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Abstract: The unit-power Burr X distribution (UPBXD), a bounded version of the power Burr X
distribution, is presented. The UPBXD is produced through the inverse exponential transformation of
the power Burr X distribution, which is also beneficial for modelling data on the unit interval. Com-
prehensive analysis of its key characteristics is performed, including shape analysis of the primary
functions, analytical expression for moments, quantile function, incomplete moments, stochastic
ordering, and stress—strength reliability. Rényi, Havrda and Charvat, and d-generalized entropies,
which are measures of uncertainty, are also obtained. The model’s parameters are estimated using a
Bayesian estimation approach via symmetric and asymmetric loss functions. The Bayesian credible
intervals are constructed based on the marginal posterior distribution. Monte Carlo simulation re-
search is intended to test the accuracy of various estimators based on certain measures, in accordance
with the complex forms of Bayesian estimators. Finally, we show that the new distribution is more
appropriate than certain other competing models, according to their application for COVID-19 in
Saudi Arabia and the United Kingdom.

Keywords: power Burr X distribution; entropy; Bayesian estimation; Metropolis-Hastings; COVID-19 data
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1. Introduction

Utilizing differential equations, Burr [1] introduced twelve distributions. In the lit-
erature, Burr type XII distributions and single-parameter Burr type X, have drawn much
interest. Surles and Padgett [2] have proposed the two-parameter Burr X distribution (BXD),
often known as the generalized Rayleigh distribution. For data modelling, the BXD can be
used as an alternative to the Weibull and Rayleigh distributions. However, the model has a
considerable impact on the prediction of failure rates and has generated a lot of interest in
modelling across a wide range of disciplines, including hydrology, medicine and reliability
analysis. The cumulative distribution function (CDF) of the BXD is given by:

2

Gx)=1—exp—(ax?)"; x>0, (1)

where, b > 0, and a > 0 are the shape and scale parameters, respectively. The probability
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the BXD in order to increase the viability of BXDs, see, for example, [4-9]. Our focus is on
the recently established power BXD (PBXD) by Usman and Ilyas [10], with an additional
shape parameter that depends on the transformation Y = 1/X'/?, § > 0. The CDF and
PDF of the PBXD are, respectively, given by:
2190
Gy) = [1—exp—(ay)’]; vy >0, 3)

5-1
g(y) = 2§a2by2b_1e_(“yh)2 [1 —exp —(a yb)z} ; y>0. 4)

For 6 = 1, the CDF (3) reduces to BXD. Usman and Ilyas [10] mentioned that, subject
to certain restrictions, their model can handle both symmetrical and heavy-tailed skewed
data sets.

A significant challenge in data modelling is the selection of an adequate lifetime prob-
ability. However, over time, a variety of probability models have been widely proposed for
the analysis of data sets in a variety of fields, including the medical sciences, actuarial sci-
ences, engineering, finance and insurance, demography, biological sciences, and economics.
In many practical scenarios, we are required to deal with the uncertainty of bounded
situations. We commonly encounter variables that fall within the range of (0, 1), such as
the percentage of a particular trademark, the results of some capacity tests, different lists,
and rates. In order to model these variables effectively, continuous unit distributions, or
probability distributions with support for (0, 1), are crucial. Due to this, some authors have
recently concentrated on the creation of distributions that are specified on the bounded in-
terval using any one of the parent distribution modification strategies. Among distributions
that are specified in the (0, 1) interval, the beta distribution is obviously the most well-
known. The beta distribution is helpful for simulating data on the unit interval, but different
distributions have also been proposed and researched over time. The Topp-Leone distribu-
tion (see [11]) and the Kumaraswamy distribution (see [12]) can all be used as examples by
the reader. The idea of offering distributions defined by the unit interval corresponding
to any continuous distribution, however, has recently attracted the interest of statisticians.
The following are a few of the most practical unit-interval distributions: the log-Lindley
(Goémez-Déniz et al. [13]), unit-Birnbaum-Saunders (Mazucheli et al. [14]), unit-inverse
Gaussian (Ghitany et al. [15]), unit-Lindley (Mazucheli et al. [16]), unit-BurrIll (Modi and
Gill [17]), unit-Weibull (Mazucheli et al. [18]), unit-Burr XII (Korkmaz and Chesneau [19]),
unit-odd Fréchet power function (Hagq et al. [20]), unit-Teissier (Krishna et al. [21]), unit-
exponentiated exponential (Jha et al. [22]) and unit-exponentiated half-logistic (Hassan et al. [23])
among others.

In this study, we propose a new unit probability distribution, based on the PBXD, that
has three parameters. A new unit-PBXD (UPBXD) is provided based on the transformation
W = e~ Y, where Y represents the PBXD. The UPBXD has the following desirable characteristics:

s The UPBXD is a flexible model and can be used to describe a variety of datasets with
a range between zero and one.

s The new density function of the UBBXD takes several shapes, including unimodal,
reversed J-shaped, U-shaped, left-skewed, and symmetric (see Section 2).

. The HF shapes of the UPBXD can be increasing, J-shaped, or bathtub (U-HF) (see
Section 2).

»  We derive some of the most important statistical characteristics of the UPBXD, such
as the analytical expression for moments, the quantile function, incomplete moments,
stochastic ordering, some uncertainty measures, and stress—strength reliability.

s The parameter estimators of the UPBXD are explored using a Bayesian technique. The
Bayesian credible intervals are also created.

s  To examine the effectiveness of estimators based on accuracy criteria, an exclusive
simulation study was conducted.

= Application to COVID-19 datasets from Saudi Arabia and the United Kingdom are
used to show the superiority of the proposed model over other well-known models.



Axioms 2023, 12, 297

30f26

An outline of the paper’s structure is provided. Section 2 provides a definition of
the suggested distribution. The distributional characteristics of the UPBXD are covered in
Section 3. The maximum likelihood (ML) and Bayesian estimators utilizing various loss
functions are covered in Section 4. The effectiveness of the suggested point and interval
estimators is assessed using a Monte Carlo simulation in Section 5. Section 6 shows that
the UPBXD outperforms the other unit distributions when employed with COVID-19 data.
The paper conclusion is completed in Section 7.

2. Unit Power Burr X Distribution

In this section, we present the UPBXD, which results from the transformation of the
type W = ¢~ ¥, where Y is the PBXD and is a new bounded distribution with support on
(0, 1). Thus, the following is how the CDF of the PBXD can be obtained:

F(w) =P(W<w) =Pl ¥ <w)=P(-Y <In(w)) =1—P(Y < —In(w)) =1 — Fy(—In(w)),

which gives

2 )
F(w):1—{1—exp{—(a(—lnw)b) }} ; 0<w<1,a,b,6>0. (5)

Based on (5), we have F(w) = 0, for w < 0, and F(w) = 1, for w < 1. The PDF of the
UPBXD related to (5) can be acquired as follows:

o—1

f(w) = 2a*béw ™1 (— 1nw)2b_1e(“(1“w)b)2{1 —exp [— (a (— lnw)b)z] } ; O<w <. (6)

A random variable with PDF (6) is represented by UPBXD (a,b,). For b = 1, the
PDF (6) gives UBXD as a new sub-model. The following is the HF of the UPBXD:

2 -1
h(w) = 2a*béw ™ (— lnw)Zb_le*(“(*lnw)b) {1 —exp [— (a (— lnw)b)z} } . (@)

The related plots for various selections of the parameters a,b, and 6 are shown in
Figures 1 and 2 to provide a general overview of the shapes of the PDF (2) and HF (7).

