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Abstract: In this paper, the stability of a class of Liu–Wang’s optimal eighth-order single-parameter
iterative methods for solving simple roots of nonlinear equations was studied by applying them
to arbitrary quadratic polynomials. Under the Riemann sphere and scaling theorem, the complex
dynamic behavior of the iterative method was analyzed by fractals. We discuss the stability of all
fixed points and the parameter spaces starting from the critical points with the Mathematica software.
The dynamical planes of the elements with good and bad dynamical behavior are given, and the
optimal parameter element with stable behavior was obtained. Finally, a numerical experiment and
practical application were carried out to prove the conclusion.

Keywords: nonlinear problems; iterative methods; complex dynamics behavior; stability; dynamical
plane

MSC: 37F10; 65H05; 65B99

1. Introduction

Nonlinear problems comprise an extraordinarily active field in modern mathematics.
A huge number of nonlinear problems, such as nonlinear finite element problems, eco-
nomic and nonlinear programming problems, and plentiful central problems in physics,
chemistry, and fluid mechanics, are attributed to solving some specific nonlinear equations
in many cases. In nonlinear mechanics, there are myriad types of nonlinearity, such as
material nonlinearity, geometric nonlinearity, contact nonlinearity, and so on. Solving
nonlinear equations is also a universal and crucial problem in scientific and engineering
calculation [1,2].

However, except for some rather special cases, the direct method has difficulty solving
nonlinear equations. For practical problems, in many cases, it is not required to gain
the precise answer to the equation; only an approximate value is needed. Of course, the
error between the approximate value and the exact solution should be controlled within
the allowable range of the actual problem. The approximate solution can be acquired by
numerical methods; hence, the study of the numerical solution of nonlinear equations has
pivotal academic significance and realistic application worth. There are several numerical
algorithms for nonlinear equations, and more numerical solutions are used, such as the
multi-point iterative method [3,4], semi-explicit method [5,6], splitting method [7,8], and
analytical numerical method [9].

Among these techniques, the essence of the iterative method is a method of successive
approximation. In an effort to resolve the approximate solutions of nonlinear equations
as accurately as possible, a large number of researchers have come up with distinctive
iterative methods [10–14]. Generally speaking, in these iterative methods, the most-typical
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is Newton’s method. Newton’s iterative scheme is the earliest and most-classical numerical
method for solving nonlinear equations [15]. Its iterative format is

yn = xn −
f (xn)

f ′(xn)
.

On the basis of Newton’s iterative method, numerous well-known lower-order iter-
ation methods have been proposed [16,17]. In particular, the influential iterative scheme
devised by Ostrowski, which is fourth-order, is

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (yn)

f ′(xn)

f (xn)

f (xn)− 2 f (yn)
.

(1)

Although there are many iterative methods, in practical applications, we will also
selectively find iterative methods with higher information efficiency, a more stable conver-
gence process, and higher convergence accuracy. Informational efficiency is usually defined
according to the convergence order and computational cost of the iterative method. Based
on the concept of the optimal order proposed by Kung [18], we know that the iterative
method with the optimal order is the optimal iterative method, and its computational effi-
ciency is the optimal efficiency. For the iterative method without memory, the information
efficiency of the multi-point iterative method with the optimal order is higher than that
of the non-optimal multi-point iterative method. For the study of iterative stability, its
dynamical behavior can be explored. The convergence and stability of the multi-point
iterative method are analyzed by drawing fractal diagrams, which are based on fractal
theory [19,20].

Based on (1), Liu and Wang proposed an optimal eighth-order scheme, LWM, defined
as [21] 

yn = xn −
f (xn)

f ′(xn)
,

zn = yn −
f (xn)

f (xn)− 2 f (yn)

f (yn)

f ′(xn)
,

xn+1 = zn −
f (zn)

f ′(xn)
[(

f (xn)− f (yn)

f (xn)− 2 f (yn)
)2 +

f (zn)

f (yn)
+ G(µn)],

(2)

where µn =
f (zn)

f (xn)
and G(t) represents a real-valued function and satisfies G(0) = 0,

G′(0) = 4.
In this paper, we chose G(t) = λt2 + 4t, λ ∈ C, then the corresponding iterative format

is LWM(λ)

yn = xn −
f (xn)

f ′(xn)
,

zn = yn −
f (xn)

f (xn)− 2 f (yn)

f (yn)

f ′(xn)
,

xn+1 = zn −
f (zn)

f ′(xn)
[(

f (xn)− f (yn)

f (xn)− 2 f (yn)
)2 +

f (zn)

f (yn)
+ λ(

f (zn)

f (xn)
)2 + 4(

f (zn)

f (xn)
)],

(3)

where λ ∈ C.
This paper discusses the stability of the iterative method (3) under fractal study.

