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Abstract: In this work, in the noncanonical case, we find new properties for a class of positive
solutions of fourth-order differential equations. These properties allow us to obtain iterative criteria
that exclude positive decreasing solutions, and we then establish sufficient conditions to guarantee
that all solutions to the examined equation oscillate. The importance of applying the results to a
special case of the investigated equation is demonstrated.
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1. Introduction

This paper focuses on investigating the oscillation of solutions to the fourth-order
neutral delay differential equation

($(s)(Φ′′′(s))γ)′ + q(s)ωγ(θ(s)) = 0, s ≥ s0, (1)

where Φ(s) = ω(s) + p(s)ω(τ(s)). Throughout this paper, we make the following assump-
tions:

(A1) γ > 0 is a quotient of odd positive integers;
(A2) $ ∈ C([s0, ∞), (0, ∞)) satisfies

π(s0) =
∫ ∞

s0

$−1/γ(v)dv < ∞; (2)

(A3) τ, θ ∈ C([s0, ∞), (0, ∞)) satisfy τ(s) < s, θ(s) < s, lims→∞ τ(s) = ∞ and lims→∞ θ

(s) = ∞;
(A4) p, q ∈ C([s0, ∞), (0, ∞)), 0 ≤ p(s) < 1 and p(s)π(τ(s))

π(s) < 1.

By a solution of (1), we understand a four-time differentiable real-valued function ω
which satisfies (1) for all s large enough. Our attention is restricted to those solutions of
(1) that satisfy the condition sup{|ω(s)| : s ≥ L} > 0 for all L ≥ s0. If a solution ω of (1)
is essentially positive or negative, it is said to be nonoscillatory; otherwise, it is said to be
oscillatory. The equation is referred to as oscillatory if all of its solutions oscillate.
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The past of the system is taken into account via delay differential equations, allowing
for a more efficient future prediction. This gave us a compelling reason to look into the
qualitative properties of the solutions to these equations.

Neutral delay differential equations are a type of functional differential equation in
which the delayed argument appears in the state variable’s highest derivative. The qualita-
tive analysis of such equations is quite beneficial in addition to its theoretical value. This
form of the equation has fascinating applications in everyday life, for example, in networks
with lossless transmission lines as in high-speed computers, in the vibration study of blocks
connected to a flexible rod and for solving various problems with a time delay as well
as in automated control theory and in aeromechanical systems in which inertia plays an
important role. We refer the reader to Hale’s monograph [1] for additional science and
technological applications.

In the first half of the eighteenth century, with the problem of the vibrating rod,
the study of fourth-order differential equations appeared. Such equations have been of great
practical importance as they arise in the modeling of biological and physical phenomena
such as the deformation of structures and problems of elasticity; see [2]. The qualitative
theory of such equations has undergone an astonishing development as the oscillation
theory of fourth-order differential equations has attracted much attention over the past
decades; we refer the reader to [3,4].

The oscillatory and nonoscillatory properties of solutions are a focus of oscillation
theory. Gyri and Ladas’s book [5] summarizes some of the work in this field, particu-
larly the relationship between the distribution of the characteristic equation’s roots and
the oscillation of all solutions, while Erbe et al. [6] and others covered several crucial
topics such as determining the separation between zeros and the oscillation of nonlinear
neutral equations.

Literature Review

As far as we know, the common case is the canonical case, with many publications
exploring the oscillation of solutions to fourth-order neutral differential equations∫ s

s0

$−1/γ(v)dv→ ∞ as s→ ∞, (3)

while the noncanonical case is ∫ ∞

s0

$−1/γ(v)dv < ∞. (4)

Assumption (3) has been widely used because the rating of positive solutions is
lower, for example in an even order there are no positive decreasing solutions (see [7–10]).
However, with assumption (4), we are faced with the problem that there are positive
decreasing solutions, and this leads to an increased number of derivatives.

In studying the neutral delay equation in the canonical case, it is easy to find the
relationship between the solution and the corresponding function ω(s) ≥ (1− p(s))Φ(s).
On the other hand, we note that the previous relationship is generally not satisfied when
using assumption (4).

One of the most important goals in studying the oscillation of neutral delay differential
equations in the noncanonical case is to find criteria that ensure the exclusion of positive
decreasing solutions. This is because many of the frequently used relationships are invalid
in that case. For the second order, Bohner et al. [11] tackled this issue in an intriguing work,
finding the following constraint for the solution and a related function

ω(s) ≥
(

1− p(s)
π(τ(s))

π(s)

)
Φ(s),
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where π(s) is defined as in (4). Due to this relationship, the authors were able to find
several new criteria that simplified and improved their previous results in the literature.

As an extension of Bohner’s results [11], Ramos et al. [12] found a new relationship
between the solution and a corresponding function for the fourth order.

The topic of sufficient conditions for the oscillation of delay differential equation
solutions has been extensively discussed in the literature; for more information, see [13–16]
(and the references cited therein).

