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Abstract: Honeybee losses are an extensive global problem. In this study, a new compartment
model of honeybee population that mainly concerns honey production is developed. The model
describes the interaction of the food stock with the brood (immature bees), adult bees and produced
honey. In the present paper, the issue of an adequate model recovery is addressed and the parameter
identification inverse problem is solved. An adjoint equation procedure to obtain the unknown
parameter values by minimizing the functional error during a period of time is proposed. Numerical
simulations with realistic data are discussed.
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1. Introduction

Honeybee colonies are important for agriculture and the environment. They help plant
reproduction by pollination, while beekeeping redounds to the development of rural areas.
Unfortunately, in recent decades, a ubiquitous decline in both managed and unmanaged
colonies has been observed. This is a global problem, since the bees contribute to the
ecological equilibrium. If the bee population shrinks or disappears, plants would not get
pollinated and would die off. Then, herbivorous animals would not have food and would
go extinct, and they would be followed by carnivorous animals, including humans. Thus,
preventing bee colonies from losses is of a paramount importance for preserving live on
Earth in general.

Of the many species of bees, only a small number of them are eusocial; Apis mellifera
is an example of eusocial behavior [1]. This species form colonies thus the survival,
reproduction and honey production are directly dependent on the size and the structure of
the colonies [2].

Honey, produced by honeybees, is a sweet natural substance, derived greatly from
the nectar of flowers and transformed by a group of enzymes, which are present in the
saliva of the worker bees. The honey is also airy and evaporates by its filtering, and is
eventually stored inside the hives. Honey from Apis mellifera is one of the most essential
zoo-agricultural goods for commercial trade in the world [3]. Regarding the honey trade,
the USA is the global leader in imports. Concerning production, China is the global leader,
following by Turkey, Iran, Ukraine and the Russian Federation. Finally, with respect to
quality, Bulgarian honey is the most pure and sweet [4].

Axioms 2023, 12, 214. https://doi.org/10.3390/axioms12020214 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12020214
https://doi.org/10.3390/axioms12020214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-4816-2837
https://orcid.org/0000-0001-9826-9603
https://orcid.org/0000-0003-0684-8574
https://doi.org/10.3390/axioms12020214
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12020214?type=check_update&version=1


Axioms 2023, 12, 214 2 of 12

Beekeepers produce a variety of agriculture products, in addition to honey, including
royal jelly, propolis and beeswax. This paper aims to develop mathematical modeling of
the honeybee population dynamics and, therefore, honey production.

The most fundamental honeybee population model is suggested by [5], where only
two compartments are explored—the young hive bees and the matured forager bees. This
model is extended in [6,7], where the brood, the age of the foragers and the food are also
included in the studies, accounting for the delay of maturing. Such investigation is done
in [8], where a different form of the recruitment rate is used. In the study [9], exogenous
stress is assumed to impact the recruitment process, social inhibition and the queen laying
rate, causing a potential colony decline.

There are models developed as an effort to understand the decrease in colony numbers
in recent decades. A survey in the USA suggests that treating against disease and mite
infestation in the right way lowers the chance of colony loss [10]. Extensive study of the
transition from hive to forager bees is performed in [11]. A comparison between the losses
in different parts of the world is performed in [12].

The mysterious disease, whose causal factors are not entirely agreed on, is called
Colony Collapse Disorder (CCD). It is characterized by rapid loss of forager bees but
absence of dead bodies near the hive, lack of pest and mite invasion of the hive, and bees’
reluctance to consume food provided by the beekeeper. The first recorded massive colony
loss is described as the ‘Isle of Wight Disease’ [13]. The effect of protein sources has been
proposed as a potential cause for collapse [14]. A special CCD model is designed in [15],
where the contagious adult bees are isolated from the others. A review of the suspected
causal factors for the colony declines is summarized in [16].

Other models focus on particular parts of the surrounding environment such as food
availability [17], age structure [18], seasonal effects [19], Varroa mites [20] and others [21,22],
including the model memory property [23].

In [24], populations of adult and immature (brood) honeybees as well as their honeybee
production are examined via mathematical and statistical modeling approaches. It is shown
that, if a bee population is exposed to a stress factor (i.e., habitat destruction, Varroamites,
climate variability, heavy metals, etc.), the number of individuals declines over time as well
as the produced honey. The complex issue of the sustainability of honeybee colonies is
important not only for the survival of the species but also for food security and the overall
health of the environment. To ensure the sustainability of honeybee colonies, it is important
to take measures such as providing adequate habitats, reducing pesticide exposure and
promoting disease management practices. Aiming at the latter, the sophisticated processes
of population dynamics have to be investigated via mathematical modeling.