In Figure 1, the PDF graphs for various parameter combinations display a variety of
shapes, such as (a = 2, b = 2) symmetric normal, (@ = 0.5, b = 0.3) U-shaped, (2 = 0.5, b = 2)
right-skewed, (a = 2, b = 0.3) J-shaped, and (a = 2, b = 2) normal tapered. In Figure 2, the
UPBXD’s HF shapesin (2 =0.5,b=2), (a=2,b=0.3), and (a =2, b = 2) have increasing and
J shapes, while (a = 0.5, b = 0.3) has a bathtub shape.

The parameter ¢ is responsible for the bathtub shapes given that the other two param-
eters (1 and b) are less than one. The ¢ parameter is responsible for the ] shapes where a > 1
and b <1.

By inverting (5), we can get the quantile function (QF) of the UPBXD, which looks

like this: b
1
wq—exp<—{i{—ln{l—(l—q)l/‘s}}z} ), 0<g<1, 8)

where g is the uniform random variables. The first, median, and third quantiles are
produced by setting g = 0.25, 0.5, and 0.75 in (8). It is simple to simulate the random
variable of the UPBXD from (8).
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Figure 1. Plots of various PDF shapes of the UPBXD for different parameter values.
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Figure 2. Plots of various HF shapes of the UPBXD for different parameter values.
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3. The UPBXD's Properties

In this section, we examine aspects of the UPBXD's structural characteristics, such
as some moment’s measures, information measures, stochastic ordering (SO), and stress—
strength (SS) reliability.

3.1. Some Moments Measures
The mth moment for W~UPBXD (a, b, ), is determined as follows:

1
W, = 2a2b5/ w1 (— lnw)bele_(“(‘h‘w)b) [1 —exp [— (a(— lnw)b) H dw. (9)
0
Using the binomial expansion in (9) provides

00 1
W =20%00Y (~1) (5 i 1)/””"1(— In )2~ le (FD( )" gy,
j=0 0

2
Lety = (a (—In w)h) , then the mth moment of W, is given by

0 . . b -1 )
j=0 0

Use the exponential expansion then 3, , obtains the following form:
- OZOl (_1)];’("11(56177]( ( ) ; 1 ) j?kab e~ DYy
. ! 5

B o VA TG B K
= Ere (0 ()

where, I'(.) is a gamma function. Furthermore, the mth central moment of W, is defined by

o = BV =" = 3 (1) () ) W

i=0

Some moments measures including, first four moments, variance (¢%), coefficient of
skewness («3) and coefficient of kurtosis (x4) for the UPBXD are calculated for specific
parameter values. Table 1 provides these measures considering parameter values as:
(i) (a =15b=13,6 =14),(ii) (a = 05,b = 04,6 = 04), (iii) (a = 4,b = 2,6 = 0.7),
(iv) (a=07,b=04,6 =2),(v) (a=15b=05,6 =0.5), (vi) (a =5,b = 1.6, = 0.4),
and (vii) (a = 1.5,b = 1.5,6 = 3).

Table 1. Several UPBXD moment values.

W i) (ii) (i) (iv) W) (vi) (vii)
Wy 0.499 0.396 0.67 0.802 0.803 0.477 0.416
T 0.264 0.231 0.458 0.653 0.688 0.239 0.18
T 0.148 0.160 0.32 0.54 0.612 0.125 0.08
W, 0.087 0.122 0.228 0.454 0.556 0.069 0.037
02 0.015 0.074 0.009 0.011 0.044 0.011 0.0062
a3 0.377 0.510 0.38 —0.135 —1.237 0.465 0.375
g 2.856 2.132 2.75 2.248 3.799 3.070 3.135
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Table 1 displays that the UPBXD is right- and left- skewed in accordance with the
values of a3. Additionally, the distribution is leptokurtic and platykurtic according to the
values of ay. Figure 3 shows the 3-dimensional plots for coefficient of skewness and kurtosis
for UPBXD with different values of parameters. Looking at Figure 3, we can see that the
coefficient of skewness and kurtosis increases when b and J increases, while a4 increases
then the coefficient of skewness decreases and coefficient of kurtosis increases.

Furthermore, the mth lower incomplete moment, say v, (x), of the UPBXD is given by:

T 2 2 o—1
U (x) = 2a2b5/ wmfl(—lnw)2b_1e*(“(*lnw)b) [1 —exp [— (a(—lnw)h) H dw.
0

2
Letz = (a (—1In w)b> , and using the binomial expansion, then the mth incomplete
moment of W is

co 5 s -1 ,
Um(x) =3Y_ (—1) (5 . 1) / (@) Ty e Uty gy,
) (a(~Inx)")
Using exponential expansion and after simplification, the mth moment is as below:
- G VA 7 I A S b2
o) = J)kX::O g et )7 g P U D)),

where (., x) is an upper incomplete gamma function. The Lorenz and Bonferroni curves
are well-known applications of the first incomplete moment. In the fields of economics,
demographics, insurance, engineering, and medicine, these curves are especially helpful.

1.27

1.26

1.25

1.24

1.23

1.22

1.21

1.20

1.19
—0.10

1.18

Figure 3. Coefficient of skewness and kurtosis for UPBXD.
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3.2. Information Measures

In this sub-section, we examine the entropies of Rényi, Havrda and Charvat, as well
as d-generalized entropy as information metrics. These measures collectively provide
information about the system’s overall amounts of data. The Rényi entropy presented by
Rényi [24], is conceptually the quantity of information contained in a random process, it is
defined by:

7(d) = (1—d) 'log ( / (f(w))ddw) ,d>0,d # 1. (10)

— 00

Inserting (6) in (10), and using binomial expansion, then #(d) is as follows:

i=0 0

1
n(d) = a—a log(z ( 1))(2a2b(5)d/ w—d(f1nw)d<2b—1)e—(d+i>(u(—lnw)”) dw). (11)

2
Letz = (a (—In w)b) , and using exponential expansion in (11), we obtain

1 S d2b—-1)+1+m
n(d) = a=d log (i EO Eim(d,d, b,ﬂ)F< b >>, (12)
where
- i (6 —1 d=15d(g_1)" d_1_m
‘:‘i,m(drérb/a) = (_1)l+m< ( i )> (Zb) i(z(bd—l)1421+mab bob
(m!)(d+i) bl

Reference [25] proposed another uncertainty measure, the Havrda and Charvat. Here
we assume H(d), and this is represented mathematically by:

—00

H(d) = # [(/w (f(w))ddw)‘li —11,51 £1,d > 0.

Using the same procedure above, we obtain H(d), as follows:

i,m=0

In reference [26], a further generalized Shannon entropy form known as d-generalized
entropy was developed. It is represented mathematically as below:

K(d)_(d—l)_llf (f(w))2_ddw—1], 0<d<2,d#1.

— 00

Using a similar way as above, we obtain the d-generalized entropy as follows,

K(d):(din <i E7(d,5,b,a)T <<2‘d)(2b2—b1)+1+m>>,

where

i - - 1-d52—d " 1 d m
El (d 5,b, 11) ( 1)z+m ((2 d)(§ 1))( (Zb) 0 (d—|—1) Ldm

i @i
m!)(2—d+1i) 2

We use the following sets of parameters to provide entropy numerical values for the mea-
surements under consideration: (i) (@ = 1.5,b = 1.3,6 = 1.4), (ii) (a = 0.5,b = 04,6 = 0.4),
(i) (a2 = 4b =20 =07),@Gv) (a = 07,b = 04,6 = 2),(v) (a = 5b = 16,0 = 04),
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(vi) (a =0.7,b = 05,5 = 2),and (vii) (a = 1.5,b = 1.5, = 3). Table 2 provides some numerical
values for the provided three entropy measures.

