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Abstract: By means of the weight functions, the idea of introduced parameters, using the transfer
formula and Hermite-Hadamard’s inequality, a more accurate half-discrete multidimensional Hilbert-

type inequality with the homogeneous kernel as (x,A > 0) involving one multiple upper

1
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limit function is given, which is a new application of Hilbert-type inequalities. The equivalent
conditions of the best possible constant factor related to several parameters are considered. The

equivalent forms the operator expressions and some particular inequalities are obtained.
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1. Introduction

Ifp > 1,%+% =1,am,b, >0,0<Y > 4 ah, < c0and 0 < Yo bl < oo, then we have
the following discrete Hardy-Hilbert’s inequality with the best possible constant factor
T/ sm( ) (cf. [1], Theorem 315):

.

1
;;m+n smn/p Zﬂm

The integral analogues of (1) named in Hardy-Hilbert’s integral inequality was pro-
vided as follows (cf. [1], Theorem 316):

[

with the same best possible factor. The more accurate form of (1) was given as follows
(cf. [1], Theorem 323):

2 bi) - )

n=1

==

V<M(/wap(x)dx)ﬁ(/owng) dy)’, @)

1 1
0 ) 7

sz+ﬂ—1<sm (7/p) Z“m (n;le) 3)

In Equations (1)—(3), with their extensions, played an important role in analysis and
its applications (cf. [2-15]).
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The following half-discrete Hilbert-type inequality was provided in 1934 (cf. [1], Theo-
rem 351): If K(x) (x > 0) is decreasing, p > 1,1 5+ g 1=10<¢(s) = [;° K(x)x*ldx < oo,

f()>00<fo fP(x)dx < co, then

Z”"Z/ nx)f () < (> / fP(x 4)

Some new extensions of (3) were given by [16-19].
In 2006, using the Euler-Maclaurin summation formula, Krnic et al. [20] gave an
extension of (1) with the kernel as mjn) 7(0 < A <4). In 2019-2020, following the results

of [20], Adiyasuren et al. [21] provided an extension of (1) involving partial sums, and Mo
et al. [22] gave an extension of (2) involving the upper limit functions. In 20162017, Hong
et al. [23,24] considered some equivalent statements of the extensions of (1) and (2) with a
few parameters. Some further results were provided by [25-27].

In this paper, we extend Mo’s work in [22] to half-discrete multidimensional Hilbert-
type inequalities. By means of the weight functions and the idea of introduced param-
eters, using the transfer formula and Hermite-Hadamard’s inequality, a more accurate
half-discrete multidimensional Hilbert-type inequality with the homogeneous kernel as
(x,A >0,& €0, %] ), involving one multiple upper limit function and the beta

1
Cete—gl) : y .
function, is given. The equivalent conditions of the best possible constant factor related to

several parameters are provided. The equivalent forms, the operator expressions and some
particular inequalities are obtained. Our main results are new applications of Hilbert-type
inequalities involving multiple upper limit functions.

2. Some Formulas and Preserving Lemmas
Hereinafter in this paper, we assume that p > 1,% + % =1,A > 0,A1, Ay € (0,7),
mn €N={12,--}ac (0,1F€[0,}] Ay =222+ 40 4y =220 4 22,

q
1
[Iylla:= Zlyz = (1, yn) ERY).
For f ( ) := Fy(x)> 0, define the following multiple upper limit functions F;(x) :=
Jo Fiza( x > 0), inductively, satisfying F;(0) = 0, and

Fi(x) =o0(e™)(t>0,i=1,---,m;x — ),

which means that for >0, Fiﬁf) — 0(x — c0). We also assume that Fy(x),
ar = (ag,, -+ ,ar,) >0 (x € Ry= (0,00),k = (kq,--- ,kn) € N"), such that

0< /0 xp(lfm*%)*ll?f:z(x)dx < ooand 0 < ;Hk - §||Z("7A2) "al < 0.