In the present work we study the relationship between the population size of honey-
bees (Apis mellifera) and honey production if the bee colony is exposed to a number of stress
factors that exogenously cause the death of individuals and therefore a possible reduction
in honey production. Here lies the main originality of the study—suggesting a novel model
for encountering the interaction between the bee castes and the amount of honey, stored in
the hive.

Furthermore, in the investigation the inverse problem of identifying the food and
honey consumption rates by the immature and adult bees is solved as well as the brood
maturation rate. These quantities are of extreme importance for understanding the complex
dynamics of the hive. It is done via the adjoint equations optimization approach. Such
a study is performed in [25], where the contaminated bees are modeled as a separate
compartment. Similar investigation is done in [26] but, for the coefficient identification, a
trust-region reflexive algorithm is used.

This paper is organized as follows. In the next section, we extend the mathematical
model, studied in [24], taking into account the food stock. What is more, we study the
existence and non-negativity of the solutions. Section 3 is devoted to the parameter
estimation analysis of the model. Section 4 is dedicated to numerical experiments regarding
the direct and inverse problems. The paper is concluded in Section 5.
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2. Mathematical Model

In this section, we introduce a mathematical model that explains the interaction
between the food stock and the brood (immature bees), adult bees and the amount of
produced honey.

Following the results in [24,27] we establish a mathematical model that presents
the interactions among brood B(t) at time t, adult bees A(t) and the amount of honey
production M(t), taking into account the weight of food stock F(t) .

We assume that the brood grows at a rate β, proportionally to the number of adult bees.
This is given by term A/(A + ν), where ν is the mean saturation rate (number of adult bees
required for immature bees to achieve half of their maximal number). The number of bees
surviving to the adult stage influences the number of immature bees.

The latter is modeled by the term ωB, where ω denotes the maturation rate to adult
stage, and 1/ω indicates the time spent before achieving the adult stage. The number of
immature bees is decreased by natural death and it is modeled by the term µBB, where µB
denotes the natural mortality rate of the immature stage. Following this discussion and
those in [24,27] we consider the following system of ODEs:

dF
dt

= cA− γB, (1)

dB
dt

= β
A

A + ν
−ωB− µBB, (2)

dA
dt

= ωB− µA A− σA. (3)

dM
dt

= ρ
A

A + u
− αM− δAM. (4)

The model (1)–(4) is illustrated in the diagram of Figure 1.
It is assumed in the derivation of Equation (3) that the number of adult bees diminish

naturally and it is demonstrated by the term µA A, where µA is the natural mortality rate of
the adult stage. However, the bees can also die because of a stress factor. This is represented
by the term σA, where σ is the death rate due to a stressor (climate change, loss of habitat,
heavy metals or pesticides, poor beekeeper’s management, etc.) acting on bees at the
adult stage.

Equation (4) shows that the production of honey in hives increase at a rate ρ, which is
influenced by the number of adult bees, given by the term A/(A + u), where u is the mean
saturation rate.

One important cause for decreasing of the honey is the feeding of immature bees,
which is demonstrated by the term αM, where α is the honey loss rate.

The term δAM represents the loss of honey production because of the consumption of
adult bees, where δ is the adult bees’ honey consumption rate.

For more details on the specifications of the parameters in the model we refer to Table 2
in [24].

We solve the system of ordinary differential Equations (1)–(4) with initial conditions

F(0) = F0 ≥ 0, B(0) = B0 ≥ 0, A(0) = A0 ≥ 0, M(0) = M0 ≥ 0. (5)

Using Theorem 7.1 in [28] one could easily prove that the subsystem (2)–(4) is positive
(short for “non-negativity preserving”) in the sense that, if

B(0) ≥ 0, A(0) ≥ 0, M(0) ≥ 0,

then
B(t) ≥ 0, A(t) ≥ 0, M(t) ≥ 0, ∀ t ≥ 0.

This property is biologically relevant to the model.
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Figure 1. Schematic representation of model (1)–(4).