Considering the complexity of the calculation process, we used the mathematical symbol
calculation Mathematica software to achieve the calculation. Firstly, the rational operator
corresponding to (3) was obtained under the Möbius conjugate map on the Riemann sphere.
Secondly, on the basis of the rational operator, we studied its fixed points and critical points.
Finally, the relevant parameter spaces and dynamical planes starting from the critical points
were analyzed, and the most-stable member in (3) was obtained, which will be introduced
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in detail in Section 2. In Section 3, we perform numerical experiments to verify the results
in the previous section. In the last section, some conclusions are given.

2. Stability of Iterative Method under Fractal Study

Using fractals to study the stability of iterative method is to study the complex dy-
namic behavior of the iterative method. The complex dynamic behavior refers to the
related properties of the rational operator related to the iterative method under the Möbius
conjugate map on the Riemann sphere. From a numerical point of view, the study of the
dynamic properties of rational operators allows us to draw important conclusions about the
stability and reliability of fixed points and critical points. From the perspective of parameter
selection, by researching the parameter spaces of the method constructed from the critical
points, the performance of different members can be understood, which is conducive to the
selection of parameters. The dynamic planes show the stability of these special methods,
and we obtain the elements of the most-stable parameter members.

Next, the complex dynamics of the LWM(λ) family described in (3) were explored. To
start with, rational operators linked to LWM(λ) were constructed on nonlinear polynomials.
On this basis, the stability of the corresponding fixed point and critical point was studied.
Furthermore, the parameter spaces starting from the free critical points were constructed.
Finally, the relevant dynamical planes were analyzed, and the influence of the parameter
selection on stability is discussed.

2.1. Rational Operator

According to the consequences of Riemann sphere dynamics [22,23] and the scaling
theorem [24], we can construct rational operators on any nonlinear function. Given that the
quadratic polynomial stability criterion can be extended to other nonlinear functions, we
constructed a rational operator on a quadratic polynomial.

Proposition 1. Let g(x) = (x− a)(x− b) be any quadratic polynomial, where a, b ∈ R are roots.
Consequently, the rational operator Rλ(x) corresponding to the LWM(λ) family applied to g(x)
given in (3) is

Rλ(x) =
x8 · γλ(x)

θλ(x)
, (4)

where γλ(x) = 13+ 46x− (−100+ λ)x2 + 170x3 + 223x4 + 240x5 + 216x6 + 160x7 + 99x8 +
50x9 + 20x10 + 6x11 + x12 and θλ(x) = 1 + 6x + 20x2 + 50x3 + 99x4 + 160x5 + 216x6 +
240x7 + 223x8 + 170x9 − (−100 + λ)x10 + 46x11 + 13x12, ∀λ ∈ C.

Proof. Let g(x) = (x− a)(x− b) be any quadratic polynomial, where a, b ∈ R are roots.
By applying the iterative scheme given in (3) on g(x), we gain a rational function Fg,λ(x),
which is only related to a, b, λ. Subsequently, we utilized the Möbius transformation in
Fg,λ(x) with

r(ε) =
ε− a
ε− b

,

which satisfies r(a) = 0, r(b) = ∞, and r(∞) = 1, and we obtain

Rλ(x) = (r ◦ Fg,λ ◦ r−1)(x) =
x8 · γλ(x)

θλ(x)
, (5)

where γλ(x) = 13+ 46x− (−100+λ)x2 + 170x3 + 223x4 + 240x5 + 216x6 + 160x7 + 99x8 +
50x9 + 20x10 + 6x11 + x12 and θλ(x) = 1 + 6x + 20x2 + 50x3 + 99x4 + 160x5 + 216x6 +
240x7 + 223x8 + 170x9− (−100+λ)x10 + 46x11 + 13x12, which only depends on λ ∈ C.

It can be seen from Proposition 1 that the analysis of the rational operator (4) is
equivalent to the analysis of the iterative scheme (3). After that, we study the fixed point
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and its critical point of (4) by using Mathematica, a mathematical symbolic computing
software, in Section 2.2.

2.2. Fixed Points and Critical Points

Here, we analyzed the fixed points and stability of Rλ(x). Firstly, it can be obtained
from (4):

Rλ(x)− x =
x(x− 1) · ρλ(x)

θλ(x)
, (6)

where ρλ(x) = 1 + 7x + 27x2 + 77x3 + 176x4 + 336x5 + 552x6 + 779x7 + 956x8 + (1026 +
λ)x9 + 956x10 + 779x11 + 552x12 + 336x13 + 176x14 + 77x15 + 27x16 + 7x17 + x18.

Proposition 2. For ρλ(x) and θλ(x), there are the following conclusions:

• When λ = 0, ρλ(x) and θλ(x) have common factors (1 + x)2(1 + x2)2.
• When λ = −6848, ρλ(x) has a factor (x− 1)2.
• When λ = 1344, θλ(x) has a factor (x− 1).