For M > 0, ¢»(u) (u > 0) is a nonnegative measurable function; we have the following
transfer formula (cf. [3], (9.3.3)):

- (Y MLy 1 -
" M) s
/ /{y€R1;0<z,-"1<ﬁ> <1) ; Jay -+ dy anr(%)/o plujus"du. ()

In particular, (i) in view of |[y||« = M[L1, (4)" ] , by (5), we have

2

Jry oUllla)dy = Jm [ foyep oery , (gptcny $LE (BT iy~ dy ©)
= lim Io\f,:’rr o fie Mu&)uﬁ’lduvfl\ﬁu'l Mr]ﬁjo (v)o"ldo;

M—00
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(ii) for p(u) = (Muzx) =0u< M“ = (b > 0), by (5), we have

1

_ "r ! 1t g, T(E) -1
S oy #0108 = lim i [ gt gt = s [ gty Mo, (7)

Lemma 1. Fors > 0,a € (0,1],¢ € [O,%],Ag ={y=A{wn, -, ynlyi>C¢li=1,---,n)},
define the following function:

1 1
2y =2l {4 [, (s — 6N

gx () =1 (x>0,y=(y1, - ,yn) € Ag).

Then we have a%gx(y) <0, %gx(y) >0y ecAgj=1,---,n).
]

Proof. We obtain that for s > 0,a € (0,1],¢ € [0, 3],y € Ag,

S L O B A
{312 yf@“]”“}‘““
2o () = (s ) [ (i 5)]
Yj {H i (yi—

s(1— —8)"]a" iy “ *
x+[Ei (vi—¢ =

a:8x(y) = <0,

The lemma is proved. O

Note. In the same way, for s, < n,a € (0,1],& € [0, 3],y € A, we can find that

IIy gl 2||y g™ =0(=1,---,n), ®)

and then for s, < n,a € (0,1],¢ € [O,%], he(y) == &x(W)|ly — &2 " (x > 0,y € Ag), by
Lemma 1, we have

i) = [y = 12" 55 84(0) + o) lly = 2" < 02 (y) =
ay]“.‘/ [l ”aaygx( )+ |y — &2 nang(y)_i_Tngx( ay]“]/ gl ©)
+8x (W) Llly — &l >0, =1, ,n).

Lemma 2. For ¢ > 0, we have the following inequalities:

r(i) 2T (1)
k c—n o 10
W) <Z|I ™" < Camtr(my (10)
where ) G(k) = E e % G(ky,- -+ ,kn) (G(k)(> 0) is the term of multiple series with respect
k kn=1 k=1

tok € N").

Proof. By (8) (for ¢ = 0), in view of —c —n < 0, we find that

d —c—n —c—n :
_ >0 — 1, -e-,n),
ayijHuc a]/2||3/|| (j )
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and then by Hermite-Hadamard’s inequality (cf. [28]) and (7), we have

_ r(ly e 2T(1)
ZHkH o / ||y||1x _m/ v gy = —
xl)’3

{yeRL[lylla>2

By the decreasingness property of series and (7), it follows that

(L) o I'(y)
k —c—n >/ 7c7nd —_ ® / v c ldl) _ o ,
;H o {yeR1,||yHa21}”y”"‘ Y =) h ca 1T (%)

namely, inequalities (10) follow.
The lemma is proved.l

Lemma 3. For s > 0, we define the following weight functions:

ooy L
s—s, xsl—l 0
wi(sn,b) = [l = ¢l; ./O Gk e N, (12)

(i) for 0 < sp < s, 50 < 1, we have the following inequalities:

1 1
Mfl(i'igZ)B(sz,s —52)(1 —65(s3, %)) < @s(sp,x) < lxnfffﬁ()z)B(sz,s —s)(x €Ry), (13)
where,
0 v e ot e o
(52, %) = B(sz,s—sz)/o (14 u)® v= (E (0.1),

which means that x%26;(s,, x) is bounded for x € R;.. and

oo tu_l
B(u,v) := /0 Wdt(u,v > 0)

is the beta function.
(ii) for 0 < s; < s, we have the following expression:

ws(s1,k) = B(s1,s —s1)(y € RY). (14)

Proof. (i) For 0 < sy <'s,sp < n,by (9), (11) and Hermite-Hadamard’s inequality (cf. [28]),

we have s
@s(sp,x) < xs_szfAm Lﬁyi”;\)dy
<07, ity = " e iy
Setting ¢/(v) 1= (7, by (6), it follows that
ez ) <2y == i ot 1
s K et K >f°‘ fiﬁ §

r(l
= M%f()g)B(sz,s —5).
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In view of the decreasingness property of series, we find