Table 2. Numerical values for the UPBXD'’s entropy measures.

d Measures i) (ii) (iii) (iv) ) (vi) (vii)
n(d) -0.619 —0.308 —0.819 —0.829 —-0.499 —0.669 —0.944
0.5 H(d) —-1.115 —0.64 —1.35 —1.36 —0.948 —-1.177 —1.475
K(d) —1.101 0.792 —1.354 —1.201 —2.953 —-1.179 —1.688
n(d) —-0.877 1.01 —1.034 —0.94 —1.814 —0.927 —1.224
1.5 H(d) —1.16 0.976 —1.405 —1.257 —2.835 —1.236 —-1.72
K(d) —0.533 —0.286 —0.672 —0.678 —0.442 —0.568 —0.753
3.3. Stochastic Ordering
The statistical literature places a great emphasis on the ordering of distributions,
especially among lifetime distributions. A significant part of the ranking of various lifetime
distributions is found in Johnson et al. [27]. Here, we take into account four distinct SO for
two independent UPBX random variables with a restricted parameter space: the usual, the
hazard rate, the mean residual life, and the likelihood ratio order. Recall that a family has
the monotone likelihood ratio property if it has a likelihood ratio ordering. This suggests
that, when the other parameters are known, there exists a test that is consistently the
strongest for any one-sided hypothesis. According to Shaked and Shanthikumar [28], when
two independent random variables, W; and W5, have CDFs that are Fy, (w) and Fy, (w),
respectively, W1 is said to be smaller than W5 in the
s Stochastic order (W1 <t (W»)) if Fyy, (w) > Fyy, (w) Vw
s Hazard rate order (W1 <p, (W2)) if hyy, (w) > hy, (w)Vw
s Mean residual life order (W <pq (W) if myy, (w) > my, (w)Vw
s  Likelihood ratio order (Wy <. (W»)) if f, (w)/ fw, (w) decreases in w.
Assume that Wj, i = 1, 2 have the UPBXD with parameters (a;, b;, §;). Further, assume
that F;(w) and f;(w) indicate, respectively, W;’s CDF and PDE.
If fw, (w)/ fw,(w) is a decreasing function ¥ w, then, in terms of likelihood ratio order;
W] is said to be stochastically less than Wy (W1 < ;,W»)
Let W1~UPBXD (a1, by, 61) and Wo~UPBXD (ay, by, 6>), then the likelihood ratio or-
dering is as follows:
2
fw, (w) 2a2b161(— In w)P17 e (o (~Tnw)1 >2 [17eXp [7 (ﬂl (—Inw)™ )2} ] '
= 5T
fui () 2a3b265 (— Inw)?2 1= (22 (~nw)’2)* [17exp [f <a2 (=In w)b2>2} ] i
d Sy @)\ 2oy by) |, 2[a0(nw1 —aBhy(—inw)?2 1] 26210y exp (a1 (— Inw) ) (I
dw log fw,(w) [ T whw w o

w [17exp [7 (al (=In w)bl ) 2} ] g

2a3byd>(— In w)2b27l exp — (az (=In w)bz)2
w [1—exp [(ﬂg (= lnw)b2>2} ] 2
fwy (w)

For a; > az, by > by, 61 > 6, we get %log {fw @)
2

] < 0,forall0 < w < 1, hence

ggz; is decreasing in w and hence W; <;, W,. Moreover, W is said to be smaller than

W, in other orderings such as SO (W < 3Wj), HE(W; < ;,,W»), and mean residual order
(Wl < merZ)'
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3.4. Stress—Stress Reliability

In statistical literature, the term “SS reliability” is used to characterize the reliability
of a system subjected to random stress W; and having random strength W, with the
system failing if W, is greater than Wy, that is; R = P(W,; < Wj). Let us assume that
W1~UPBXD (a3,b, 1) and Wo~UPBXD (ay, b, §;) are two independent random variables.
The SS reliability of the UPBXD is then calculated as follows:

1 51-1 B
R — 2a1b51/ wfl(_ h,lw)*Zb*le*(m(*anYbf [1 _ e(ﬂl(an)b)T ] |} _ [1 _ e(ﬂz(lnw)b)z} 2] dw. (13)

Using the binomial expansions in (13), we get

R =1-2a1bs f (—1)i]+i2( §1i—1 )( )fw —Inw) ~2b=1,— (i1 +ira3) (— Inw) ¥ g,
1

i1,i2=0

g 2 (c1)iitigs 60 —1 6>
=1 ,EO (a2iy+ipa3) ( 11 i )

As seen in (14) the SS reliability dependent on the parameters a1, a;, 1, and é,.

(14)

4. Parameter Estimation

The estimation methodologies for the parameters (a, b, & )T of the UPBXD are obtained
in this part using Bayesian and non-Bayesian estimation approaches. We provide classical
method for the UPBXD as ML and Bayesian estimation utilizing various loss functions,
including the squared error loss function (SELF), the linear exponential (LINEX) loss
function and entropy loss function (ELF).

4.1. Maximum Likelihood Method

Consider a population that has a UPBXD described by PDF (6) with an unknown
parameter vector & = (a,b,6), and that a random sample of size n is taken from that

population. Following that, the likelihood of UPBXD for & = (a,b, ), say L (w ‘ S) , will be

Inw, o N2b-1 51
L(w[3) = 27a>p"s" "L H(ln;l)’){l—exp[—@(—lnwi)by” . (15)

i=1 i

The log likelihood function for S = (a,b,4), say §(w ‘ %), will be
) n n ) n o
i(w]%) = nIn(26a%b) — ¥ Inw; + (26 —1) ¥ In(— Inw;) — a2 ¥ (— Inw;)
i=1 i=1 i=1
2 (16)
+(6—1) i ln[l —exp { (a (—lnwi)b) H :
i=1
The nonlinear equations created by differentiating (16) with respect to a,b, and 4,

are solved to obtain the ML estimator for the unknown parameters. The score vector
A(w[9) _ [a(w[S) af@[s) w$)]"
R on 7 db 7 9

components, say U(SJ) = , are given by

n 2b
Ua) = ——Zaz —Inw;)? +(5—1)2 20(~ Inw,) 5 , (17)
=1 exp{(a (—lnwi)b) ] -1
n n n 2b
U(b) _ % +221n(—lnwi) . 20122 (flnwi)Zb ln(flnwi) + Z 2512(5 — 1)(_11’1wl') ln(—lnwz‘), (18)

i=1 i=1 i=1 [exp (az(— In wi)%) - 1}
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q2

q3

q1

n

ues) = 3 +Iiln {1 —exp [— (a (—lnwi)b>2”. (19)

The ML estimator of &, say §, is achieved by solving the nonlinear system (17)—(19).
These equations cannot be resolved analytically, but they can be resolved numerically by
iterative statistical software techniques. We can use iterative methods, such as a Newton—
Raphson algorithm, to obtain these estimates.