Proof. By solving the equations ρλ(x) = 0 and θλ(x) = 0 simultaneously, we have the
following:

When λ = 0, ρλ(x) and θλ(x) have common factors (1 + x)2(1 + x2)2. At this point,
ρλ(x) = (1 + x)2(1 + x2)2(1 + 5x + 14x2 + 30x3 + 51x4 + 71x5 + 84x6 + 71x7 + 51x8 +
30x9 + 14x10 + 5x11 + x12) and θλ(x) = (1 + x)2(1 + x2)2(1 + 4x + 9x2 + 16x3 + 21x4 +
20x5 + 13x6).

Bring x = 1 into ρλ(x) and θλ(x), respectively. We obtain: ρλ(1) = 6848 + λ and
θλ(1) = 1344− λ. As a consequence, ρλ(x) has a factor (x − 1)2 when λ = −6848 and
θλ(x) has a factor (x− 1) when λ = 1344.

Proposition 3. The fixed points of Rλ(x) are x = 0, x = ∞ and the following strange fixed points:

• ex1 = 1 (when λ 6= 1344) and exi(λ), which correspond to the 18 roots of polynomial 1 +

7x + 27x2 + 77x3 + 176x4 + 336x5 + 552x6 + 779x7 + 956x8 + (1026 + λ)x9 + 956x10 +
779x11 + 552x12 + 336x13 + 176x14 + 77x15 + 27x16 + 7x17 + x18, where i = 2, 3, · · · , 19.

Choose different λ-values; the number of fixed points is also different:

• Rλ(x) has 21 fixed points when λ ∈ C and λ /∈ {0, 1344}.
• Rλ(x) has 20 fixed points excluding ex1 = 1 when λ = 1344.
• Rλ(x) has 15 fixed points when λ = 0.
• Rλ(x) has 21 fixed points, and ex1 = 1 is a triple root when λ = −6848.

• The strange fixed points of Rλ(x) satisfy exm =
1

exn
for m 6= n; each pair is conjugate to each

other, being ex2 and ex3, ex4 and ex5, ex6 and ex7, ex8 and ex9, ex10 and ex11, ex12 and ex13,
ex14 and ex15, ex16 and ex17, and ex18 and ex19.

Proof. From (6), we can obtain

Rλ(x)− x =
x(x− 1) · ρλ(x)

θλ(x)
= 0. (7)

When λ = 1344, θλ(x) = −(x− 1)(1 + 7x + 27x2 + 77x3 + 176x4 + 336x5 + 552x6 +
792x7 + 1015x8 + 1185x9 + 59x10 + 13x11), and

R0(x)− x =
x(x− 1)(1 + 5x + 14x2 + 30x3 + 51x4 + 71x5 + 84x6 + 71x7 + 51x8 + 30x9 + 14x10 + 5x11 + x12)

1 + 4x + 9x2 + 16x3 + 21x4 + 20x5 + 13x6 , (8)

R1344(x)− x = − x · ρ1(x)
θ1(x)

, (9)
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where ρ1(x) = 1 + 7x + 27x2 + 77x3 + 176x4 + 336x5 + 552x6 + 779x7 + 956x8 + 2370x9 +
956x10 + 779x11 + 552x12 + 336x13 + 176x14 + 77x15 + 27x16 + 7x17 + x18 and θ1(x) = 1 +
7x + 27x2 + 77x3 + 176x4 + 336x5 + 552x6 + 792x7 + 1015x8 + 1185x9 − 59x10 − 13x11.

R−6848(x)− x =
x(x− 1)3 · ρ2(x)

θ2(x)
, (10)

where ρ2(x) = 1 + 9x + 44x2 + 156x3 + 444x4 + 1068x5 + 2244x6 + 4199x7 + 7110x8 +
4199x9 + 2244x10 + 1068x11 + 444x12 + 156x13 + 44x14 + 9x15 + x16 and θ2(x) = 1 + 6x +
20x2 + 50x3 + 99x4 + 160x5 + 216x6 + 240x7 + 223x8 + 170x9 + 6948x10 + 46x11 + 13x12.

According to the above proposition, we determined that there are a maximum of
21 and a minimum of 15 fixed points, where 0, ∞ correspond to a, b and ex1 = 1 (when
λ 6= 1344) corresponds to the divergence of the original method.

Proposition 4. For the stability of ex1 = 1, ∀λ ∈ C\1344, verify:

(1) ex1 is a repulsive point when | − 8192
−1344 + λ

| > 1, that is |λ− 1344| > 8192;

(2) ex1 is an attractive point when | − 8192
−1344 + λ

| < 1, that is |λ− 1344| < 8192;

(3) ex1 is a parabolic point when | − 8192
−1344 + λ

| = 1, that is |λ− 1344| = 8192;

(4) ex1 is never a superattracting point because | − 8192
−1344 + λ

| 6= 0.

Proof. By (4), we easily obtain

R′λ(x) =
2x7(1 + x)6(1 + x2)5 ·ωλ(x)

θλ(x)2 , (11)

where ωλ(x) = 52 + 168x + (336− 5λ)x2 + 3(168 + λ)x3 + 2(284 + λ)x4 + 3(168 + λ)x5 +
(336− 5λ)x6 + 168x7 + 52x8.