3. Parameter Identification

In this section, the parameter inverse problem is defined. Such problems appear very
often in practice. The problem (1)–(5), where the values of the parameters are known, is
well-posed and it is called a direct problem. However, in the real world, the values of some
of the coefficients are not directly measurable but they are very important for professional
honeybee management. Their reconstruction, provided that additional information is given,
is referred to an inverse problem. Inverse problems are ill-posed and harder to solve. We
employ the adjoint equation optimization approach [29,30].

The parameters to be reconstructed are ppp = (p1, p2, p3, p4, p5), p1 = α, p2 = γ, p3 = δ,
p4 = σ, p5 = ω, and

ppp ∈ Sadm =
{

ppp ∈ R5 : 0 < pi < Pi, i = 1, . . . , 5
}

. (6)

The admissible set Sadm is defined by the biology of the honeybee [31]. To find the
parameters ppp, though, some new information must be brought. In many cases it is possible
to measure the model functions at some discrete times. In reality, counting the brood B is a
difficult task, so we adopt measurements of the functions

Fobs(tk) = Xk,
Aobs(tk) = Yk,
Mobs(tk) = Zk

(7)

for k = 1, . . . , K. We assume all functions are measured at some predefined time instances.
The observation times for every function may be different.
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In practice, the observations are obtained from electronic devices equipping the hive.
In a quasi-real setting, first the direct problem is solved and then the observations are
extracted from the solution to the direct problem.

To solve the inverse problem, the least-square function

Φ(ppp) = Φ(α, γ, δ, σ, ω) = ΦF(α, γ, δ, σ, ω) + ΦA(α, γ, δ, σ, ω) + ΦM(α, γ, δ, σ, ω) =

K

∑
k=1

(F(tk; ppp)− Xk)
2 +

K

∑
k=1

(A(tk; ppp)−Yk)
2 +

K

∑
k=1

(M(tk; ppp)− Zk)
2 (8)

is minimized, e.g., by a gradient method [32], where Ψ(tk; ppp), Ψ ∈ {F, A, M} are the
theoretical quantities from the model and Ξk, Ξ ∈ {X, Y, Z} are the observed values
in practice.

Now we state an expression for the gradient of the function Φppp := Φ(ppp).

Theorem 1. The gradient Φ′ppp ≡ (Φ′α, Φ′γ, Φ′δ, Φ′σ, Φ′ω) is given by

Φ′α =
∫ T

0
ϕM(t)M(t)dt, (9)

Φ′γ =
∫ T

0
ϕF(t)B(t)dt, (10)

Φ′δ =
∫ T

0
ϕM(t)A(t)M(t)dt, (11)

Φ′σ =
∫ T

0
ϕA(t)A(t)dt, (12)

Φ′ω = −
∫ T

0
ϕA(t)B(t)dt, (13)

where the triple {ϕM, ϕF, ϕA} is the unique solution of the adjoint system

dϕF
dt

= 2
K

∑
k=1

(F− X)δ(t− tk), (14)

dϕA
dt

= −cϕF + (µA + σ)ϕA +

(
δ ·M− ρ

u
(A + u)2

)
ϕM + 2

K

∑
k=1

(A−Y)δ(t− tk), (15)

dϕM
dt

= (α + δ · A)ϕM + 2
K

∑
k=1

(M− Z)δ(t− tk), (16)

ϕF(T) = ϕA(T) = ϕM(T) = 0. (17)

Proof. We denote δppp = (δα, δγ, δδ, δσ, δω) and δα = εh1, δγ = εh2, δδ = εh3, δσ = εh4,
δω = εh5.

If δF(t; ppp) = F(t; ppp + δppp)− F(t; ppp), δA(t; ppp) = A(t; ppp + δppp)− A(t; ppp) and δM(t; ppp) =
M(t; ppp+ δppp)−M(t; ppp), write the ODE system for F(t; ppp+ δppp), A(t; ppp+ δppp) and M(t; ppp+ δppp)
as (1), (3) and (4) with initial conditions F0, A0 and M0 (5).