We present some related previous works.
Agarwal et al. [17] studied the oscillation of the fourth-order functional differential equation[

$3(s)

([
$2(s)

([
$1(s)

(
ω′(s)

)γ1
]′)γ2

]′)γ3
]′

+ q(s) f (ω(θ(s))) = 0,

where
∫ ∞

$
−1/γ
i (s)ds < ∞, i = 1, 2, 3.

Grace et al. [18] investigated the oscillatory behavior of all solutions of the fourth-order
functional differential equation

($(s)(ω′(s))γ)′′′ + q(s) f (ω(θ(s))) = 0,

where (4) holds. For neutral differential equations, we show the following.
Li et al. [19] investigated the oscillation of the even-order equation

Φ(n)(s) + q(s)ω(θ(s)) = 0.

In the case where α is the quotient of odd positive integers and α ≥ γ, Moaaz et al. [20]
considered the fourth-order neutral differential equation of the form

($(s)(Φ′′′(s))γ)′ + q(s)ωα(θ(s)) = 0,

which contributed to improve some well-known results which were published recently in
the literature.

Ramos et al. [12] studied the oscillatory behavior of the solutions of the neutral delay
differential equation

($(s)(Φ′′′(s))γ)′ + q(s)ωγ(θ(s)) = 0, (5)

with (4) holding. They improved on previous results in the literature.

Theorem 1 ([12]). Suppose that there exists some s1 ≥ s0 such that π2(s) > p(s)π2(τ(s)) for
s ≥ s1. If there exists a function κ ∈ C((s0, ∞), (0, ∞)) such that

lim sup
s→∞

π
γ
2 (s)
κ(s)

∫ s

s1

(
κ(v)Q(v)− 1

(γ + 1)γ+1
(κ′(v))γ+1

κγ(v)πγ
1 (v)

)
dv > 1, (6)

then (5) has no positive decreasing solutions.

Theorem 2 ([12]). Suppose that there exists some s1 ≥ s0 such that π2(s) > p(s)π2(τ(s)),
and that for λ0 ∈ (0, 1), the first-order delay differential equation

y′(s) + q(s)
(

λ0

6
θ3(s)

)γ Q(s)
$(θ(s))

y(θ(s)) = 0

is oscillatory, and that for some constant λ1 ∈ (0, 1), it is

lim sup
s→∞

∫ s

s1

(
λ

γ
1

(2!)γ θ2γ(v)Q(v)πγ
0 (v)−

γγ+1$−1/γ(v)

(γ + 1)γ+1π0(v)

)
dv = ∞. (7)



Axioms 2023, 12, 219 4 of 16

If (6) holds, then (5) is oscillatory.

Corollary 1 ([12]). Suppose that there exists some s1 ≥ s0 such that π2(s) > p(s)π2(τ(s)),
and that for some constant λ0 ∈ (0, 1), (6) and (7) hold for some constant λ1 ∈ (0, 1) and for
s ≥ s1. If

lim inf
s→∞

∫ s

θ(s)

(
λ0

6
θ3(v)

)γ ϑ(v)
$(θ(v))

dv >
1
e

, (8)

then every solution of (5) is oscillatory.

Muhib et al. [21] derived new asymptotic properties of the positive solutions of the
fourth-order neutral differential equation

($(s)(Φ′′′(s))γ)′ + f (s, ω(θ(s))) = 0,

with (4), where f (s, ω) = h(s)ω such that h is a continuous function.
Elabbasy et al. [22] studied the asymptotic and oscillatory behavior of the even-order

neutral delay noncanonical differential equation(
$(s)

(
(ω(s) + p(s)ω(τ(s)))(m−1)

)γ)′
+ q(s)ωβ(θ(s)) = 0, (9)

where m ≥ 4 and β is a quotient of odd positive integers. They improved, simplified
and complemented their new oscillation criteria with related results in the literature.

Lemma 1 ([23]). Let γ be a ratio of two odd positive integers. Then,

Lz
(γ+1)/γ −Mz ≥ − γγ

(γ + 1)γ+1
Mγ+1

Lγ
, L > 0. (10)

and
A(γ+1)/γ − (A− B)(γ+1)/γ ≤ 1

γ
B1/γ[(1 + γ)A− B], γ ≥ 1, AB ≥ 0. (11)

In this paper, we create new monotonic properties of a class from the positive solutions
of Equation (1). We establish iterative criteria that exclude the existence of positive decreas-
ing solutions by employing Riccati’s general form and comparison method. By combining
the results obtained in Section 2.3 with the known results reported in the literature, we
create sufficient conditions to ensure that all solutions of the studied equation oscillate.
Finally, we provide an example to demonstrate the effectiveness of our results. The article
is concluded with a summary.