@s(s2,%) > 272 [ g1, =1 U ) dy= x*7 Szlxn 1rg s 1 (o) o

— r(3) 0o p2-! u=u/x u2"!
= x5—%2 a=1Ir(2) J1 (x+v)5d = a"*1r(§)f1/x (1+u)sd

1
= i B(s2,s = 52) (1= 6,(52,%)) > 0,

* o 1 1/x sp—1

0 < 6s(sp,x) = Bes—5) o (?Jru)sdu

1 1/x 6014, _ 1 1
< B(s,5—52) fO w2 du = $oB(s2,5—57) xTZ(x = R*)'

Hence, we have (13).
(ii) Setting u = m in (12), we find

I [ 2ot O e A
elork) = =8 | G Tl = e = Pevs =)

and then (14) follows.
The lemma is proved. U

We indicate the following gamma function (cf. [29]): T'(a) := [;~ e 't*"1dt(ax > 0),
satisfying I'(a +1) = al'(a)(a« > 0) and B(u,v) = r(ulJrv)l"(u)F(U)(u,v > 0). By the
definition of the gamma function, for A, x > 0, the following expression holds:

! = !  Abm—1 (x| [k—¢]la)E
(x—|—||k—§||a))‘+m_1"(/\+m)/0 P e dt. (15)

Lemma 4. For t > 0, we have the following expression:

/Ooo e " f(x)dx = tm/ooo e Fy (x)dx. (16)

Proof. Since F;(0) = 0, Fy(x) = o(e'*) (t > 0;x — o), for m = 1, we find

foooe’txf( dx—fooe’txdl-"l( ) =e F(x fo Fi(x)de
= lim Fl(x) +tfy e *Fi(x) dx:tfo e txPl( )dx.

Hence, (16) follows. Assuming that for m = i, (16) is valid, then for m =i + 1, since
F11(0) =0, F1(x) = o(e™) (t > 0,x — o), we have

/ th dx = t/ l+1 X,
0

/0 e f(x)dx = ti/o e " Fi(x)dx = tiH/o e Fiyq(x)dx.

By mathematical induction, expression (16) follows for m € N.
The lemma is proved. U

and then

Lemma 5. We have the following inequality:

vh—‘

ril gl
Do = 2 I3 ety < (o fr@ (Ao Ak = 22))" BT (A +m, A = 1)

A | (17)
T R A k=gl



Axioms 2023, 12,211

6 of 13

Proof. By Holder’s inequality (cf. [28]), and Lebesgue term by term integral theorem
(cf. [30]), we obtain

Azn

(/\ +m—1)/q
P AvEETEE VYA OC)HW ay)dx

e[ g
fO (x+|[k— CH |)A+m (A +m—1)(p—1) ]F ( )d

}

Dim =X J5 ! [‘

770 (et Je—gl[a) M

-

00 1 A1+nt 1
X d
{%[fo (X+Hk7§||a‘)?\+m P é)‘Az n)(g—1) x]a

- fOOO(D/\—&-m()\Z, )xp(l m—Ay)— 11:!’( )dx]

[ Q= bl

X @rpm(h -+ m k)= [

Therefore, by (13) and (14) (for s = A +m,s; = Ay +m,sp = Ay), we have (17)
The lemma is proved. [

3. Main Results

Theorem 1. We have the following more accurate half-discrete multidimensional Hilbert-type
inequality involving one multiple supper limit function:

=

oy o ) A& _ " i _
I—%fo (et k= C'H dx < H ()\+l)( IT(Z) (/\2,)\+m Az)) BV(/\1+WI,)\ )\1)

: . (18)
<L 0B ()] 1 e — g ")

In particular, for A; + Ay = A, we reduce (18) to the following:

1.

r .
x+||k CH ) dx < (D(ﬂ 51"% )p H (/\1"’1)3()\1,)\2)

1=y

i . (19)
<[ xp<lfmw>flaz<x>dxw[;Hk—cnz”*Az*”a;uf

==

where the constant factor (= 1r ﬂ ) T, L (A1 +1)B(A1, A2) is the best possible.