Then, calculate the differences of the corresponding equations to obtain an ODE
system for δF, δA and δM with zero initial conditions.

d
dt

δF = cδA− δγB, (18)

d
dt

δA = −(µA + σ)δA− δσA + δwB, (19)
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d
dt

δM = ρ
uδA

(A + u)2 − δ ·MδA− (α + δ · A)δM− δαM− δδAM. (20)

We find the increment of the functional Φ(ppp) :

Φ(ppp + δppp)−Φ(ppp) = 2
K

∑
k=1

δF(tk; ppp)
(

F(tk; ppp)− Xk
)

+ 2
K

∑
k=1

δA(tk; ppp)
(

A(tk; ppp)−Yk
)
+ 2

K

∑
k=1

δM(tk; ppp)
(

M(tk; ppp)− Zk
)

= 2
K

∑
k=1

∫ T

0
δF(tk; ppp)

(
F(tk; ppp)− Xk

)
δ(t− tk)dt

+ 2
K

∑
k=1

∫ T

0
δA(tk; ppp)

(
A(tk; ppp)−Yk

)
δ(t− tk)dt

+ 2
K

∑
k=1

∫ T

0
δM(tk; ppp)

(
M(tk; ppp)− Zk

)
δ(t− tk)dt.

Let us multiply Equations (18)–(20) by smooth functions ϕF(t), ϕA(t) and ϕM(t) s.t.
ϕF(T) = ϕA(T) = ϕM(T) = 0 and integrate both sides of the results from 0 to T:∫ T

0

(
ϕF

d
dt

δF + ϕA
d
dt

δA + ϕM
d
dt

δM
)

dt =

c
∫ T

0
ϕFδAdt− δγ

∫ T

0
ϕFBdt− (µA + σ)

∫ T

0
ϕAδAdt

−δσ
∫ T

0
ϕA Adt + δw

∫ T

0
ϕABdt + ρu

∫ T

0
ϕM

δA
(A + u)2 dt

−δ
∫ T

0
ϕM MδAdt− (α + δ · A)

∫ T

0
ϕMδMdt

−δα
∫ T

0
ϕM Mdt− δδ

∫ T

0
ϕM AMdt.

(21)

On the other hand, integrating by parts and using the facts that ϕF(T) = ϕA(T) =
ϕM(T) = 0 and δF(0) = δA(0) = δM(0) = 0, we obtain∫ T

0
ϕF

d
dt

δFdt +
∫ T

0
ϕA

d
dt

δAdt +
∫ T

0
ϕM

d
dt

δMdt =

−
∫ T

0
δF

dϕF
dt

dt−
∫ T

0
δA

dϕA
dt

dt−
∫ T

0
δM

dϕM
dt

dt.
(22)

Let us place the expressions for dϕF
dt , dϕA

dt and dϕM
dt from (14)–(16) in (22):

∫ T

0

(
ϕF

d
dt

δF + ϕA
d
dt

δA + ϕM
d
dt

δM
)

dt =

c
∫ T

0
ϕFδAdt− (µA + σ)

∫ T

0
ϕAδAdt− δ

∫ T

0
ϕM MδAdt

+ ρu
∫ T

0
ϕM

1
(A + u)2 δAdt− (α + δ · A)

∫ T

0
ϕMδMdt

− 2
∫ T

0
δF

K

∑
k=1

(F− X)δ(t− tk)dt− 2
∫ T

0
δA

K

∑
k=1

(A−Y)δ(t− tk)dt

− 2
∫ T

0
δM

K

∑
k=1

(M− Z)δ(t− tk)dt. (23)
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Equating (21) and (23) yields

2
∫ T

0
δF

K

∑
k=1

(F− X)δ(t− tk)dt + 2
∫ T

0
δA

K

∑
k=1

(A−Y)δ(t− tk)dt

+ 2
∫ T

0
δM

K

∑
k=1

(M− Z)δ(t− tk)dt = δα
∫ T

0
ϕM Mdt

+ δγ
∫ T

0
ϕFBdt + δδ

∫ T

0
ϕM AMdt

+ δσ
∫ T

0
ϕA Adt− δω

∫ T

0
ϕABdt.

Rewriting the last expression give

Φ(α + εh1, γ + εh2, δ + εh3, σ + εh4, w + εh5)−Φ(α, γ, δ, σ, ω) =(
h1

∫ τ

0
ϕM Mdt + h2

∫ τ

0
ϕFBdt + h3

∫ τ

0
ϕM AMdt + h4

∫ τ

0
ϕA Adt− h5

∫ τ

0
ϕABdt

)
ε.

Now, taking h2 = h3 = h4 = h5 = 0, dividing both sides by εh1 and taking the limit
ε→ 0 we find the formula for Φ′α in the theorem.

Analogously, we obtain the formulae for Φ′γ, Φ′δ, Φ′σ and Φ′ω (10)–(13).

