λ−1(λαuβ + λβuα) (40)

=
λ−2 − 1

λ
ηαβ − (uα∂β + uβ∂α) ln λ, (41)
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as announced. Next, recall that, for any vector va,

L (~u)vα = uσ∂σvα + vσ∂αuσ and L (~u)vα = uσ∂σvα − vσ∂σuα (42)

Therefore, L (~u)uα = 0 and L (~u)uα = uσ∂σuα + uσ∂αuσ = u̇α since the second term
vanishes (it is 1

2 ∂α(uσuσ), and vanishes because uσuσ = 1).
It now follows that

u̇α = L (~u)(ηαβuβ) = uβL (~u)ηαβ (43)

=
λ−2 − 1

λ
uα − uα

λ̇

λ
− ∂αλ

λ
(44)

(45)

Hence, multiplying by uα and summing over α, using the relations uα∂αλ = λ̇, uαuα = 1
and uαu̇α = 0, we obtain the ODE

λ̇ = f (λ) :=
1
2
(λ−2 − 1). (46)

It follows that λ̇ < 0 if λ > 1 and λ̇ > 0 if λ < 1; hence, in all cases, λ tends to the only
positive rest point of Equation (46), namely 1:

lim
s→+∞

λ(s) = 1. (47)

Therefore, the possibility of comparing the conformal factor with unity causes the relaxation
of the conformal factor. The proof is complete.

The speed of relaxation may also be determined: relaxation to λ = 1 is exponential
since f ′(1) = −1. A different rate would be obtained if one modified (34) by introducing a
new coefficient θ:

L (
−→∗
u )ηαβ = θ(Λ2 − 1)ηαβ,

∗
u

α
= Λ−1uα := λuα. (48)

6. Conclusions

We have proposed a set of mathematical postulates for describing the observer mani-
fold in General Relativity, as opposed to the event manifold. Here, except for the “laboratory
system”, the observer is not a human operator: it is a mathematical model of the association
of measuring devices with the local de Broglie wave of the system at hand because this
wave contains the same information as local clocks and rods [14]. Each observer may be
assumed to assign values to measurements on the basis of a metric that is locally conformal
to the metric of the event manifold. The quantities measured by the laboratory’s (human)
observer are mathematically obtained by applying a transfer map to the quantities attached
to local observers. This is consistent with the principle of C-equivalence, according to which
standards of measurement are affected by the local gravitational field. Since C-equivalence
is necessary for a correct interpretation of measurements in General Relativity [9,10,41],
the present set-up seems to be required for the physical interpretation of experiments and
observations that involve significant gravitational fields, such as gravitational waves. If
gravitational waves modified the geometry of spacetime, including the measuring devices
of all observers, it would be impossible to measure these waves since the change in grav-
itational field would be compensated by the change in the every measuring apparatus.
Finally, this observer manifold does not seem to satisfy any of the known definitions of a
manifold, or of any of its generalizations. It does not satisfy any global condition, nor is it
necessarily Hausdorff. In Special Relativity, the observer manifold may be reduced to an
event manifold. However, event and observer manifolds may not be identified.
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In a particular model of electron radiation, we have obtained the evolution of the
conformal factor: it relaxes to unity after some proper time, which suggests a mechanism
for the measurement of high accelerations on the basis of conservation laws, since the latter
are affected by the conformal change of metric, see [40].

Perspectives involve studying in the same spirit situations involving high accelera-
tions such as the radiation of other charged accelerated particles, or laser cooling where
considerable decelerations are involved, despite the relatively low velocities involved [14].
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