4.2. Bayesian Estimation

In this section, the Bayesian estimators based on different loss functions and associated
highest posterior density (HPD) intervals of the UPBXD parameters are developed. The
posterior distribution of & is described in the following if we assume that the prior PDF of
3 is unknown.

n(%’w) o< L(w‘%)g(%). (20)

The posterior density of & is defined in Equation (20) as 77($J|w), where on the right

hand side L (w‘ %) is the likelihood function of UPBXD (<) and g(<) is the prior density

of .

4.2.1. Prior Information

For the purpose of discussing Bayesian estimate, we assume that the parameters
a,b, and ¢ are independently distributed using the gamma distribution. Let g; and F;
where j =1, 2, 3, be the scale and shape parameters for the gamma priors of 4, b, and ¢. The
following is a proportionate representation of the joint density of a, b, and 9.

(F) o alt—le=mapn—1,=hbsi—1,-hsd, qi,hj >0,j=1,2,3. (21)

The hyper-parameters will be elicited using the informative priors. Whenj=1,...,L
and k are the number of samples available from the UPBXD simulation, the mean and
variance obtained using the ML estimates of the UPBXD g, b, and § will be equal to the
mean and variance of the considered priors (Gamma priors)q; and k;. By equating a, b, and
0 with the mean and variance of gamma priors, we may determine their respective means
and variances. Thus, we obtain

1 N\’ .
Xk al lszlﬁ]
L & — L~
L L (4] 1 L 4j Y ' 1 L . 1 L 27
e HZjl(”’—L f1”]>
2
1 L pij Ior 4
szzl Eijle
1 1 2 &t =— 1 2
L i L 1 L i L 1
HZj—l(b]—LZj—1bf> HZj—l(b]—LZj—1b7>
1o 4 2 1 A
<L2j=15]> ZE]‘L:15]
5, & h3 =

1 L PR RNy
L_lzj1<5]_LZj1§]>

s (s tye 5)
L—1771 L ~i=1

In regard to be solving the above two equations, the estimated hyper-parameters can
be written as described in the following subsections.

4.2.2. Posterior Distribution

Here, the symmetric loss function (SELF), and asymmetric loss function (LINEX and
ELF) are used to develop the Bayesian estimators for the same unknown parameters by
utilizing independent gamma priors.
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The likelihood function (15) and the joint prior function (21) are combined to form the
joint posterior distribution. Hence, the joint posterior density function is
" (a(—1nw)?) \2b—1 51
71(%|w) g2t —1,—mapn+q2=1,—hb sn+q2—1,-h3é, 121( (=Inw)’) ﬁ % {1 —exp |:_ (a (_ In wi)b)Z:H ) (22)
i=1 i

The SELF, is defined as follows:

SELF(§, %) « (§ — %)2.

The Bayesian estimator of & under SELF is as follows:

~:/// 72(S|w) da db ds. (23)
0 0 0

The LINEX, as asymmetric loss function, which is denoted by @, is the derived
as follows:
Llnex(c‘ “) xef O _c(3-9)—1; c#£0.

The Bayesian estimator of & under LINEX loss function is as follows:

::///e w) da db ds. (24)
000

The ELF was first suggested by James and Stein [29] to estimate the Variance-Covariance
(i.e., dispersion) matrix of the multivariate normal distribution. According to Calabria
and Pulcini [30], the ELF is an excellent asymmetric loss function. The form’s ELF is

thought of as
- 2 -
ELF(%, %) x % [m(%) - m(%)}; c#0.

The Bayesian estimator of & under ELF is as follows:

:/// ~¢r0(S|w) da db ds. (25)
000

The Bayes estimator of 4, b, and J via different loss functions cannot be expressed in an
explicit statement, as is evident from Equations (23)—(25). To do this, we suggest generating
samples from conditional posterior distribution using Bayes Monte Carlo Markov chain
(MCMC) techniques in order to compute the acquired Bayes estimates and create associated
HPD intervals.

& (

4.2.3. Markov Chain Monte Carlo

Since it is challenging to solve these integrals analytically, the MCMC method will be
used. The most important sub-classes of MCMC algorithms are Gibbs sampling and the
Metropolis-Hastings (MH) samplers. To do this, it regards a candidate value produced
from a proposal distribution as normal for each iteration of the process, the MH method
is comparable to acceptance-rejection sampling. From Equation (22), the full conditional
density of 4, b, and ¢ are provided, respectively, to execute the MCMC sampler as follows:

,)f —Inw; by? 2776-1
n(a|b,5,w) o g2htq—1e—wia, 1:1(11( w;)") ﬁ {1 —exp [_ (a(—lnw,-)b> }] ,
i=1

_y —Inw;)" 2 _ 2776-1
7(bla, 8, w) o« b HR—le—wabe E @ ne)) ﬁ Clnw)*™ {1 —exp {— (u (—lnwl-)b) H ,

; wi
i
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and -
n 2 ()71
nt(8la,b,w) « (5”+‘72—1e_w2‘5H [1 — exp [— (a (—In w,»)b) ] ] .
i=1
It is thought that the MH algorithm can resolve this issue (for detail, see Alrumayh et al. [31]
and Almetwally et al. [32]). The MH algorithm’s sampling procedure is carried out as follows:
Step 1: Set the initial values al0) = a, p(0) = b,and 60 = §.
Step 2: Set] = 1.
Step 3: Generate a*, b* and ¢* from N(a, V;), N(b,V;) and N(o, V;), respectively.
. . m(a* [pI~D 6071 w)
Step 4: Obtain /; = min|1, = AEN il
ﬂ(b*|a(171),5(171),w) _ . 7'[((5*‘[1([71)}7([71),@)
(D]l 51 w) | hs = min 1, (BTl 0 501 Y |
Step 5: Generate samples U]- j =1,2,3 from the uniform U(0, 1) distribution.
Step 6: If Uy < h,, Uy < Ry, and Uz < hg, then set al) = g%, p() = p*, (D = g%,
otherwise a(l) = a(l’l),b(” = b(I’l), and () = sI-1),
Step 7: Set I = I+ 1.
Step 8: Repeat steps 3-7 B times and obtain aD,b(D and 6, forI=1,2,..., B.

hp = min [1, p-

4.2.4. Highest Posterior Density Interval

Using the technique suggested by Chen and Shao [33], 100(1 — «)% HPD interval
estimates of a,b, and ¢ are created. The MCMC samples of S0) for j=1,...,Bare first
ordered. Therefore, the two-sided 100(1 — )% HPD interval of S is given by

(a[%m,am—%)m), (b[%m,b[(l—%)m) and (515, 610-3)81)

where alll < a2 < . < alBl plll < pl2 < < plBl and 61 < 602] < ... < 5Bl

5. Simulation

A Monte Carlo simulation was run to evaluate the performance of the proposed
point and interval estimators that were introduced in the previous sections. Based on
various selections for sample size 1 as 40, 80, and 160, UPBXD was used to create a total of
5000 samples. To compare the results of Bayesian estimate based on various loss functions,
the bias and mean squared errors (MSE) were calculated. The UPBXD was used to generate
the data for the lifetime of various parameters 4, b, and 9, as follows.

InTable3: a = 0.5, b = 06and 6§ = 0.5, 1.2 and 3. In Table4: a = 05, b = 1.7
and 6 = 05, 1.2and 3. InTable5: a = 2, b = 0.6 and § = 0.5, 1.2 and 3. In Table 6:
a=2,b=17andd = 0.5, 1.2 and 3.