Employing the fundamental property of the Dirac-delta function
∫ T

0
f(t)δ(t− tk)dt = f(tk),

tk ∈ (0, T), where f(t) is a continuous function, (14)–(17) could be rewritten in its equiva-
lent form:

dϕF
dt

= 0, t 6= tk, k = 1, . . . , K,
dϕA
dt

= −cϕF + (µA + σ)ϕA +

(
δ ·M− ρ

u
(A + u)2

)
ϕM, t 6= tk, k = 1, . . . , K,

dϕM
dt

= (α + δ · A)ϕM, t 6= tk, k = 1, . . . , K,

[ϕF]t=tk
= 2(F(tk; ppp)− Xk), k = 1, . . . , K,

[ϕA]t=tk
= 2(A(tk; ppp)−Yk), k = 1, . . . , K,

[ϕM]t=tk
= 2(M(tk; ppp)− Zk), k = 1, . . . , K,

ϕF(T) = ϕA(T) = ϕM(T) = 0.

Having obtained the gradient, we employ an iterative procedure as follows, where the
new approximation ppps+1 is defined by

ppps+1 = ppps − rrrΦ′(ppps), (24)

where rrr ∈ R+
5 are gradient multipliers. The iterations start at chosen ppp0 and end if

‖4ppps‖ := ‖ppps+1 − ppps‖ < εppp, where εppp is a tolerance quantity, else increase s := s + 1
and start a new iteration. The final approximation is denoted with p̌pp and it is called a
nonlinear estimator.

4. Numerical Experiments

This section is devoted to presenting numerical tests which demonstrate the algorithm
application. Firstly, the numerical algorithm is summarized. Then, the direct problem is
solved and its solution is used to obtain measurements for the inverse problem.

4.1. Numerical Procedure

All the programming code is implemented in the MATLABr environment. For solving
the ODE systems (1)–(5) and (14)–(17), a Runge–Kutta-type method is used. The algorithm
for solving the inverse problem could be described as follows:
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1. Choose initial approximation ppp0.
2. Set s := 0.
3. Until ‖4ppps‖ < εppp do

3.1. Solve system (1)–(5) with ppps to obtain F, B, A and M.
3.2. Solve system (14)–(17) to obtain ϕF, ϕA and ϕM.
3.3. Compute the gradient Φ′ppp (9)–(13).
3.4. Calculate ppps+1 by (24) and set s := s + 1.

4. The estimator is set to p̌pp := ppps.

4.2. Direct Problem

Let us first solve the direct problem (1)–(5) with realistic data given in [24,27]. The
adult food collection rate is assumed to be c = 0.04 g/bee/day. The larval consumption
rate is γ = 0.12 g/bee/day. The brood reproduction rate is β = 0.92 bee/day. The adult
maturation rate is ω = 0.95 day−1. The brood natural mortality rate is µB = 0.11 day−1.
The adult bee natural mortality rate is µA = 0.29 day−1. The adult bee stressor mortality
rate is σ = 0.1 day−1. The honey production rate is ρ = 0.23 bees/day. The rate of natural
honey loss is α = 0.018 g/day. The honey consumption rate is δ = 0.571 g/bee/day. The
half saturation rates are ν = u = 1 thousand bees.

We simulate the hive development for a typical foraging season, lasting T = 100 days.
At the beginning of the season, there are F0 = 10 kilograms of food stores, B0 = 2000 larvae,
A0 = 10,000 adult bees and M0 = 1 kilogram honey. The outcome is plotted in Figure 2.
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Figure 2. Solution to the direct problem (1)–(5).

It could be observed that the hive approaches its equilibrium state relatively fast. It is
characterized by a small amount of honey as well as a small number of larvae and adult
bees. This is approved by the phase space diagram for a fixed F0 (Figure 3), which shows
no dependence on the initial conditions. Only in case of B0 = A0 = 0, then the extinction
equilibrium is approached.
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Figure 3. Phase space diagram: non-trivial equilibrium.

Of course, it is not always true. If there is a hazard present in the environment, i.e.,
the stress death rate is as high as σ = 0.5, then the extinction equilibrium is the only
attractor, see Figure 4. This unarguably means that the hive would eventually collapse
unless something is drastically changed.

Figure 4. Phase space diagram: extinction equilibrium.

4.3. Inverse Problem

Let us solve the inverse problem of identifying the parameters (6) ppp = (α, γ, δ, σ, ω) =
(0.018, 0.12, 0.571, 0.1, 0.95). The values of the other parameters and initial conditions
remain the same as in the direct problem setting.
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We define K = 19 equidistantly distributed observations of type (7), i.e., one obser-
vation in every 5 days. The admissible set is set to Sadm ≡ (0, 1)5. The values rrr are tuned
empirically and they are given in Table 1.