Proof. Using (15) and (16), in view of Lebesgue term by term integral theorem (cf. [30]), we find

I=¢ Zfo (x)ay f A1 (et lk=Cll)t gf) dx

=T fo A foooefxtf(x)dx)(%f”k*g““ ay)dt

— Lfooo A 1 tmfo —xtFm dx) (Ze_”k_m“tak)dt
k

— A Zfo Fo(x [fo t?\+m—1g—(X+Hk—§\\a)tdﬂdx

>a

= [tm) Ea(o g~ "I (A 49)1
= r Zfon iI:[()(+1)A+m'

Then by (17), we have (18).
For A1 + Ay = A in (18), we have (19). For any 0 < € < pAq, we set

- [ o0<x<1, L a-ton .
fw»—{fhm;3x21mh—|uu (ke N").



7 of 13

Axioms 2023, 12,211

We obtain that for0 < x < 1, F (x) =0;forx > 1,
~ X X oA _e_ 1 _e
Fi(x) :/ F(e)dt g/ Ml = M,
1 0 M—3

Inductively, we find that F;(x) = o(e'¥) (t > 0,x — c0) and

~ ~ 1 i
Fi(x) =0,0<x < LF(x) < —— M N x> i=1 0, m).

==

If there exists a positive constant M (< (M o ﬂ
1 oc
! L (A1 +1)B(A1, A2) by M, then in particul

1
(19) is valid when we replace (= r o ﬂ ) T,

IX

for ¢ = 0, we still have

f(x)a ®  p(—m—Ay)—1 Br(
7dx<M[/ xP(=m=21) E,
§A (x + [k o)+ 0 g

By (10), we obtain
Ti= g7 w0 B ] [ 2]
(T O +i= 1 )P (K
=iqﬁm+p-n%j¥&ﬁ

) TS, (/\l +1i)B(A1,Az)), such that

ar,

1 1
”ZWW”“”ﬂf (20)

(21)

By (10), we also find that = SZ||k| " =01)(c=M+ g), where O(1) is bounded

forany ¢ > 0. Fors = A > 0,51 = /\1 — ? € (0,s) in (12) and (14), by (10), we obtain

2+) /\1 p)l

—&—n
I —):Ilkll [kl N I Tdx]
/\2Jr o yM—F)- 1 /\2+ 1 (M—5)-1
— kI ek X k x
ZII [z " (11Kl 0 G ! ||oc 0 GrllD ]
e—n A2+
Z%HkHa [w)\()\l_ k) — [Ik|| fo HkHA
e (M+5
=§WH€%MM—§)— gzmml
=B(M -3 )lekllﬁ " - (1)

1
> %(%@B(Al - %Jtz +5) —€0(1)).

Hence, by (20), (21) and the above results, we have the following inequality

1 € € ~ ~ m—l € - 1
Oﬂi‘f();,)B(Alp,A2+p)sO(l)< el <eMJ< M[g (A1+i75)} (Dﬂ%) .

For ¢ — 0™ in (22), in view of the continuity of the beta function, we find

I(z)

—— 2 B(A, A)<M[] | (A ——
= 1F(§) 1,A2) 1;[0 141)] an—lr(g)

(
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1
namely,(anrgr my )pH (A1 +1)B(A1, A7) < M. It follows that
1
M= (T (B A
=\ A 1T1 1,742
at=I0(E) " i

is the best possible constant factor of (19).
The theorem is proved. []

Remark 1. For A; = %4—%,}\2 = )"q’\l +% :)\z-i-#,weﬁnd;\ljh}lz:)\,

s A=A AL A A
20 2 A0 < A=A — A <A
p 9 P q

If A — Ay — Ay < g(n — Ap), then we still can find Ay < n. In the above case, we can
rewrite (19) as follows:

1
f(x) F(%) pm— A A
Zf() (et [Jh— CH ) dx<( an— 11-(% ) IJ ( )B()L1,)\2)
. 1 (23)
< 0 ES (x)aa] [ e — g1 ")
Theorem 2. If A — Ay — Ay < q(n — Ay), the constant factor
m—1 1"(1) % 1
(/\+l)(17r(ﬁ) (A2, A +m—Az)) Bi(Ar+m,A)y)
i=0 o«
in (18) is the best possible, then we have A — Ay — Ay = 0, namely, A + A, = A.
Proof. By Holder’s inequality (cf. [28]), we obtain
R N 00 A 4m—1 At+m—Ay /\1+1n71
B(A+m, Ar) = [ ﬁ =Jo ﬂ P T du
A+m Ap— ] A tm—1
= [ S p u 19 du
=I5 G o0
00 /\+m Ay—1 D 00 Aq+m—1 7
_[fo W 1" 0 W ul’

— BP (Ag A+ 11— A2)BA(Aq + m, A — Ay).