Substituting ex1 = 1 into (11), we acquire

|R′λ(1)| = | −
8192

−1344 + λ
|.

It is easy to obtain

| − 8192
−1344 + λ

| = 1 ⇐⇒ | − 8192| = | − 1344 + λ|. Let λ = z + iy, λ ∈ C, then the

following formula holds:
(z− 1344)2 + y2 = 81922.

Therefore,
|R′λ(1)| > 1⇔ |λ− 1344| > 8192.

Obviously, no matter what the λ-value is, 0 and ∞ are superattracting fixed points,
while the stability of other fixed points varies with λ ∈ C. Table 1 summarizes the
stability results of strange fixed points exi corresponding to the special λ-values related to
Proposition 2.
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Table 1. Stability of strange fixed points exi for special λ-values.

λ exi No.of exi

|R′λ(exi)| : t 1

0 −1.62291± 0.455126i −0.611529± 1.28544i 0.234438± 1.48434i 6
6.31492 : r 4.91253 : r 7.6094 : r

1344 −2.57424 −0.085032 0.123846 11
4.9157 : r 1.17175× 10−6 : a 6.42351× 10−6 : a
−2.16337± 1.21147i −1.09844± 2.04782i 0.10715± 2.1662i
4.67559 : r 4.68214 : r 5.53101:r
0.922374± 1.48996i
5.75625 : r

−6848 −2.81972± 0.753267i −1.9133± 1.99919i −0.512724± 2.5536i 12
4.07847 : r 3.98574 : r 4.3251 : r
−0.00328839± 0.0431351i 0.793402± 2.17265i 1.45563± 0.903056i
7.52394× 10−9 : a 4.60277 : r 3.6229 : r

1 |R′λ(exi)| : t implies that exi is attractive, parabolic, and repulsive, if t = a(|R′| < 1), t = p(|R′| = 1), and
t = r(|R′| > 1), respectively.

Figure 1 shows the stability surface of ex1 = 1. In Figure 1b, the gray surface represents
the repulsion area, while the gold surface represents the attraction area. The attraction
area is significantly smaller than the exclusion area. For the λ-values inside the disk, ex1
is a repulsion, while for the λ-values outside the disk, ex1 is an attractor. We are always
interested in values within the disk.

According to Proposition 2, the stability of each pair of conjugate strange fixed points’
representations is the same, so the study of their stability can be reduced from eighteen
strange fixed points to nine pairs of strange fixed points. Figure 2 shows the stability
surfaces of these nine pairs of strange fixed points. The value of λ determines whether
these fixed points attract or not. It can be seen from Figure 2 that there are few points that
converge to the strange fixed points.

(a) ex1 = 1 (b) Detail of (a)

Figure 1. Stability surface of ex1 = 1.
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(a) ex2 and ex3 (b) ex4 and ex5 (c) ex6 and ex7

(d) ex8 and ex9 (e) ex10 and ex11 (f) ex12 and ex13

(g) ex14 and ex15 (h) ex16 and ex17 (i) ex18 and ex19

Figure 2. Stability surfaces of other strange fixed points.

According to (11), the critical points of Rλ(x) can be obtained.

Proposition 5. According to the definition of the critical points, the critical points of Rλ(x) are
the roots of R′λ(x) = 0, that is to say the process of finding the critical points of Rλ(x) is to solve
R′λ(x) = 0. That is, x = 0, x = ∞, and the following free critical points:

• cr1 = −1;
• cr2 = i;
• cr3 = −i;

• cr4 =
1
2
(−21

26
+ M(λ) +

1
2

√
P(λ)− N(λ)−

√
−4 + (

21
26
−M(λ)− 1

2

√
P(λ)− N(λ))2);

• cr5 =
1
2
(−21

26
+ M(λ) +

1
2

√
P(λ)− N(λ) +

√
−4 + (

21
26
−M(λ)− 1

2

√
P(λ)− N(λ))2);

• cr6 =
1
2
(−21

26
+ M(λ)− 1

2

√
P(λ)− N(λ)−

√
−4 + (

21
26
−M(λ) +

1
2

√
P(λ)− N(λ))2);

• cr7 =
1
2
(−21

26
+ M(λ)− 1

2

√
P(λ)− N(λ) +

√
−4 + (

21
26
−M(λ) +

1
2

√
P(λ)− N(λ))2);

• cr8 =
1
2
(−21

26
−M(λ) +

1
2

√
P(λ) + N(λ)−

√
−4 + (

21
26

+ M(λ)− 1
2

√
P(λ) + N(λ))2);

• cr9 =
1
2
(−21

26
−M(λ) +

1
2

√
P(λ) + N(λ) +

√
−4 + (

21
26

+ M(λ)− 1
2

√
P(λ) + N(λ))2);

• cr10 =
1
2
(−21

26
−M(λ)− 1

2

√
P(λ) + N(λ)−

√
−4 + (

21
26

+ M(λ) +
1
2

√
P(λ) + N(λ))2);
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• cr11 =
1
2
(−21