2. Main Results
2.1. Notations

We define the following to support our main results:

πi(s) =
∫ ∞

s
πi−1(v)dv, for i = 1, 2

and
δ∗ = lim inf

s→∞

1
γ

q(s)π−1
1 (s)πγ+1

2 (s).

In addition, we set

µ∗ = lim inf
s→∞

π2(τ(s))
π2(s)

.
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It is important to keep in mind that given (A2), µ∗ ≥ 1. We frequently state in the
proofs that there exists s1 ≥ s0 sufficiently large such that, for arbitrary δ ∈ (0, δ∗) and
µ ∈ [1, µ∗), we have

Q(s) = q(s)
(

1− p(θ(s))
π2(τ(θ(s)))

π2(θ(s))

)γ

,

Q(s)π−1
1 (s)πγ+1

2 (s) ≥ γδ (12)

and
π2(τ(s))

π2(s)
≥ µ

on [s1, ∞).

2.2. New Iterative Properties

Lemma 2. Suppose that ω ∈ C([s0, ∞), (0, ∞)) is a solution of (1). Then, Φ(s) > 0,
$(s)(Φ′′′)γ < 0, and one of the following cases holds for s ∈ [s1, ∞), s1 ≥ s0:
(B1) Φ′(s) > 0, Φ′′′(s) > 0 and Φ(4)(s) < 0;
(B2) Φ′(s) > 0, Φ′′(s) > 0 and Φ′′′(s) < 0;
(B3) (−1)iΦ(i)(s) are positive for i = 1, 2, 3 (note that in this case, Φ is a positive decreasing solu-
tion).

Proof. Let ω(t) be an eventually positive solution of (1). Then, there exists s1 ≥ s0 such
that ω(s) > 0, ω(τ(s)) > 0 and ω(θ(s)) > 0 for all s ≥ s1. Hence, we see that Φ(s) > 0 for
s ≥ s1. From (1), we see that (

$(s)(Φ′′′)γ
)′ ≤ 0.

By using [24] (Lemma 2.2.1), cases (B1) and (B3) are easily accessible.

Lemma 3. Suppose that ω ∈ C([s0, ∞), (0, ∞)) is a solution of (1) and Φ(s) is a positive decreas-
ing solution. If ∫ ∞

s0

(
1

$(v)

∫ v

s1

Q(u)du
)1/γ

dv = ∞, (13)

then
(i) (Φ(s)/π2(s))

′ > 0;
(ii) lims→∞ Φ(s) = 0.

Proof. Let ω be an eventually positive solution of (1), taking into account that we are in
case (B3). Then, there exists s1 ≥ s0 such that ω(τ(s)) ≥ 0 for s ≥ s1; hence,(

$(s)(Φ′′′(s))γ
)′

= −q(s)ωγ(θ(s)) ≤ 0.

(i) Using the fact that $1/γ(s)Φ′′′(s) is nonincreasing, we see that

Φ′′(s) ≥ −
∫ ∞

s
$−1/γ(v)$1/γ(v)Φ′′′(v)dv ≥ −$1/γ(s)Φ′′′(s)π(s). (14)

Now, we have (
Φ′′(s)
π(s)

)′
=

π(s)Φ′′′(s) + $−1/γ(s)Φ′′(s)
π2(s)

≥ 0. (15)

Thus, we get that

Φ′(s) ≤ −
∫ ∞

s
π(v)

Φ′′(v)
π(v)

dv ≤ −Φ′′(s)
π(s)

π1(s), (16)
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which implies (
Φ′(s)
π1(s)

)′
=

π1(s)Φ′′(s) + π(s)Φ′(s)
π2

1(s)
≤ 0. (17)

This leads to

Φ(s) ≥ −
∫ ∞

s
π1(v)

Φ′(v)
π1(v)

dv ≥ −Φ′(s)
π1(s)

π2(s), (18)

hence (
Φ(s)
π2(s)

)′
=

π2(s)Φ′(s) + π1(s)Φ(s)
π2

2(s)
≥ 0. (19)

(ii) Since
ω(s) = Φ(s)− p(s)ω(τ(s)) ≥ Φ(s)− p(s)Φ(τ(s)),

from (19), we have

ω(s) ≥
(

1− p(s)
π2(τ(s))

π2(s)

)
Φ(s).

Now, from (1), we get(
$(s)(Φ′′′(s))γ

)′ ≤ −Q(s)Φγ(θ(s)).

Since, Φ′(s) < 0, we get that lims→∞ Φ(s) = ρ ≥ 0. Assume the contrary, ρ > 0, then
there is a s2 ≥ s1 with Φ(s) ≥ ρ for s ≥ s2. Thus,(

$(s)(Φ′′′(s))γ
)′ ≤ −ργQ(s).

Integrating the above inequality twice over [s2, s), we obtain

$1/γ(s)Φ′′′(s)− $(s2)Φ′′′(s2) ≤ −ρ

(∫ s

s2

Q(v)dv
)1/γ

.