The hybrid MCMC algorithm described in Section 4.2.3 was adopted to generate
12,000 MCMC samples, and we discarded the first 2000 values as ‘burn-in’. Accordingly;
the 10,000 MCMC samples were used to produce the average Bayes MCMC estimates and
95% two-sided Bayesian credible intervals.

1. Algorithm for simulation: By establishing all simulation controls, we can build our
model. The following actions must be finished in this stage in the correct order:

2. Assume different values for the UPBXD parameter vector and sample size.

3. Make the sample random values for the UPBXD using uniform and the QF in
Equation (7).

4. We calculated the accuracy measures for each Bayes estimates of the UPBXD parame-
ters using MH algorithm.

5. This experiment should be run (L-1) times.
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Table 3. Bayesian inference with different loss functions when a = 0.5, b = 0.6.
o5 SELF LINEX (c = —1.5) LINEX (c = 15) ELF (c= —15) ELF (c=15)

5 n Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCl
a 0.1392 0.0224 0.2075 0.1448 0.0242 0.2140 0.1335 0.0207 0.2021 0.1422 0.0233 0.2098 0.1237 0.0181 0.1985

40 b —0.0261 0.0008 0.0423 —0.0253 0.0008 0.0420 —0.0269 0.0007 0.0427 —0.0256 0.0008 0.0421 —0.0284 0.0007 0.0426

5 0.6123 0.4095 0.7079 0.6587 0.4793 0.7990 0.5592 0.3364 0.5954 0.6267 0.4298 0.7275 0.5222 0.2932 0.5536

a 0.0900 0.0094 0.1390 0.0927 0.0099 0.1413 0.0872 0.0088 0.1365 0.0915 0.0097 0.1400 0.0818 0.0079 0.1331

0.5 80 b —0.0136 0.0002 0.0262 —0.0133 0.0002 0.0262 —0.0139 0.0002 0.0265 —0.0134 0.0002 0.0263 —0.0144 0.0003 0.0267
5 0.4229 0.1878 0.3562 0.4479 0.2117 0.3996 0.3954 0.1632 0.3134 0.4323 0.1965 0.3721 0.3672 0.1405 0.2908

a 0.0843 0.0078 0.1017 0.0865 0.0082 0.1032 0.0821 0.0074 0.0994 0.0856 0.0080 0.1026 0.0779 0.0067 0.0967

160 b —0.0135 0.0002 0.0237 —0.0126 0.0002 0.0237 —0.0127 0.0002 0.0238 —0.0136 0.0002 0.0237 —0.0137 0.0002 0.0241

5 0.3906 0.1567 0.2496 0.4121 0.1751 0.2732 0.3670 0.1380 0.2186 0.3991 0.1638 0.2564 0.3411 0.1190 0.2017

a 0.0804 0.0082 0.1604 0.0841 0.0088 0.1614 0.0767 0.0075 0.1585 0.0825 0.0085 0.1609 0.0695 0.0065 0.1600

40 b —0.0204 0.0008 0.0769 —0.0187 0.0008 0.0775 —0.0221 0.0009 0.0757 —0.0195 0.0008 0.0772 —0.0252 0.0010 0.0756

5 0.6959 0.5321 0.8034 0.7936 0.6999 0.9837 0.5905 0.3779 0.6559 0.7138 0.5604 0.8249 0.5986 0.3913 0.7033

a 0.0417 0.0025 0.1130 0.0431 0.0027 0.1135 0.0403 0.0024 0.1112 0.0426 0.0026 0.1131 0.0372 0.0022 0.1105

12 80 b —0.0076 0.0002 0.0494 —0.0069 0.0002 0.0498 —0.0082 0.0002 0.0491 —0.0072 0.0002 0.0496 —0.0094 0.0003 0.0486
5 0.3724 0.1515 0.4317 0.4044 0.1794 0.4884 0.3394 0.1252 0.3813 0.3792 0.1571 0.4387 0.3370 0.1238 0.3846

a 0.0371 0.0018 0.0780 0.0380 0.0018 0.0789 0.0363 0.0017 0.0774 0.0377 0.0018 0.0785 0.0344 0.0016 0.0769

160 b —0.0082 0.0002 0.0370 —0.0079 0.0002 0.0371 —0.0086 0.0002 0.0370 —0.0080 0.0002 0.0371 —0.0092 0.0002 0.0371

5 0.3429 0.1242 0.3101 0.3689 0.1443 0.3453 0.3161 0.1050 0.2732 0.3486 0.1284 0.3168 0.3135 0.1034 0.2735

a 0.0224 0.0019 0.1450 0.0249 0.0020 0.1457 0.0198 0.0018 0.1438 0.0240 0.0020 0.1448 0.0143 0.0016 0.1431

40 b —0.0036 0.0011 0.1197 —0.0013 0.0011 0.1215 —0.0059 0.0011 0.1188 —0.0023 0.0011 0.1199 —0.0101 0.0011 0.1184

5 0.4244 0.2485 1.0159 0.4897 0.3280 1.1489 0.3576 0.1793 0.8598 0.4307 0.2556 1.0306 0.3919 0.2142 0.9512

a 0.0091 0.0008 0.1013 0.0101 0.0008 0.1021 0.0080 0.0007 0.1011 0.0098 0.0008 0.1019 0.0057 0.0007 0.1005

3 80 b —0.0010 0.0005 0.0904 0.0000 0.0005 0.0907 —0.0019 0.0005 0.0898 —0.0004 0.0005 0.0906 —0.0037 0.0005 0.0899
5 0.1950 0.0567 0.5279 0.2113 0.0661 0.5690 0.1786 0.0481 0.4905 0.1967 0.0577 0.5322 0.1866 0.0523 0.5095

a 0.0086 0.0005 0.0767 0.0091 0.0005 0.0766 0.0080 0.0004 0.0757 0.0089 0.0005 0.0766 0.0067 0.0004 0.0753

160 b —0.0016 0.0004 0.0789 —0.0010 0.0004 0.0791 —0.0022 0.0004 0.0783 —0.0013 0.0004 0.0791 —0.0032 0.0004 0.0791

5 0.1804 0.0409 0.3497 0.1911 0.0459 0.3734 0.1696 0.0361 0.3294 0.1815 0.0414 0.3519 0.1748 0.0384 0.3404
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Table 4. Bayesian inference with different loss functions whena = 0.5, b = 1.7.
ez SELF LINEX (c = —1.5) LINEX (c = 15) ELF (c= —15) ELF (c=15)

5 n Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCl
a 0.1212 0.0179 0.2155 0.1257 0.0191 0.2199 0.1167 0.0167 0.2110 0.1236 0.0185 0.2172 0.1086 0.0147 0.2073

40 b —0.0308 0.0013 0.0722 —0.0281 0.0012 0.0716 —0.0336 0.0015 0.0742 —0.0303 0.0013 0.0722 —0.0336 0.0015 0.0744

5 0.5944 0.3901 0.7286 0.6374 0.4534 0.8182 0.5457 0.3238 0.6240 0.6078 0.4086 0.7470 05113 0.2844 0.5813

a 0.0845 0.0084 0.1382 0.0870 0.0089 0.1402 0.0820 0.0079 0.1365 0.0859 0.0087 0.1386 0.0771 0.0071 0.1335