26
−M(λ)− 1

2

√
P(λ) + N(λ) +

√
−4 + (

21
26

+ M(λ) +
1
2

√
P(λ) + N(λ))2);

where:

M(λ) =
1
2

√
a(λ) + b(λ) + c(λ),

P(λ) =
882
169

+
1

39
(−128 + 5λ)− b(λ)− c(λ)− N(λ);

N(λ) =
g(λ)
h(λ)

;

a(λ) =
441
169

+
1

156
(128− 5λ) +

1
52

(−128 + 5λ);

b(λ) =
d(λ)

156(e(λ) + 18
√

f (λ))1/3
;

c(λ) =
1

156
(e(λ) + 18

√
f (λ))1/3;

d(λ) = 16384 + 4696λ + 25λ2;
e(λ) = 2097152 + 1160832λ + 139578λ2 − 125λ3;
f (λ) = 3355443200λ + 2558365696λ2 + 643302144λ3 + 54034441λ4 − 134875λ5;

g(λ) =
74088
2197

− 42
169

(128− 5λ) +
6λ

13
;

h(λ) = 4

√
441
169

+
1

156
(128− 5λ) +

1
52

(−128 + 5λ) + b(λ) + c(λ).

Choose different λ-values; the number of critical points is also different:

• Rλ(x) has 13 critical points, when λ /∈ {0, 1344} and λ ∈ C;
• Rλ(x) has 7 critical points, when λ = 0;
• Rλ(x) has 11 critical points, when λ = 1344;

• The free critical points of Rλ(x) satisfy crm =
1

crn
for m 6= n; each pair is conjugate to each

other, being cr2 and cr3, cr4 and cr5, cr6 and cr7, cr8 and cr9, and cr10 and cr11.

Proof. From (11), let R′λ(x) = 0:

2x7(1 + x)6(1 + x2)5 ·ωλ(x)
θλ(x)2 = 0, (12)

where ωλ(x) = 52 + 168x + (336− 5λ)x2 + 3(168 + λ)x3 + 2(284 + λ)x4 + 3(168 + λ)x5 +
(336− 5λ)x6 + 168x7 + 52x8.

From (12), the free critical points of Rλ(x) are −1,±i and the eight roots of polynomial
ωλ(x) = 0. Next is the process of solving the expression of the roots of the polynomial
ωλ(x) = 0.

First, we can express ωλ(x) as the product of four quadratic polynomials (1 + dix +
x2), 1 ≤ i ≤ 4. We have the following formulas:

ωλ(x) = 52
4

∏
i=1

(1 + dix + x2). (13)

Next, by the corresponding coefficients are equal, we can obtain
52(d1 + d2 + d3 + d4) = 168,

52(4 + d1d2 + d1d3 + d2d3 + d1d4 + d2d4 + d3d4) = 336− 5λ,
52(3d1 + 3d2 + 3d3 + 3d4 + d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4) = 504 + 3λ,

52(6 + 2d1d2 + 2d1d3 + 2d2d3 + 2d1d4 + 2d2d4 + 2d3d4 + d1d2d3d4) = 568 + 2λ.

(14)

By eliminating d2, d3, and d4, we can obtain a quartic polynomial about d1:

52d4
1 − 168d3

1 + (128− 5λ)d2
1 + 3λd1 + 12λ = 0. (15)
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After that, the specific expression of di, 1 ≤ i ≤ 4 can be obtained by (15). Finally, by
taking di into (13), we can obtain the specific expression of the roots of ωλ(x) = 0, that is
cr4 − cr11.

Additionally,

R′0(x) =
8x7(1 + x)4(1 + x2)3(13 + 16x + 13x2)

(1 + 4x + 9x2 + 16x3 + 21x4 + 20x5 + 13x6)2 , (16)

R′1344(x) =
8x7(1 + x)6(1 + x2)5(13 + 68x− 1473x2 − 1880x3 − 1473x4 + 68x5 + 13x6)

θ1344(x)2 , (17)

where θ1344(x) = 1+ 7x+ 27x2 + 77x3 + 176x4 + 336x5 + 552x6 + 792x7 + 1015x8 + 1185x9−
59x10 − 13x11.

R′−6848(x) =
8x7(1 + x)6(1 + x2)5(13 + 42x + 8644x2 − 5010x3 − 3282x4 − 5010x5 + 8644x6 + 42x7 + 13x8)

θ−6848(x)2 , (18)

where θ−6848(x) = 1+ 6x + 20x2 + 50x3 + 99x4 + 160x5 + 216x6 + 240x7 + 223x8 + 170x9 +
6948x10 + 46x11 + 13x12.