Table 1. Simulation with εppp = 8× 10−4.

Parameter pi pi
0 p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi

ri

α 0.018 0.02 0.0274 0.0094 0.5234 4× 10−23

γ 0.12 0.10 0.0991 0.0209 0.1746 7× 10−5

δ 0.571 0.50 0.3633 0.2077 0.3638 5× 10−23

σ 0.1 0.20 0.1886 0.0886 0.8862 1× 10−25

ω 0.95 1.00 0.8992 0.0508 0.0535 1× 10−23

The respective values (8) are ΦF(p̌pp) = 0.1815, ΦA(p̌pp) = 3.7902 and ΦM(p̌pp) = 0.3807.
The parameters are recovered with moderate precision, but the honeybee dynamics are
reconstructed in an accurate manner. The root mean squared errors are small as RMSEF =
0.0977, RMSEA = 0.4466 and RMSEM = 0.1416.

Finally, we perform a test with perturbed measurements to explore the impact of
the observation error on the parameter identification. Every electronic device has its
instrumental error, so testing with noisy observation is meaningful. We add Gaussian noise
to the observations (7), in particular the error in a single observation is not greater than 1%
with 95% confidence. The results, following the same steps, are given in Table 2.

Table 2. Simulation with perturbed observations and εppp = 8× 10−4.

Parameter pi pi
0 p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi

ri

α 0.018 0.02 0.0269 0.0089 0.4942 4× 10−23

γ 0.12 0.10 0.0989 0.0211 0.1758 7× 10−5

δ 0.571 0.50 0.3731 0.1979 0.3465 5× 10−23

σ 0.1 0.20 0.1869 0.0869 0.8689 1× 10−25

ω 0.95 1.00 0.8927 0.0573 0.0603 1× 10−23

The outcomes are similar as the functional values are ΦF(p̌pp) = 0.2005, ΦA(p̌pp) = 3.6929
and ΦM(p̌pp) = 0.3403. The root mean squared errors are again small as RMSEF = 0.1027,
RMSEA = 0.4409 and RMSEM = 0.1338. All these demonstrate the robustness and the
applicability of the suggested approach with realistic data.

5. Conclusions

Honeybees are one of the most important species on Earth. Their steady colony
number decline is a major global problem. To fight this issue, professional honeybee
management must take well-designed precautionary measures. The obtained results in
this study help beekeepers to foresee the forward colony dynamics. It is crucial to have
the ability to simulate the future development and it is here where mathematical modeling
comes to the rescue. Then, adequate measures could be undertaken in order to prevent or
to revert a colony collapse.

The novelty of the paper is twofold. To begin with, we proposed a new mathematical
approach for modeling of honeybee colonies. We analyzed populations of immature
and adult bees as well as their honey production. In the context of honeybee colony
dynamics, we model the interaction between the different compartments, focusing on
parameter recovery. Secondly, the defined ill-posed problem is solved by means of the
adjoint equation optimization method. The reconstructed parameters are unobservable in
reality but vital for the colony population dynamics. The computational examples with
realistic data demonstrate how to apply the approach in practice.
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There are many ways to further develop this research. The considered model could be
extended to account for mites, viruses and other hazards. Temperature and seasonal effects
also worth considering. What is more, activating the hereditary property via fractional-
order derivatives almost always results in a better fit. A broader qualitative analysis to
better understand the complex phenomena, processing in the hive, is on the agenda as well.

Author Contributions: Conceptualization, A.Z.A. and L.G.V.; methodology, S.G.G. and L.G.V.;
software, S.G.G.; validation, S.G.G.; formal analysis, L.G.V.; investigation, S.G.G. and L.G.V.; resources,
A.Z.A. and S.G.G.; data curation, A.Z.A. and S.G.G.; writing—original draft preparation, S.G.G.;
writing—review and editing, S.G.G. and L.G.V.; visualization, S.G.G.; supervision, L.G.V.; project
administration, A.Z.A.; funding acquisition, A.Z.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Bulgarian National Science Fund under Project KP-06-PN
46-7 “Design and research of fundamental technologies and methods for precision apiculture”.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Woodard, S.; Fischman, B.; Venkat, A.; Hudson, M.; Varala, K.; Cameron, S.; Clark, A.; Robinson, G. Genes involved in convergent

evolution of eusociality in bees. Proc. Natl. Acad. Sci. USA 2011, 108, 7472–7477. [CrossRef] [PubMed]
2. Matilla, H.; Seeley, T. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 2007, 317, 362–364.