0.5 80 b —0.0229 0.0009 0.0662 —0.0215 0.0008 0.0663 —0.0242 0.0010 0.0661 —0.0226 0.0009 0.0662 —0.0242 0.0010 0.0661
5 0.4267 0.1911 0.3714 0.4511 0.2147 0.4076 0.3995 0.1666 0.3243 0.4359 0.1996 0.3810 0.3717 0.1439 0.2986

a 0.0754 0.0062 0.0897 0.0771 0.0065 0.0910 0.0736 0.0059 0.0889 0.0764 0.0064 0.0904 0.0701 0.0054 0.0877

160 b —0.0196 0.0005 0.0476 —0.0189 0.0005 0.0477 —0.0203 0.0006 0.0476 —0.0195 0.0005 0.0477 —0.0203 0.0006 0.0476

5 0.3890 0.1550 0.2339 0.4099 0.1725 0.2573 0.3660 0.1368 0.2117 0.3973 0.1618 0.2414 0.3404 0.1182 0.1901

a 0.0722 0.0069 0.1623 0.0751 0.0074 0.1645 0.0693 0.0065 0.1600 0.0739 0.0072 0.1631 0.0635 0.0057 0.1576

40 b —0.0311 0.0033 0.1871 —0.0241 0.0030 0.1885 —0.0380 0.0037 0.1841 —0.0297 0.0032 0.1865 —0.0380 0.0037 0.1853

5 0.7333 0.5923 0.8827 0.8377 0.7792 1.0665 0.6187 0.4166 0.7014 0.7523 0.6236 0.9119 0.6288 0.4342 0.7495

a 0.0423 0.0026 0.1102 0.0436 0.0027 0.1111 0.0410 0.0025 0.1094 0.0431 0.0026 0.1108 0.0383 0.0022 0.1089

1.2 80 b —0.0179 0.0020 0.1693 —0.0152 0.0020 0.1689 —0.0207 0.0021 0.1678 —0.0174 0.0020 0.1694 —0.0207 0.0022 0.1681
5 0.3962 0.1709 0.4626 0.4310 0.2032 0.5201 0.3599 0.1403 0.4013 0.4036 0.1774 0.4722 0.3577 0.1390 0.4080

a 0.0365 0.0018 0.0839 0.0373 0.0019 0.0847 0.0357 0.0017 0.0831 0.0370 0.0018 0.0845 0.0340 0.0016 0.0822

160 b —0.0163 0.0017 0.1472 —0.0146 0.0016 0.1465 —0.0180 0.0018 0.1486 —0.0160 0.0017 0.1468 —0.0180 0.0018 0.1488

5 0.3476 0.1271 0.3037 0.3738 0.1475 0.3367 0.3205 0.1076 0.2707 0.3533 0.1314 0.3102 0.3179 0.1060 0.2717

a 0.0202 0.0018 0.1484 0.0222 0.0019 0.1503 0.0182 0.0017 0.1483 0.0215 0.0019 0.1493 0.0138 0.0016 0.1477

40 b —0.0037 0.0100 0.3923 0.0087 0.0104 0.3968 —0.0161 0.0100 0.3886 —0.0013 0.0100 0.3898 —0.0160 0.0102 0.3926

5 0.4503 0.2804 1.0727 0.5244 0.3753 1.2260 0.3748 0.1981 0.9209 0.4575 0.2888 1.0900 0.4138 0.2398 1.0071

a 0.0106 0.0008 0.1023 0.0113 0.0008 0.1019 0.0098 0.0008 0.1018 0.0110 0.0008 0.1019 0.0081 0.0008 0.1018

3 80 b —0.0056 0.0052 0.2814 —0.0015 0.0052 0.2815 —0.0096 0.0053 0.2807 —0.0048 0.0052 0.2808 —0.0096 0.0053 0.2821
5 0.2074 0.0618 0.5202 0.2251 0.0722 0.5520 0.1897 0.0522 0.4859 0.2092 0.0628 0.5225 0.1983 0.0568 0.5058

a 0.0082 0.0004 0.0708 0.0085 0.0004 0.0709 0.0078 0.0004 0.0706 0.0084 0.0004 0.0709 0.0069 0.0004 0.0702

160 b —0.0037 0.0025 0.1941 —0.0018 0.0025 0.1921 —0.0056 0.0025 0.1949 —0.0033 0.0025 0.1941 —0.0056 0.0025 0.1953

5 0.1895 0.0457 0.3920 0.2014 0.0517 0.4220 0.1775 0.0400 0.3662 0.1908 0.0463 0.3952 0.1833 0.0428 0.3771
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Table 5. Bayesian inference with different loss functions whena =2, b = 0.6.
“:02"6 SELF LINEX (c = —1.5) LINEX (c = 1.5) ELF (c = —1.5) ELF (c =1.5)
5 n Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE Lccl
a 0.1442 0.0330 0.4135 0.1607 0.0393 0.4250 0.1275 0.0273 0.3941 0.1468 0.0339 0.4181 0.1313 0.0286 0.4004
40 b —0.0388 0.0021 0.0635 —0.0380 0.0020 0.0621 —0.0396 0.0021 0.0652 —0.0382 0.0020 0.0625 —0.0411 0.0023 0.0681
5 0.5679 0.3597 0.7317 0.6074 0.4169 0.8179 0.5232 0.2998 0.6075 0.5804 0.3765 0.7545 0.4907 0.2634 0.5613
a 0.0678 0.0096 0.2757 0.0735 0.0107 0.2852 0.0622 0.0087 0.2721 0.0687 0.0098 0.2764 0.0634 0.0089 0.2724
0.5 80 b —0.0275 0.0009 0.0399 —0.0271 0.0008 0.0395 —0.0279 0.0009 0.0402 —0.0272 0.0009 0.0397 —0.0286 0.0009 0.0410
5 0.3992 0.1676 0.3463 0.4199 0.1861 0.3752 0.3764 0.1482 0.3121 0.4073 0.1745 0.3559 0.3518 0.1293 0.2869
a 0.0582 0.0062 0.2080 0.0614 0.0067 0.2116 0.0550 0.0058 0.2065 0.0587 0.0063 0.2084 0.0556 0.0058 0.2069
160 b —0.0282 0.0008 0.0342 —0.0279 0.0009 0.0342 —0.0285 0.0010 0.0341 —0.0280 0.0009 0.0334 —0.0291 0.0010 0.0332
5 0.3702 0.1410 0.2369 0.3886 0.1557 0.2640 0.3501 0.1257 0.2096 0.3776 0.1468 0.2473 0.3270 0.1094 0.1937
a 0.0995 0.0178 0.3423 0.1126 0.0210 0.3483 0.0866 0.0150 0.3373 0.1016 0.0182 0.3429 0.0892 0.0156 0.3408
40 b —0.0373 0.0104 0.0748 —0.0353 0.0132 0.0747 —0.0400 0.0051 0.0744 —0.0363 0.0109 0.0746 —0.0429 0.0062 0.0747
5 0.7256 0.5834 0.9188 0.8305 0.7724 1.1304 0.6121 0.4104 0.7213 0.7446 0.6146 0.9436 0.6218 0.4277 0.7719
a 0.0395 0.0057 0.2532 0.0438 0.0062 0.2577 0.0352 0.0053 0.2509 0.0402 0.0058 0.2542 0.0360 0.0054 0.2511
1.2 80 b —0.0198 0.0006 0.0506 —0.0191 0.0005 0.0511 —0.0205 0.0006 0.0497 —0.0194 0.0005 0.0509 —0.0218 0.0006 0.0492
5 0.3838 0.1612 0.4450 0.4172 0.1913 0.4972 0.3493 0.1327 0.3917 0.3909 0.1672 0.4565 0.3470 0.1313 0.3945
a 0.0352 0.0035 0.1802 0.0375 0.0037 0.1816 0.0329 0.0033 0.1780 0.0356 0.0036 0.1805 0.0334 0.0034 0.1788
160 b —0.0194 0.0006 0.0366 —0.0191 0.0007 0.0365 —0.0198 0.0008 0.0366 —0.0192 0.0007 0.0365 —0.0206 0.0009 0.0368
5 0.3437 0.1244 0.2940 0.3693 0.1441 0.3334 0.3172 0.1055 0.2635 0.3493 0.1285 0.3026 0.3146 0.1039 0.2647
a 0.0382 0.0061 0.2646 0.0461 0.0069 0.2666 0.0304 0.0054 0.2582 0.0395 0.0062 0.2640 0.0318 0.0055 0.2594
40 b —0.0038 0.0167 0.0996 —0.0002 0.0318 0.1001 —0.0081 0.0036 0.0979 —0.0025 0.0187 0.0993 —0.0113 0.0051 0.0978
5 0.4644 0.2952 1.0815 0.5388 0.3941 1.2013 0.3883 0.2092 0.9174 04716 0.3039 1.0866 0.4279 0.2530 1.0157
a 0.0103 0.0031 0.2140 0.0134 0.0032 0.2145 0.0071 0.0030 0.2110 0.0108 0.0031 0.2143 0.0077 0.0030 0.2116
3 80 b —0.0058 0.0005 0.0801 —0.0047 0.0005 0.0800 —0.0068 0.0005 0.0796 —0.0052 0.0005 0.0802 —0.0086 0.0005 0.0795
5 0.2169 0.0675 0.5525 0.2362 0.0797 0.5974 0.1974 0.0564 0.5100 0.2188 0.0687 0.5577 0.2069 0.0618 0.5310
a 0.0115 0.0014 0.1356 0.0129 0.0014 0.1365 0.0100 0.0013 0.1352 0.0117 0.0014 0.1357 0.0102 0.0013 0.1353
160 b —0.0051 0.0002 0.0534 —0.0046 0.0002 0.0532 —0.0055 0.0002 0.0531 —0.0048 0.0002 0.0533 —0.0063 0.0002 0.0529
5 0.1894 0.0461 0.3862 0.2014 0.0521 0.4096 0.1773 0.0404 0.3600 0.1907 0.0467 0.3896 0.1832 0.0431 0.3755
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Table 6. Bayesian inference with different loss functions whena =2, b = 1.7.
“:127 SELF LINEX (c = —1.5) LINEX (c = 1.5) ELF (c = —1.5) ELF (c =1.5)