Table 2 shows the number of free critical points corresponding to Rλ(x), where λ is
given a particular value. According to the above proposition, 0 and ∞ correspond to the
roots of g(x) = 0, and the number of free critical points of Rλ(x) is at most 11 and at least 5.
Since the free critical points cr1, cr2, and cr3 are the pre-images of the strange fixed point
ex1, the stability of cr1, cr2, and cr3 corresponds to the stability of ex1. In addition, as with
the strange fixed point in this section, each pair of conjugate free critical points has the
same stability properties, so we only need to study the dynamics of half of the free critical
points, which will be discussed in Section 2.3.

Table 2. Free critical points cri from R′λ(cri) for special λ-values.

λ cri No. of cri

0 −1 ±i 0.615385± 0.788227i 5

1344 −1 ±i −13.0923 9
−0.0763809 0.109819 9.10591
−0.638919± 0.769274i

−6848 −1 ±i −1.90256± 25.7656i 11
−0.639± 0.769207i −0.00285034± 0.038601i 0.929025± 0.370017i

2.3. Parameter Spaces and Dynamical Planes

The dynamic behavior of the rational operator Rλ(x) (4) varies with the parameter
selection. In this section, we discuss the progressive behavior of the free critical points
of LWM(λ) through parameter spaces. At first, the parameter space is represented by a
400× 400 grid on the complex plane, and the points on the grid correspond to different
λ-values. The parameter space shows the convergence analysis of the λ-related iterative
method (3), where the free critical points cri in Proposition 5 is used as the initial estimate
value and the maximum number of iterations is 25. If it converges to 0, it is expressed as
orange. If it converges to ∞, it is expressed as faint yellow, and other cases are expressed
as black.

Our goal was to find a relatively stable region in the parameter space, that is the orange
and faint yellow regions, because the λ-values in these regions are the best parameter
members in terms of numerical stability.

The LWM(λ) family has a maximum of eleven free critical points. Proposition 5
states that it is sufficient to study four different parameter spaces. These parameter
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spaces are called P1( f or x = cr4, cr5), P2( f or x = cr6, cr7), P3( f or x = cr8, cr9), and P4( f or
x = cr10, cr11), as described in Figure 3. Among them, the large area of Figure 3 is orange
and faint yellow, that is, in most cases, it converges to the roots. However, by carefully
observing the details of the parameter spaces, we can see that the rare black area near the
imaginary part of the parameter λ is 0. For example, the points corresponding to λ = −7,
λ = −11.68, β = −9.69, and β = −4.999 in P1-P4 are in the black regions. Combining
Figures 1 and 2, we know that only a quite small part of the points in the iterative method
(3) converge to the strange fixed points, which corresponds to the results shown in P1-P4,
indicating that the members in LWM(λ) are numerically stable.
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{x

}

-20 -15 -10 -5 0 5 10
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(a) P1 for cr4,5 (b) P2 for cr6,7

-15 -10 -5 0 5 10 15

Re{x}

-10

-5

0

5

10

Im
{x

}

-20 -15 -10 -5 0 5 10

Re{x}

-10

-5

0

5

10

Im
{x

}

(c) P3 for cr8,9 (d) P4 for cr10,11

Figure 3. Parameter spaces Pi, i = 1, 2, 3, 4.

Then, we explored the stability of the corresponding iterative method by selecting
various parameter values to generate a dynamical plane.

Firstly, a grid generated by 400× 400 points is defined on the complex plane, where
each point on the grid corresponds to a different value of the initial estimate x0. Its graphical
representation indicates that this method has a maximum of 25 iterations to any root starting
from x0. Among them, the white asterisk “∗” represents the attractive point. Fixed points
are illustrated with a red circle “◦”. Periodic points are represented as blue squares “�”. In
addition, we represent the orbit of a periodic point in blue and the orbit of a fixed point
in red.

Figures 4–7 show the dynamical planes of LWM(λ) corresponding to a given λ value.
Different colors represent different basins of attraction: gray represents convergence to
0, khaki convergence to ∞, green convergence to fixed point ex1 = 1, and black non-
convergence.

Next, the stability of some LWM(λ) was studied by generating a dynamical plane. We
discuss the choice of parameter λ in four parts. In the first part, we chose the parameter
values in the black regions of the parameter spaces, that is λ = −7,−11.68,−9.69,−4.999;
see Figure 4.
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(c) λ = −9.69 (d) λ = −4.999

Figure 4. Dynamical planes for special λ-values.

In the second part, we selected the parameter values that satisfy |λ− 1344| < 8192,
which is divided into two parts: one is the smaller value, λ = −5,−50,−100, and the other
part is the larger value, λ = 1300, 1340,−1500. At this time, ex1 = 1 is the attractive point,
which corresponds to the conclusion of Proposition 4(b); see Figure 5.

In the third part, we drew λ = −7000, 10,000, which correspond to the conclusion of
the proposition in Figure 4a; see Figure 6.

Finally, we drew the dynamical plane of λ = 0,−6848, 1344, where λ are the special
values obtained in Proposition 2; see Figure 7.