Hence,

Φ′′′(s) ≤ −ρ

(
1

$(s)

∫ s

s2

Q(v)dv
)1/γ

,

and then

Φ′′(s) ≤ Φ′′(s2)− ρ
∫ s

s2

(
1

$(v)

∫ v

s2

Q(u)du
)1/γ

dv.

Letting s→ ∞ and using (13), we obtain that lims→∞ Φ′′(s) = −∞, which contradicts
with Φ′′(s) > 0. Thus, the proof is complete.

Remark 1. For positive and finite δ∗ and µ∗ we define the sequence δn as follows:

δ0 = γ
√

δ∗

and

δn =
δ0µ

δn−1
∗

γ
√

1− δn−1
, n ∈ N. (20)

It is easy to see that, by induction, if for any n ∈ N, δi < 1, i = 0, 1, 2, ..., n, then δn+1 exists
and

δn+1 = ınδn > δn, (21)

where ın is defined by
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ı0 =
µδ0∗

γ
√

1− δ0
,

and

ın+1 = µ
δ0(ın−1)
∗

γ

√
1− δn

1− ınδn
, n ∈ N0.

Lemma 4. Let δ∗ > 0 and µ∗ < ∞. If ω ∈ C([s0, ∞), (0, ∞)) is a solution of (1) and Φ(s) is a
positive decreasing solution, then for any n ∈ N0(

Φ(s)

πδn
2 (s)

)′
< 0.

Proof. Let ω be a positive solution of (1), taking into account that we are in case (B3) on
[s1, ∞) where s1 ≥ s0 such that ω(τ(s)) > 0 and (12) holds for s ≥ s1. Integrating (1) from
s1 to s, we have

$(s)(Φ′′′(s))γ ≤ $(s1)(Φ′′′(s1))
γ −

∫ s

s1

Q(v)Φγ(θ(v))dv

≤ $(s1)(Φ′′′(s1))
γ −Φγ(s)

∫ s

s1

Q(v)dv.

By using (12) in the above inequality, we obtain

$(s)(Φ′′′(s))γ ≤ $(s1)(Φ′′′(s1))
γ − δΦγ(s)

∫ s

s1

γ

π−1
1 (v)πγ+1

2 (v)
dv

≤ $(s1)(Φ′′′(s1))
γ − δ

Φγ(s)
π

γ
2 (s)

+ δ
Φγ(s)
π

γ
2 (s1)

.

From Lemma 3, we have that lims→∞ Φ(s) = 0. Hence, there is a s2 ∈ [s1, ∞) such that

$(s1)(Φ′′′(s1))
γ + δ

Φγ(s)
π

γ
2 (s1)

< 0, s ≥ s2.

Thus,

$(s)
(
Φ′′′(s)

)γ
< −δ

Φγ(s)
π

γ
2 (s)

or
$1/γ(s)Φ′′′(s)π2(s) < −

γ
√

δΦ(s) = −υ0δ0Φ(s), (22)

where υ0 = γ
√

δ/δ0 and υ0 ∈ (0, 1). Note that,

$1/γ(s)Φ′′′(s)π(s) ≥
∫ ∞

s
$−1/γ(v)$1/γ(v)Φ′′′(v)dv ≥ −Φ′′(s),

then,
Φ′′(s) ≥ −$1/γ(s)π(s)Φ′′′(s).

Repeating this step twice over [s, ∞), we get

Φ′(s) ≤ $1/γ(s)π1(s)Φ′′′(s) (23)

and
Φ(s) ≥ −$1/γ(s)π2(s)Φ′′′(s).
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From (22) and (23), we obtain

Φ′(s)
π1(s)

≤ $1/γ(s)Φ′′′(s)

and
Φ′(s)
π1(s)

≤ − γ
√

δ
Φ(s)
π2(s)

,

hence
π2(s)Φ′(s) +

γ
√

δπ1(s)Φ(s) ≤ 0.

Therefore,(
Φ(s)

π
γ√δ

2 (s)

)′
=

1

π
γ√δ+1

2 (s)

(
γ
√

δπ1(s)Φ(s) + π2(s)Φ′(s)
)
≤ 0.

Integrating (1) from s2 to s and using that Φ(s)/π
γ√δ

2 (s) is decreasing, we have

$(s)
(
Φ′′′(s)

)γ ≤ $(s2)
(
Φ′′′(s2)

)γ −
∫ s

s2

Q(v)πγ γ√δ
2 (τ(v))

Φγ(τ(v))

π
γ γ√δ
2 (τ(v))

dv

≤ $(s2)
(
Φ′′′(s2)

)γ −
(

Φ(τ(s))

π
γ√δ

2 (τ(s))

)γ ∫ s

s2

Q(v)πγ γ√δ
2 (τ(v))dv,

hence

$(s)
(
Φ′′′(s)

)γ ≤ $(s2)
(
Φ′′′(s2)

)γ −
(

Φ(s)

π
γ√δ

2 (s)

)γ ∫ s

s2

Q(v)
(

π2(τ(v))
π2(v)

)γ γ√δ

π
γ γ√δ
2 (v)dv.