5 n Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LccI
a 0.1255 0.0232 0.3228 0.1388 0.0274 0.3337 0.1122 0.0194 0.3150 0.1276 0.0238 0.3237 0.1151 0.0203 0.3166

40 b —0.0538 0.0036 0.0995 —0.0507 0.0032 0.0975 —0.0568 0.0040 0.1018 —0.0532 0.0035 0.0990 —0.0569 0.0040 0.1021

5 0.5381 0.3172 0.6043 0.5710 0.3603 0.6771 0.5012 0.2719 0.5360 0.5489 0.3305 0.6253 0.4723 0.2413 0.5051

a 0.0715 0.0094 0.2549 0.0774 0.0105 0.2621 0.0657 0.0084 0.2483 0.0724 0.0096 0.2567 0.0668 0.0086 0.2506

0.5 80 b —0.0505 0.0032 0.0934 —0.0485 0.0030 0.0927 —0.0525 0.0034 0.0944 —0.0501 0.0032 0.0932 —0.0526 0.0034 0.0946
5 0.4003 0.1681 0.3332 0.4211 0.1868 0.3669 0.3775 0.1487 0.3008 0.4083 0.1751 0.3439 0.3531 0.1297 0.2722

a 0.0580 0.0054 0.1784 0.0608 0.0058 0.1805 0.0551 0.0050 0.1763 0.0584 0.0055 0.1784 0.0557 0.0051 0.1770

160 b —0.0364 0.0016 0.0611 —0.0355 0.0015 0.0604 —0.0372 0.0017 0.0622 —0.0362 0.0016 0.0610 —0.0372 0.0017 0.0623

5 0.3624 0.1346 0.2258 0.3790 0.1475 0.2470 0.3442 0.1211 0.2064 0.3692 0.1398 0.2338 0.3225 0.1062 0.1864

a 0.1031 0.0180 0.3187 0.1156 0.0213 0.3285 0.0906 0.0150 0.3132 0.1050 0.0184 0.3206 0.0932 0.0157 0.3156

40 b —0.0780 0.0089 0.2048 —0.0696 0.0077 0.2064 —0.0863 0.0103 0.2051 —0.0763 0.0086 0.2049 —0.0866 0.0103 0.2065

5 0.7317 0.5927 0.9007 0.8358 0.7821 1.0799 0.6180 0.4171 0.7011 0.7505 0.6241 0.9342 0.6282 0.4349 0.7433

a 0.0423 0.0053 0.2295 0.0464 0.0058 0.2322 0.0381 0.0048 0.2286 0.0429 0.0053 0.2303 0.0389 0.0049 0.2297

1.2 80 b —0.0347 0.0026 0.1457 —0.0319 0.0024 0.1454 —0.0376 0.0028 0.1452 —0.0341 0.0026 0.1456 —0.0376 0.0028 0.1455
5 0.3935 0.1676 0.4409 0.4283 0.1995 0.4871 0.3573 0.1376 0.3851 0.4009 0.1741 0.4527 0.3549 0.1362 0.3910

a 0.0339 0.0032 0.1765 0.0361 0.0033 0.1796 0.0317 0.0030 0.1745 0.0342 0.0032 0.1768 0.0321 0.0030 0.1751

160 b —0.0333 0.0021 0.1238 —0.0316 0.0020 0.1235 —0.0350 0.0023 0.1249 —0.0330 0.0021 0.1237 —0.0350 0.0023 0.1250

5 0.3408 0.1224 0.3073 0.3661 0.1417 0.3402 0.3147 0.1039 0.2688 0.3464 0.1265 0.3149 0.3121 0.1023 0.2702

a 0.0365 0.0058 0.2445 0.0440 0.0065 0.2480 0.0291 0.0052 0.2413 0.0377 0.0059 0.2444 0.0305 0.0053 0.2415

40 b —0.0165 0.0067 0.2990 —0.0058 0.0067 0.3036 —0.0271 0.0069 0.2941 —0.0144 0.0066 0.2979 —0.0271 0.0070 0.2965

5 0.4806 0.3234 1.1672 0.5638 0.4389 1.3260 0.3958 0.2241 1.0117 0.4887 0.3334 1.1839 0.4399 0.2746 1.0958

a 0.0158 0.0025 0.1799 0.0188 0.0027 0.1825 0.0128 0.0024 0.1786 0.0163 0.0026 0.1801 0.0133 0.0024 0.1791