[CrossRef] [PubMed]
3. Farouk, K.; Palmera, K.; Sepúlveda, P. Abejas. In InfoZoa Boletín de Zoología; Universidad del Magdalena: Santa Marta, Colombia,

2014; Volume 6.
4. Bulgarian Honey. 2023. Available online: https://www.bulgarianhoney.com/quality.htm (accessed on 7 February 2023).
5. Khoury, D.S.; Myerscough, M.R.; Barron, A.B. A quantitative model of honey bee colony population dynamics. PLoS ONE 2011,

6, e18491. [CrossRef]
6. Khoury, D.S.; Barron, A.B.; Meyerscough, M.R. Modelling food and population dynamics honey bee colonies. PLoS ONE 2013,

8, e0059084. [CrossRef] [PubMed]
7. Meyerscough, M.R.; Khoury, D.S.; Ronzani, S.; Barron, A.B. Why do hives die? Using mathematics to solve the problem of

honey bee colony collapse. In The Role and Importance of Mathematics in Innovation: Proceedings of the Forum “Math-for-Industry”;
Anderssen, B., Ed.; Springer: Singapore, 2017; Volume 25, pp. 35–50.

8. Russel, S.; Barron, A.B.; Harris, D. Dynamics modelling of honeybee (Apis mellifera) colony growth and failure. Ecol. Model. 2013,
265, 138–169.

9. Booton, R.D.; Iwasa, Y.; Marshall, J.A.R.; Childs, D.Z. Stress-mediated Allee effects can cause the sudden collapse of honey bee
colonies. J. Theor. Biol. 2017, 420, 213–219. [CrossRef]

10. Finley, J.; Camazine, S.; Frazier, M. The epidemic of honey bee colony losses during the 1995–1996 season. Am. Bee J. 1996, 136,
805–808.

11. Amdam, G.V.; Omholt, S.W. The hive bee to forager transition in honeybee colonies: The double repressor hypothesis. J. Theor.
Biol. 2003, 223, 451–464. [CrossRef]

12. van der Zee, R.; Pisa, L.; Andronov, S.; Brodschneider, R.; Charriere, J.D.; Chlebo, R.; Coffey, M.F.; Cralisheim, K.; Dahle, B.;
Gajda, A.; et al. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey for the winters of 2008–2009 and
2009–2010. J. Apic. Res. 2012, 51, 100–114. [CrossRef]

13. Bailey, L. The ‘Isle of Wight Disease’: The Origin and Significance of the Myth. Bee World 1964, 45, 32–37. [CrossRef]
14. Kulincevic, J.M.; Rothenbuhler, W.C.; Rinderer, T.E. Disappearing disease. Part 1—Effects of certain protein sources given to

honey bee colonies in Florida. Am. Bee J. 1982, 122, 189–191.
15. Dornberger, L.; Mitchell, C.; Hull, B.; Ventura, W.; Shopp, H.; Kribs-Zaleta, C.; Kojouharov, H.; Grover, J. Death of the Bees: A

Mathematical Model of Colony Collapse Disorder; Technical Report 2012-12, Mathematics Preprint Series; University of Texas at
Arlington Mathematics Department: Arlington, TX, USA, 2012.

16. Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 2020,
7, 166. [CrossRef] [PubMed]

17. Bagheri, S.; Mirzaie, M. A mathematical model of honey bee colony dynamics to predict the effect of pollen on colony failure.
PLoS ONE 2019, 14, e0225632. [CrossRef] [PubMed]

18. Betti, M.I.; Wahl, L.M.; Zamir, M. Reproduction number and asymptotic stability for the dynamics of a honey bee colony with
continuous age structure. Bull. Math. Biol. 2017, 79, 1586–1611. [CrossRef]