It is clear that from (12), we have

$(s)
(
Φ′′′(s)

)γ ≤ $(s2)
(
Φ′′′(s2)

)γ − δ

(
Φ(s)

π
γ√δ(s)

)γ ∫ s

s2

γ
(

π2(τ(v))
π2(v)

)γ γ√δ

π1(v)π
γ+1−γ γ√δ
2 (v)

dv

≤ $(s2)
(
Φ′′′(s2)

)γ − δ

1− γ
√

δ
µγ γ√δ

(
Φ(s)

π
γ√δ

2 (s)

)γ ∫ s

s2

γ
(

1− γ
√

δ
)

π1(v)π
γ+1−γ γ√δ
2 (v)

dv,

which implies that

$(s)
(
Φ′′′(s)

)γ ≤ $(s2)
(
Φ′′′(s2)

)γ − δ

1− γ
√

δ
µγ γ√δ

(
Φ(s)

π
γ√δ

2 (s)

)γ
 1

π
γ(1− γ√δ)
2 (s)

− 1

π
γ(1− γ√δ)
2 (s2)

. (24)

Now, we claim that lims→∞ Φ(s)/π
γ√δ

2 (s) = 0. It is enough to show that there is

ε > 0 such that Φ(s)/π
γ√δ+ε

2 (s) is eventually decreasing. Since π2(s) tends to zero, there is
a constant

ı ∈
(

γ
√

1− γ
√

δ

µ
γ√δ

, 1

)
and a s3 ≥ s2 such that

1

π
γ(1− γ√δ)
2 (s)

− 1

π
γ(1− γ√δ)
2 (s2)

> ıγ
1

π
γ(1− γ√δ)
2 (s)

, s ≥ s3. (25)
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By using (25) in (24), we get

$(s)
(
Φ′′′(s)

)γ ≤ − ıγδ

1− γ
√

δ
µγ γ√δ

(
Φ(s)
π2(s)

)γ

,

which means

$1/γ(s)Φ′′′(s) ≤ −
(

γ
√

δ + ε
) Φ(s)

π2(s)
, (26)

where

ε =
γ
√

δ

(
ıµ

γ√δ

γ
√

1− γ
√

δ
− 1

)
> 0.

Thus, from (26), (
Φ(s)

π
γ√δ+ε

2 (s)

)′
≤ 0, s ≥ s3,

and hence the claim is valid. Therefore, for s4 ∈ [s3, ∞),

−$(s2)
(
Φ′′′(s2)

)γ − δ

1− γ
√

δ
µγ γ√δ

(
Φ(s)

π
γ√δ

2 (s)

)γ
1

π
γ(1− γ√δ)
2 (s2)

> 0, s ≥ s4,

and using the above inequality in (24), we obtain

$(s)
(
Φ′′′(s)

)γ ≤ $(s2)
(
Φ′′′(s2)

)γ − δ

1− γ
√

δ
µγ γ√δ

(
Φ(s)

π
γ√δ

2 (s)

)γ
1

π
γ(1− γ√δ)
2 (s)

+
δ

1− γ
√

δ
µγ γ√δ

(
Φ(s)

π
γ√δ

2 (s)

)γ
1

π
γ(1− γ√δ)
2 (s2)

≤ $(s2)
(
Φ′′′(s2)

)γ − δ

1− γ
√

δ
µγ γ√δ

(
Φ(s)
π2(s)

)γ

+
δ

1− γ
√

δ
µγ γ√δ

(
Φ(s)

π
γ√δ

2 (s)

)γ
1

π
γ(1− γ√δ)
2 (s2)

,

hence
$(s)

(
Φ′′′(s)

)γ
< − δ

1− γ
√

δ
µγ γ√δΦγ(s),

or

$1/γ(s)Φ′′′(s) < −
γ
√

δ
γ
√

1− γ
√

δ
µ

γ√δΦ(s) = −ε1δ1Φ(s), s ≥ s4,

where

ε1 = γ

√√√√ δ
(
1− γ
√

δ∗
)

δ∗
(

1− γ
√

δ
) µ

γ√δ

µ
γ√δ∗
∗

, ε1 ∈ (0, 1);

we note that ε1 → 1 at δ→ δ∗ and µ→ µ∗. Then,(
Φ(s)

πε1δ1
2 (s)

)
< 0, s ≥ s4.