In view of the assumption, compare with the constant factors in (18) and (23), we have
the following inequality:

namely, B()Atl +m, 5\2)2 B% (A, A+m— /\Z)B% (A1 +m, A — Aq); it follows that (24) retains
the form of equality. We observe that (24) retains the form of equality if and only if there exist
constants A and B, such that they are not both zero and Au**"~*2~1 = ByM+m=lgeinR |
(cf. [28]). Assuming that A # 0, we have M = %a.e.inlh_, namely,A — A1 — Ay =0
and then A + Ay = A.

The theorem is proved. [J
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4. Equivalent Forms and Operator Expressions

Theorem 3. Inequality (18) is equivalent to the following inequality:

==

J={Zllk- g e L0 gy’

(x+[lk=¢lla)’
mfl 1
< O+ (B2 A+ = A B At ma =) @)

1
X[ [y xP (1=m=21)-1FF (x)dx]? .

In particular, for A1 + Ay = A, we reduce (25) to the equivalent form of (19) as follows:

Dé

1
ny roo Pip
{ZHk (;‘Hp/\z fo %dﬂ }P
(1) % - 1 26)
< (ﬁ) I:[ (A1 +1)B(A1, Ag) [ fo* w1 E] () dx] P

==

where the constant factor (- ) I, V(A1 +1)B(A1, A2) is the best possible.

n— 1rﬂ
a

Proof. Suppose that (25) is valid. By Holder’s inequality (cf. [28]), we have
=14, oo f(x) 5—A2 gin—Aa)—n g7
I=) [llk=¢lla ———————dx[[[lk = s Ta]< T Ik —lla @) . (27)
2 b (xr+ [l = ¢la)* 2 ¢

Then by (25), we have (18).
On the other hand, assuming that (18) is valid, we set

A o0 p—1
a = ||k — g||§A2‘”[/ S () — wdx] ke N".
0 (x+|[k—=2lla)
If | = 0, then (25) is naturally valid; if ] = oo, then it is impossible to make (25) valid,
namely | < co. Suppose that 0 < | < cc. By (18), we have

¥k — gdr gl p =
k

m-1 N T 11
< Ho (A+Z)(an () ()\2//\4‘7’7’1 )\2))7’ ‘7()\1 +m,A— )\1)
=l

1 1
Xy a0 W0 B (x) ] — g )
N 1
(S le— gl aly" =

m—1 . l"(l) 1 1
< I—[O ()\-FZ)(WF(B)B()Q,)\-FM—)\Q))V 1A +m,A—Aq)
i=l I
N 1
X[ fo7 xP=m=A)=1ER (x)dx]?,
namely, (25) follows, which is equivalent to (18).

The constant factor (= 11_ ) I, L (A1 +1)B(A1,AAy) in (26) is the best possible.

Otherwise, by (27) (for A1 + )\2 = A), we would reach a contradiction that the constant
factor in (19) is not the best possible.
The theorem is proved. []
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We set functions ¢(x) := xP(1=m=M)=1 y(k) := ||k — §||q(” ha)- ", then,

P = (k= G (x e Ry ke N,
Define the following real normed spaces:
Lpo(Re) = {f = F() Ifllpe = (i~ 90 f(x) Pdx)? < 0},
g =48 = A g dillallgy = (9K )Iaqu)ﬁ < oo},

gy = {6 = {bia, s} 1Bl = <2¢1-P<k>|bk\r’>% < o},

E(R+) = {f € Ly (RO (x) = (0> 0() i= [ Foy (0 (x 2 0),
EFi(x)=o(e*)(t>0,i=1,---,mx — oo)}.

e

For any f € L(Ry), setting by := fo mmc k € N", we can rewrite (25)

as follows:

- r(d) P
Hb”p,lpl—p < H )l+l WB(/\Z,A"‘TH )\2)) Bq(/\1+m,)\_)\1)||Fme’(P<OO,
i=0 14

namely, b € L, 1.