19. Switanek, M.; Crailsheim, K.; Truhetz, H.; Brodschneider, R. Modelling seasonal effects of temperature and precipitation on honey
bee winter mortality in a temperate climate. Sci. Total Environ. 2017, 579, 1581–1587. [CrossRef]

http://doi.org/10.1073/pnas.1103457108
http://www.ncbi.nlm.nih.gov/pubmed/21482769
http://dx.doi.org/10.1126/science.1143046
http://www.ncbi.nlm.nih.gov/pubmed/17641199
https://www.bulgarianhoney.com/quality.htm
http://dx.doi.org/10.1371/journal.pone.0018491
http://dx.doi.org/10.1371/journal.pone.0059084
http://www.ncbi.nlm.nih.gov/pubmed/23667418
http://dx.doi.org/10.1016/j.jtbi.2017.03.009
http://dx.doi.org/10.1016/S0022-5193(03)00121-8
http://dx.doi.org/10.3896/IBRA.1.51.1.12
http://dx.doi.org/10.1080/0005772X.1964.11097032
http://dx.doi.org/10.3390/vetsci7040166
http://www.ncbi.nlm.nih.gov/pubmed/33143134
http://dx.doi.org/10.1371/journal.pone.0225632
http://www.ncbi.nlm.nih.gov/pubmed/31756236
http://dx.doi.org/10.1007/s11538-017-0300-7
http://dx.doi.org/10.1016/j.scitotenv.2016.11.178


Axioms 2023, 12, 214 12 of 12

20. Ratti, V.; Kevan, P.G.; Eberl, H.J. A mathematical model of forager loss in honeybee colonies infested with Varroa destructor and
the acute bee paralysis virus. Bull. Math. Biol. 2017, 79, 1218–1253. [CrossRef]

21. Becher, M.A.; Osborne, J.L.; Thorbek, P.; Kennedy, P.J.; Grimm, V. Review: Towards a systems approach for understanding
honeybee decline: A stocktaking and synthesis of existing models. J. Appl. Ecol. 2013, 50, 868–880. [CrossRef]

22. Torres, D.J.; Ricoy, V.M.; Roybal, S. Modelling honey bee populations. PLoS ONE 2015, 10, e0130966. [CrossRef]
23. Yıldız, T.A. A fractional dynamical model for honeybee colony population. Int. J. Biomath. 2018, 11, 1850063. [CrossRef]
24. Romero-Leiton, J.P.; Gutierrez, A.; Benavides, I.F.; Molina, O.E.; Pulgarín, A. An approach to the modeling of honey bee colonies.

Web Ecol. 2013, 22, 7–19. [CrossRef]
25. Atanasov, A.Z.; Georgiev, S.G.; Vulkov, L.G. Reconstruction analysis of honeybee colony collapse disorder modeling. Optim. Eng.

2021, 22, 2481–2503. [CrossRef]
26. Atanasov, A.Z.; Georgiev, S.G.; Vulkov, L.G. Parameter identification of Colony Collapse Disorder in honeybees as a contagion.

In Modelling and Development of Intelligent Systems; Simian, D., Stoica, L.F., Eds.; Springer: Dordrecht, The Netherlands, 2021;
Volume 1341, pp. 363–377.

27. Hong, W.; Chen, B.; Lu, Y.; Lu, C.; Liu, S. Using system equalization principle to study the effects of multiple factors to the
development of bee colony. Ecol. Model. 2022, 470, 110002. [CrossRef]

28. Hundsdorfer, W.; Vermer, J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer: Berlin/Heidelberg,
Germany, 2003.

29. Marchuk, G.I. Adjoint Equations and Analysis of Complex Systems; Kluwer: Dordrecht, The Netherlands, 1995.
30. Marchuk, G.I.; Agoshkov, V.I.; Shutyaev, V.P. Adjoint Equations and Perturbation Algorithms in Nonlinear Problems; CRC Press:

Boca Raton, FL, USA, 1996.
31. Winston, W.L. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1991.
32. Ma, C.; Jiang, L. Some research on Levenberg–Marquardt method for the nonlinear equations. Appl. Math. Comp. 2007, 184,

1032–1040. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11538-017-0281-6
http://dx.doi.org/10.1111/1365-2664.12112
http://dx.doi.org/10.1371/journal.pone.0130966
http://dx.doi.org/10.1142/S1793524518500638
http://dx.doi.org/10.5194/we-22-7-2022
http://dx.doi.org/10.1007/s11081-021-09678-0
http://dx.doi.org/10.1016/j.ecolmodel.2022.110002
http://dx.doi.org/10.1016/j.amc.2006.07.004

	Introduction
	Mathematical Model
	Parameter Identification
	Numerical Experiments
	Numerical Procedure
	Direct Problem
	Inverse Problem

	Conclusions
	References