By using induction, for any n ∈ N0 and s large enough,(
Φ(s)

πεnδn
2 (s)

)′
< 0,
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where εn is given by
ε0 = γ

√
δ/δ∗

and

εn+1 = ε0
γ

√
1− δn

1− εnδn

µεnδn

µδn∗
, n ∈ N0, εn+1 ∈ (0, 1);

we note that εn+1 → 1 at δ→ δ∗ and µ→ µ∗. Finally, we claim that from any n ∈ N0(
Φ(s)

π
εn+1δn+1
2 (s)

)′
< 0.

Since εn+1 → 1, εn+1δn+1 > δn and (21), we have

$1/γ(s)Φ′′′(s)π2(s) < −εn+1δn+1Φ(s) < −δnΦ(s) for s large enough,

and so (
Φ(s)

πδn
2 (s)

)′
< 0.

Now, the proof is complete.

2.3. Nonexistence of Positive Decreasing Solutions

Theorem 3. Suppose that (A1) and (A2) hold. If

lim sup
s→∞

∫ s

s0

[
χγ(v)Q(v)

π
γδn
2 (τ(v))

π
γδn
2 (v)

− γγ

(γ + 1)γ+1
(χ′(v))γ+1

χ(v)πγ
1 (v)

]
dv = ∞, (27)

then (1) has no positive decreasing solutions, where

χ(s) =
∫ ∞

s
(v− s)π(v)dv.

Proof. Assume that Φ is a positive decreasing solution of (1) on [s1, ∞) where s1 ≥ s0.
Since $(s)(Φ′′′(s))γ is nonincreasing, we get

$1/γ(v)Φ′′′(v) ≤ $1/γ(s)Φ′′′(s), v ≥ s ≥ s1.

By dividing the previous inequality by $1/γ(s), we have

Φ′′′(v) ≤ $1/γ(s)
$1/γ(v)

Φ′′′(s).

By integrating the above inequality from c to s, we obtain

Φ′′(c) ≤ Φ′′(s) + $1/γ(s)Φ′′′(s)
∫ c

s
$1/γ(v)dv.

Letting c→ ∞, we have

0 ≤ Φ′′(s) + $1/γ(s)Φ′′′(s)π(s),

which produces
Φ′′(s) ≥ −π(s)$1/γ(s)Φ′′′(s).

Integrating the above inequality from s to ∞ yields

−Φ′(s) ≥ −$1/γ(s)Φ′′′(s)
∫ ∞

s
π(v)dv. (28)
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Again, integrating (28) from s to ∞, we get

Φ(s) ≥ −$1/γ(s)Φ′′′(s)
∫ ∞

s
(v− s)π(v)dv.

Now, define the function z by

z(s) :=
$(s)(Φ′′′(s))γ

(Φ(s))γ < 0, (29)

for s ≥ s1. Differentiating (29), we get

z′(s) = ($(s)(Φ′′′(s))γ)′

(Φ(s))γ − γ
$(s)(Φ′′′(s))γΦ′(s)

(Φ(s))γ+1 .

It follows from (1) and (28) that

z′(s) ≤ −Q(s)
π

γδn
2 (s)

(Φ(s))γ
Φγ(τ(s))

π
γδn
2 (s)

− γz1+1/γ(s)
∫ ∞

s
π(v)dv.

From Lemma 4, we obtain

−
π

γδn
2 (τ(s))

(Φ(τ(s)))γ ≥ −
π

γδn
2 (s)

(Φ(s))γ ,

hence

z′(s) ≤ −Q(s)
π

γδn
2 (τ(s))

π
γδn
2 (s)

− γz1+1/γ(s)
∫ ∞

s
π(v)dv.

By multiplying the above inequality by χγ(s) and integrating the resulting inequality
from s1 to s, we have

χγ(s)z(s)− χγ(s1)z(s1)− γ
∫ s

s1

χ′(v)χγ−1(v)z(v)dv

+
∫ s

s1

Q(v)
π

γδn
2 (τ(v))

π
γδn
2 (v)

χγ(v)dv + γ
∫ s

s1

z1+1/γ(v)π1(v)χγ(v)dv≤0.

By using the inequality (10) with M = −χ′(v)χγ−1(v), L = π1(v)χγ(v) and
z = −z(v), we obtain

∫ s

s1

[
Q(v)

π
γδn
2 (τ(v))

π
γδn
2 (v)

χγ(v)− γγ

(γ + 1)γ+1
(χ′(v))γ+1

χ(v)πγ
1 (v)

]
dv ≤ χγ(s1)z(s1) + 1.

By taking the lim sup on both sides of this inequality, we obtain a contradiction with
(27). Now, the proof is complete.