In Figures 4–7, the dynamical planes of most parameters converge to 0 and ∞, but
there are also parameter values that make the iterative method not converge, such as the
parameter λ = −4.999 in Figure 4 and λ = −5,−100 in Figure 5. Note from Figure 6
that the iterative method corresponding to the parameters satisfying |λ− 1344| > 8192
converges to two extra fixed points in addition to 0, ∞, ex1 = 1. This indicates that the
iterative method corresponding to these parameters is unstable. What we want to study
more is stable parameters, that is the dynamical planes only show gray and khaki.
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(c) λ = −100 (d) λ = 1300

(e) λ = 1340 (f) λ = −1500

Figure 5. Dynamical planes for special λ-values.

Comparing Figures 4, 5, and 7, we can see that the larger the absolute value of the
parameter values, the more complex the dynamical plane displayed. Carefully observing
the black area in Figures 4d and 5a,c, we can also observe that the larger the absolute value
of the parameter values, the larger the black area is. In summary, the iterative method
corresponding to λ = 0 is more stable.
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Figure 6. Dynamical planes for special λ-values.
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Figure 7. Dynamical planes for special λ-values.

3. Numerical Experiment and Practical Application

In this section, the more stable parameter elements obtained in Section 2, namely
{0,−50, 1300, 1340,−1500}, are verified by a numerical experiment and applied to solve
practical problem.

First, we used the iterative method corresponding to these parameters to solve the
nonlinear matrix sign function:

X2 − I = 0, I is an identity matrix.
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After that, we obtained the following special cases:

• When λ = 0, Xn+1 = 128X5
n(I + X2

n)
4[I − 9X2

n + 57X4
n + 247X6

n + 763X8
n + 637X10

n +

331X12
n + 21X14

n ]−1;
• When λ = −50, Xn+1 = 8192X7

n(I + X2
n)

6[50(−I + X2
n)

10 + 64(Xn + X3
n)

2(I − 9X2
n +

57X4
n + 247X6

n + 763X8
n + 637X10

n + 331X12
n + 21X14

n )]−1;
• When λ = 1300, Xn+1 = 8192X7

n(I + X2
n)

6[−1300(−I + X2
n)

10 + 64(Xn + X3
n)

2(I −
9X2

n + 57X4
n + 247X6

n + 763X8
n + 637X10

n + 331X12
n + 21X14

n )]−1;
• When λ = 1340, Xn+1 = 8192X7

n(I + X2
n)

6[−1340(−I + X2
n)

10 + 64(Xn + X3
n)

2(I −
9X2

n + 57X4
n + 247X6

n + 763X8
n + 637X10

n + 331X12
n + 21X14

n )]−1;
• When λ = −1500, Xn+1 = 8192X7

n(I + X2
n)

6[1500(−I + X2
n)

10 + 64(Xn + X3
n)

2(I −
9X2

n + 57X4
n + 247X6

n + 763X8
n + 637X10

n + 331X12
n + 21X14

n )]−1.

Finally, we used the Matlab software to record the iteration times and computer run-
ning time of the experimental results of solving the matrix symbol function corresponding
to the random square matrix. The calculation stopping standard is ‖ X2

n − I ‖2≤ 10−100.
The experimental results are shown in Table 3.

Table 3. Results of the comparisons.

λ = 0 λ = −50 λ = 1300 λ = 1340 λ = −1500
Matrices n 1 Time n Time n Time n Time n Time

R4×4 3 0.006994 5 0.079566 6 0.074327 6 0.103540 5 0.108107
R5×5 3 0.016522 13 0.066437 13 0.094517 9 0.122004 16 0.129702
R10×10 5 0.069684 10 0.139051 27 0.136659 41 0.157447 15 0.059954
R15×15 6 0.070848 21 0.160829 22 0.187887 13 0.158099 86 0.279862
R20×20 6 0.071416 19 0.180107 19 0.186666 17 0.162618 103 0.718463
R25×25 9 0.111521 14 0.143166 20 0.209045 13 0.158114 97 0.380726
R30×30 8 0.136161 28 0.203730 16 0.177654 15 0.176462 191 0.832457

1 n represents the number of iterations.

Through the results in Table 3, we noticed that, in {0,−50, 1300, 1340,−1500}, when
λ = 0, the iterative method (3) is used to solve the matrix function with the least number of
iterations and the shortest computer running time.

In 1873, van der Waals revised the equation of state of the ideal gas and proposed
the van der Waals equation of state based on the two assumptions of the ideal gas model,
namely the non-occupying volume of molecules and the non-interacting force between
molecules. The volume occupied by molecules decreases their free space of movement, and
the frequency of molecules hitting the container wall increases at the same temperature, so
the pressure increases correspondingly. If Vm − b is used to represent the free movement
space per mole of gas molecules, the gas pressure should be P = RT/(Vm − b) by referring
to the ideal gas equation of state.

The specific form of Van der Waals equation is:

(P + a
n2

V2 )(V − nb) = nRT

where a and b are the relative constants corrected for gas pressure and volume, respectively,
which are called the van der Waals constants. Each gas has a specific value for a and b.
n, R, T, V, and P represent the number of moles, the universal gas constant (0.0820578), the
absolute temperature, the volume, and the absolute pressure, respectively.