Definition 1. Define a Hilbert-type operator T : L(Ry) — L, yi-p as follows: For any f €
L(R), there exists a unique representation Tf = b € Ly, satisfying Tf(k) = b (k € N").
Define the formal inner product of Tf and a € lgy, and the norm of T as follows:

) f(X) ||Tf||ptpl 14
T | = —d = I, T|| := T
R S e R (L L

By Theorem 1, Theorem 2 and Theorem 3, we have
Theorem 4. If f € L(R}),a € Lo,ps || Fllp,grallgp > 0, then we have the following
equivalent inequalities:

1

m—1 1 1
(Tf,a) < Q(Mri)(wrgrgn) (A2, A+m—2z)) Bi(Ar+m,A=M)|[Fullpellalley,  (28)

1
r(l P
Tl g0 <H A+ i) Ergﬂ) Az A+ m—A2)) Bi (A +mA—AD)|Fullpg.  (29)
14

Moreover, if A1 + Ay = A, then the constant factor

e ()
A+ (— 82—

[T(+i) ,Xn T (1)

i=0

B(A2, A+ m — A2))7 BT (Ay +m, A — Ay)

1
in (28) and (29) is the best possible, namely, ||T|| = (5= 1r )pH L(A1 +1)B(A1,Az). On
the other hand, if A — Ay — Ay < g(n — A;), the constant factor

mil/\' I oA A)) BT (A A=A
[T +0) Gy B0 A+ = 22) B (A 1,0 = )
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in (28) or (29) is the best possible, then we have A — A1 — Ay = 0, namely, A1 +A; = A.

Remark 2. (i) For A = 1,A; =
equivalent inequalities:

%,Az = % in (19) and (26), we have the following

¢ 1 (30)
(fo W() >[2||k gD,
1
—n o0 x P,y
(k= 2l (5 i) ) o
ml o T WP (x\d)
< 11;10 (ﬁ"’l)(an—lr(g)) sin n/p fo X~ P Ey ( )dx)p

(ii) for A =1,A1 = %, Ay = % in (19) and (26), we have the following equivalent dual forms of (31)
and (32):

(a4 r) ' x
Efo S "<H( D (=) ST

1 (32)
X[ a2 B () [ K~ gt ‘71 ,

=

—1-—n [eS) X p
2=l (5 )
(33)

m—1 . r(l 5 1
<1 (L + ) (o Efzg%))”sm L 3P 0=m=2E] (x)da]
(i) for p = q = 2, both (30) and (32) reduce to

1
2

F(x)ay @m-Dix, T(L)
Zfo X+|Ik Clla dx < = (a"*lf%)) (34)

1
<L 2B () ke — 2 ),

and both (31) and (33) reduce to the equivalent form of (34) as follows:

-

2.2
C Ik = &l (S A )
X fol -2l ) | )

—1) 1 o 3
< (Zmznp..n(o‘nfgfﬁgg)) (fO x ZmFZ( )dx)z

The constant factors in the above particular inequalities (30)—(35) are all the best possible.

Remark 3. For o« > 0, we can only obtain y%hx(y) <0(j=1,---,n)in (9). So, we cannot

use Hermite—Hadamard’s inequality to obtain (11) as well as other more accurate inequalities, but
for ¢ = 0, we still can obtain (11) by using the decreasingness property of series, and then the
equivalent inequalities (18) and (25) for ¢ = 0 with the best possible constant factor were proved.

5. Conclusions

Hilbert-type inequalities with their applications played an important role in analysis.
In this paper, following the way of [22], by using multi-techniques of real analysis, a more
accurate half-discrete multidimensional Hilbert-type inequality with the homogeneous

kernel as m (x, A > 0) involving one multiple upper limit function and the beta
function is given in Theorem 1, which is a new extension of the published result in [22].
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The equivalent conditions of the best possible constant factor related to several parameters
are considered in Theorem 2. The equivalent forms, the operator expressions and some
particular inequalities are obtained Theorem 3, Theorem 4 and Remark 2. The results are
new applications of Hilbert-type inequalities involving multiple upper limit functions; the
lemmas, as well as the theorems, provide an extensive account of these types of inequalities.
The further study is to extend this paper’s method to other types of Hilbert-type inequalities,
for example, the Hilbert-type inequalities in whole plane.
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