Theorem 4. Let γ ≥ 1. If there exists a function κ ∈ C1([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

s0

[
Ψ(v)− κ(v)

(γ + 1)(γ+1)π
γ
1 (v)

(
κ′(v)
κ(v) +

(1 + γ)π1(v)
π2(v)

)γ+1
]

dv = ∞, (30)

where

Ψ(s) = κ(s)Q(s)
π

γδn
2 (τ(s))

π
γδn
2 (s)

+ (1− γ)κ(s)π1(s)/π
γ+1
2 (s),

then (1) has no positive decreasing solutions.
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Proof. Assume that Φ(t) is a positive decreasing solution of (1). Since $(s)(Φ′′′(s))γ is
nonincreasing, we get

Φ′′(v)−Φ′′(s) =
∫ v

s

1
$1/γ(ζ)

(
$(ζ)(Φ′′′(ζ))γ

)1/γdζ

≤ $1/γ(s)Φ′′′(s)
∫ v

s

1
$1/γ(ζ)

dζ.

Letting v→ ∞, we have

Φ′′(s) ≥ −$1/γ(s)Φ′′′(s)π(s).

Integrating the above inequality from s to ∞ yields

−Φ′(s) ≥ −$1/γ(s)Φ′′′(s)π1(s). (31)

Again, integrating (31) from s to ∞, we get

Φ(s) ≥ −$1/γ(s)Φ′′′(s)π2(s).

Now, define the function z1 by

z1(s) = κ(s)
(

$(s)(Φ′′′(s))γ

(Φ(s))γ +
1

π
γ
2 (s)

)
, s ≥ s1. (32)

Then, we see that z1(s) > 0 for s ≥ s1. Therefore, we have

z′1(s) =
κ′(s)
κ(s) z1(s) +κ(s)

(
$(s)(Φ′′′(s))γ)′

(Φ(s))γ

−γκ(s)$(s)(Φ′′′(s))γΦ′(s)

(Φ(s))γ+1 − γκ(s)
π′2(s)

π
γ+1
2 (s)

.

It follows from (1) that

z′1(s) =
κ′(s)
κ(s) z1(s)−Q(s)κ(s)

π
γδn
2 (s)

(Φ(s))γ
Φγ(τ(s))

π
γδn
2 (s)

−γκ(s)$(s)(Φ′′′(s))γΦ′(s)

(Φ(s))γ+1 − γκ(s)
π′2(s)

π
γ+1
2 (s)

.

From (31) and (32), we find

z′1(s) ≤
κ′(s)
κ(s) z1(s)−Q(s)

π
γδn
2 (s)

(Φ(s))γ
Φγ(τ(s))

π
γδn
2 (s)

−γκ(s)π1(s)

(
z1(s)
κ(s) −

1
π

γ
2 (s)

)1+1/γ

+ γκ(s) π1(s)

π
γ+1
2 (s)

,

hence

z′1(s) ≤
κ′(s)
κ(s) z1(s)−κ(s)Q(s)

π
γδn
2 (τ(s))

π
γδn
2 (s)

+ γκ(s) π1(s)

π
γ+1
2 (s)

−γκ(s)π1(s)

(
z1(s)
κ(s) −

1
π

γ
2 (s)

)1+1/γ

.



Axioms 2023, 12, 219 13 of 16

By the inequality (11) with A = z1(s)/κ(s) and B = 1/π
γ
2 (s), we obtain

z′1(s) ≤
κ′(s)
κ(s) z1(s)−κ(s)Q(s)

π
γδn
2 (τ(s))

π
γδn
2 (s)

+ γκ(s) π1(s)

π
γ+1
2 (s)

−γκ(s)π1(s)

{(
z1(s)
κ(s)

)1+1/γ

− 1
π2(s)

(
(1 + γ)

z1(s)
κ(s) −

1
π

γ
2 (s)

)}
,

hence

z′1(s) ≤
(
κ′(s)
κ(s) +

(1 + γ)π1(s)
π2(s)

)
z1(s)−κ(s)Q(s)

π
γδn
2 (τ(s))

π
γδn
2 (s)

− γπ1(s)
κ1/γ(s)

z1+1/γ
1 (s)

−κ(s)π1(s)

π
γ+1
2 (s)

+
γκ(s)π1(s)

π
γ+1
2 (s)

.

Using the inequality (10) with M = κ′(s)/κ(s) + (1 + γ)π1(s)/π2(s),
L = γπ1(s)/κ1/γ(s) and z = z1(s), we obtain

z′1(s) ≤ −κ(s)Q(s)
π

γδn
2 (τ(s))

π
γδn
2 (s)

+ (γ− 1)
κ(s)π1(s)

π
γ+1
2 (s)

+
κ(s)

(γ + 1)(γ+1)π
γ
1 (s)

(
κ′(s)
κ(s) +

(1 + γ)π1(s)
π2(s)

)γ+1

.

Integrating the above inequality from s1 to s, we have

∫ s

s1

[
Ψ(v)− κ(v)

(γ + 1)(γ+1)π
γ
1 (v)

(
κ′(v)
κ(v) +

(1 + γ)π1(v)
π2(v)

)γ+1
]

dv ≤ z1(s1).

By taking the lim sup on both sides of this inequality, we obtain a contradiction with
(30). Now, the proof is complete.