By simplification, the following polynomial of the nonlinear form can be obtained:

H(V) = PV3 − (RT + bP)V2n + aVn2 − abn3.
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When n = 1.5 moles of benzene vapor, P = 50atm, a = 1.378, and b = 0.3193, then
there is

H1(V) = 50V3 − 119.0185191V2 + 3.1005V − 1.484984475.

The exact solution to H1(V) = 0 is
V = 2.3594236086921194141576714329391903003579204650023

(50 significant digits).
Next, we used the iterative method (3) with λ = 0 and the other three eighth-order

iterative methods to solve H1(V) = 0 and compared the results. According to Theorem 1
in [21], when applying the iterative method LWM (3) to solve nonlinear equations, in order
to maintain the convergence rate of the eighth order, we must select the initial point near
the exact solution, so that the initial point is close enough to the exact solution. Therefore,
we chose the initial estimate of x0 = 2.36. The experimental results are shown in Table 4.

The method by Sharma et al., SM (see [25]), is

wn = xn −
f (xn)

f ′(xn)
,

zn = wn −
f (wn)

f ′(xn)

f (xn) + a f (wn)

f (xn) + (a− 2) f (wn)
,

xn+1 = xn −
P + Q + R

P f [zn, xn] + Q f ′(xn) + R f [wn, xn]
f (xn).

(19)

where P = (xn−wn) f (xn) f (wn), Q = (wn− zn) f (wn) f (zn) and R = (zn− xn) f (zn) f (xn).
We chose a = 0 for the numerical experiment part.

The method by Soleymani, SSM (see [26]), is

yn = xn −
f (xn)

f ′(xn)
,

zn = yn −
f (yn)

f ′(xn)

f (xn) + β f (yn)

f (xn) + (β− 2) f (yn)
,

xn+1 = zn −
f (zn)

f ′(xn)
{ f (xn) + β f (yn)

f (xn) + (β− 2) f (yn)
}(1 + 2t + µ + µ2 + ρ2 + 4ρ3 + 12ρ4 − σ− τ2).

(20)

where t =
f (zn)

f (xn)
, µ =

f (zn)

f (yn)
, ρ =

f (yn)

f (xn)
, σ =

f (zn)

f ′(xn)
, and τ =

f (yn)

f ′(xn)
. We chose β = 0 for

the numerical experiment part.

Table 4. Comparison of iterative methods for H1(V) = 0.

n LW M SM SSM
|xn− xn−1| | f (xn)| |xn− xn−1| | f (xn)| |xn− xn−1| | f (xn)|

1 5.7639× 10−4 1.818× 10−21 1.1528× 10−3 1.593× 10−1 5.7639× 10−4 1.4902× 10−19

2 6.5748× 10−24 4.1048× 10−47 1.1528× 10−3 1.5945× 10−1 5.3893× 10−22 1.6823× 10−45

3 1.4846× 10−49 9.2685× 10−73 1.1528× 10−3 1.593× 10−1 6.0843× 10−48 1.8993× 10−71

4 3.352× 10−75 2.0928× 10−98 1.1528× 10−3 1.5945× 10−1 6.869× 10−74 2.1442× 10−97

It can be seen from the experimental results in Table 4 that the LWM with λ = 0 is
more dominant in convergence accuracy.

4. Conclusions

In this paper, as stated by fractal theory, we explored the complex dynamic behavior
of a kind of iterative method (3) for solving nonlinear equations. Among them, Liu–Wang’s
method is based on the well-known Ostrowski method, which adds a step to make it the
optimal eighth-order iterative method with faster convergence speed.

Based on the theory of the Möbius conjugate transformation on the Riemann sphere
and the scaling theorem, we obtained the corresponding rational operator by applying
any quadratic polynomial to the iterative method. The operator can be simplified by
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giving parameters to facilitate the subsequent research. First, we analyzed its fixed points
and the critical points and noticed that the strange fixed points always appeared in pairs,
because the two strange points were conjugate, as were the free critical points. Given this
relationship, then the number of studies on them could be reduced by half. All of this was
performed with the Mathematica software. By drawing the stability surfaces of the strange
fixed points, we can observe the range of parameters that can attract the sequence generated
by the initial point to the strange fixed point during the iteration. Since we expected that
these sequences can converge to the roots rather than the strange fixed points. Based on the
above parameter range, we can more effectively select the desired parameters and avoid
selecting bad parameters. What is more, the parameter space generated by the iteration
with the critical point as the initial point was drawn, so as to obtain a stable parameter
selection region. Combining the dynamical planes’ analysis of the given parameters, we
finally obtained some parameter families that made the iterative method stable, such as
λ = 0,−50, 1300, 1340,−1500. When these parameters were selected, the corresponding
iterative method had good numerical stability, especially at λ = 0. Finally, this result was
proven by solving the matrix sign function and the van der Waals equation.
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