Theorem 5. Suppose that ω ∈ C((s0, ∞), (0, ∞)) is a solution of (1). If the differential equation

Φ′(s) +
1

π2(τ(s))

(∫ ∞

s

∫ ∞

ζ

π2(τ(v))
$1/γ(v)

(∫ v

s1

q(u)du
)1/γ

dvdζ

)
Φ(τ(s)) = 0. (33)

is oscillatory, then (1) has no positive decreasing solutions.

Proof. Assume that case (B3) holds. From (1) and integrating from s1 to s, we get

$(s)
(
Φ′′′(s)

)γ ≤ −Φγ(τ(s))
∫ s

s1

Q(v)dv. (34)

As in the proof of Lemma 3, we get that (15), (17) and (19) hold. By integrating (34)
from s to ∞ and using (19), we obtain

−Φ′′(s) ≤ −
∫ ∞

s

Φ(τ(v))
π2(τ(v))

π2(τ(v))
$1/γ(v)

(∫ v

s1

Q(u)du
)1/γ

dv.

From Lemma 3, note that Φ(s)/π2(s) is nondecreasing, which yields

−Φ′′(s) ≤ − Φ(τ(s))
π2(τ(s))

∫ ∞

s

π2(τ(v))
$1/γ(v)

(∫ v

s1

Q(u)du
)1/γ

dv. (35)
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Integrating (35) from s to ∞, we find

Φ′(s) ≤ −
∫ ∞

s

Φ(τ(ζ))

π2(τ(ζ))

∫ ∞

ζ

π2(τ(v))
$1/γ(v)

(∫ v

s1

Q(u)du
)1/γ

dvdζ

≤ − Φ(τ(s))
π2(τ(s))

∫ ∞

s

∫ ∞

ζ

π2(τ(v))
$1/γ(v)

(∫ v

s1

Q(u)du
)1/γ

dvdζ.

It is obvious that Φ is a positive solution of the first-order delay differential inequality

Φ′(s) +
1

π2(τ(s))

(∫ ∞

s

∫ ∞

ζ

π2(τ(v))
$1/γ(v)

(∫ v

s1

Q(u)du
)1/γ

dvdζ

)
Φ(τ(s)) ≤ 0.

According to [25], (33) also has a positive solution, which is a contradiction. This
completes the proof.

Corollary 2. Suppose that ω ∈ C((s0, ∞), (0, ∞)) is a solution of (1). If

lim inf
s→∞

∫ s

τ(s)

1
π2(τ(ς))

(∫ ∞

ς

∫ ∞

ζ

π2(τ(v))
$1/γ(v)

(∫ v

s1

Q(u)du
)1/γ

dvdζ

)
dς >

1
e

, (36)

then (1) has no positive decreasing solutions.

Proof. Using [25], we observe that condition (36) guarantees the oscillation of (33). The proof
is now finished.

2.4. Oscillation Theorem

Here, we combine the known criteria in the literature that exclude cases (B1) and (B2)
with the criteria we obtained that excludes case (B3) to determine the oscillation of (1).

The proof of the case when (B1) or (B2) holds in the following theorems is identical
to [12] [Theorem 2.1, Theorem 2.2]. Finally, conditions (27), (30) and (36), whichever of
them excludes the case (B3).

Theorem 6. Assume that (27), (30) or (36) holds. If (8) and (7) hold for some λ1 ∈ (0, 1), then
(1) oscillates.

Example 1. We consider (
s4(ω(s) + p0ω(λs))′′′

)′
+ q0ω(ξs) = 0,

where λ, ξ ∈ (0, 1), p ∈ (0, λ) and q0 > 0. It is easy to verify that π0(s) = 1/3s3
0, π1(s) = 1/6s2

and π2(s) = 1/6s. Note that n = 0, δ∗ = q0/6 and δ0 =
√

q0/6. By applying condition (6),
we obtain

q0 >
6

4(1− p0/λ)
. (37)

Moreover, by applying condition (30), we obtain

q0 >
6(λ)
√

q0/6

4(1− p0/λ)
. (38)

In the special case where λ = 1/2 and p0 = 1/4, the conditions (37) and (38) become
q0 > 3.1844 and q0 > 2.0088, respectively. As a result, our new results offer more accurate criteria
for the exclusion of positive decreasing solutions.
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3. Conclusions

To establish the oscillation criterion, the exclusion conditions for each case of the
solution derivatives must be found separately. The criterion that frequently has the
greatest impact on the oscillation test of the equation is the exclusion of positive decreas-
ing solutions. In this study, we used the noncanonical case to examine the asymptotic
properties of fourth-order differential equation solutions. We created new properties
that helped us obtain more efficient terms for the oscillation of Equation (1). Then, using
the results from Section 2.3 and known results, we created new criteria for the oscillation
of the investigated equation. Finally, we offered a special case study to highlight the
novelty and importance of our results.
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