3 80 b —0.0097 0.0059 0.2519 —0.0053 0.0053 0.2507 —0.0140 0.0065 0.2519 —0.0087 0.0056 0.2512 —0.0142 0.0073 0.2523
5 0.2242 0.0715 0.5563 0.2439 0.0842 0.5915 0.2043 0.0598 0.5135 0.2262 0.0727 0.5598 0.2141 0.0655 0.5382

a 0.0110 0.0012 0.1251 0.0124 0.0012 0.1255 0.0096 0.0012 0.1245 0.0112 0.0012 0.1251 0.0098 0.0012 0.1247

160 b —0.0107 0.0019 0.1672 —0.0089 0.0018 0.1683 —0.0124 0.0019 0.1684 —0.0103 0.0019 0.1673 —0.0124 0.0019 0.1686

5 0.1970 0.0475 0.3568 0.2092 0.0537 0.3804 0.1847 0.0417 0.3325 0.1982 0.0481 0.3603 0.1906 0.0445 0.3454
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sample.type
0
N
N

ELFa1

5.1. Simulation Results

Tables 3—-6 show the results of the suggested techniques for calculating the point and
interval parameter estimates. They offer the findings as well as some intriguing data. The
following observations are permissible:

e  The estimates are asymptotically unbiased since they are more accurate as the sample
size increases.

e  The parameter estimates come from the best unbiased estimator when the MSE value
is near zero.

e  As the sample size grows, the MSE declines for each estimate, demonstrating consis-
tency between the various estimates.

e  When the true value of ¢ increases, the bias, MSE, and length of the credible confidence
interval (LCCI) of all estimates decrease.

e  The MSE and LCCI for the Bayesian estimates with positive weight for the asymmet-
ric loss function are smaller than the Bayesian estimates with negative weight for
asymmetric loss function.

e  The LCCI for estimates obtains its largest value, based on the suggested method, as
the true values of the parameters increase.

e Anentropy loss function with positive weight is better than the other loss functions.

5.2. Represention Results

Figures 4-7 show heatmap descriptions for the MSE results, where the bold color
represents the highest values of MSE and the white color represents the lowest values
of MSE.

The X-label belongs to SELFj, (j = 1, 2, 3) which are the MSE of Bayes estimates based
on SELF with different parameters;

LINEXaj, (j =1, 2, 3) are the MSE of Bayes estimates based on LINEX (¢ = —1.5) with
different parameters;

LINEXDbj, (j =1, 2, 3) are the MSE of Bayes estimates based on LINEX (¢ = 1.5) with
different parameters;

ELFaj, (j =1, 2, 3) are the MSE of Bayes estimates based on ELF (¢ = —1.5) with
different parameters;

ELFbj, (j =1, 2, 3) are the MSE of Bayes estimates based on ELF (c = 1.5) with
different parameters.

The Y-label belongs to cases and sample sizes, where Clnl for § = 0.5 and n = 40;
CIn2 for 6 = 0.5 and n = 80; C1n3 for § = 0.5 and n = 80.

value

0.4

- - .

ELFb1 ELFb2 ELFb3 LINEXal LINEXa2 LINEXa3 LINEXb1 LINEXb2 LINEXb3 SELF1 SELF2 SELF3

MSE

Figure 4. Heatmap for MSE whena = 0.5, b = 0.6.
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Figure 5. Heatmap for MSE whena = 0.5, b = 1.7.
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Figure 6. Heatmap for MSE whena =2, b = 0.6.
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Figure 7. Heatmap for MSE whena =2, b = 1.7.

6. Application of Real Data

This section analyses two real-world datasets to show the adaptability and prac-
tical application of the UPBXD. The UPBXD is compared with the following models:
unit-exponentiated half-logistic (UEHL) [23], Type II power Topp-Leone exponential
(THHPTLE) [34], Topp-Leone generalized exponential (TLGE) [35], Kumaraswamy (K), Beta,
unit Weibull (UW), and Marshall-Olkin—-Kumaraswamy (MOK). Two actual COVID-19
mortality rate datasets from Saudi Arabia and the United Kingdom are provided in this
section to evaluate the UPBXD goodness of fit. The two real datasets were utilized to
estimate the unknown parameters of the specified models using the maximum likelihood
and Bayesian approaches. Kolmogorov-Smirnov statistics (KSS) with p-value, Cramer-von
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Mises statistics (WS), and Anderson—Darling statistics (AS) were used to compare all of
the models.

6.1. Analysis for First Data
Data set I: The first set of data shows Saudi Arabia’s COVID-19 mortality rates over
a 36-day period (22 July 2021 to 26 August 2021). The information is as follows: 0.1310,
0.1319, 0.1497, 0.1504, 0.1686, 0.1689, 0.1706, 0.1716, 0.1879, 0.1890, 0.1924, 0.1951, 0.2063,
0.2077, 0.2091, 0.2113, 0.2126, 0.2140, 0.2167, 0.2249, 0.2259, 0.2271, 0.2278, 0.2314, 0.2329,
0.2347,0.2353, 0.2375, 0.2452, 0.2487, 0.2666, 0.2674, 0.2683, 0.2711, 0.2752, 0.2962. Table 7
shows the ML estimate of parameters with their standard errors (SEs) for each distribution
and obtained the goodness of fit measures as KSS, WS, and AD. By the results shown in
Table 7, we are able to see that the UPBXD is better than the other distributions, such as
TLPTLE, TLGE, K, Beta, UW, UEHL, and MOK, for COVID-19 mortality rates in the Saudi
Arabia data set.
Table 7. ML estimates with SE and goodness of fit statistics: Saudi Arabia data set.
a b J KSS p-Value WS AS
Estimates 2.2717 0.5609 2813.2886
UPBXD 0.0778 0.9693 0.0327 0.2364
SE 0.0708 0.0692 469.2354
Estimates 693.1774 0.6471 0.6476
TLPTLE 0.0938 0.8800 0.0479 0.3110
SE 1626.8445 0.0939 0.8346
Estimates 0.3682 20.4075 179.7044
TLGE 14 437 . 5911
= SE 0.2843 2.7038 178.4010 01403 04378 0.0965 05
Estimates 3.3085 125.2161
K 0.1821 0.1621 0.0421 0.2793
SE 0.2821 49.4480
Estimates 20.8174 76.5218
Beta 0.1127 0.7089 0.0636 0.3992
SE 4.8690 18.0555
Estimates 0.0203 7.7557
\ 1 2624 1824 1.09
v SE 0.0110 0.9132 01633 0-26 0.18 0950
Estimates 6.0655 3670.3422
UEHL 0.0792 0.9641 0.0330 0.2393
SE 0.7918 405.8862
Estimates 703.3130 1.3097 45.4476
MOK 0.0811 0.9567 0.0336 0.2554
SE 4615.4897 1.5712 72.4483

As can be seen, the TLPTLE, TLGE, K, Beta, UW, UEHL, and MOK distributions work
well for modelling the COVID-19 mortality rates indicated in the Saudi Arabia data set, but
that the UPBXD is the best. This is based on a significance level of 0.05. Figure 8 illustrates
the estimated CDF in the red line with empirical CDF in the black line. It also shows the
probability—probability (PP) plots of the UPBXD in the red line, also known as “parametric
plots”, for the COVID-19 mortality rates of the Saudi Arabia data set, which demonstrate
the empirical findings, reported in Table 7 and the empirical CDF line the (black) with the
estimated CDF line (red).

Figure 9 shows three plots of COVID-19 mortality rates for the Saudi Arabia data set,
where the left is a boxplot of data that explains that the data have no outlier values, the
center is a TTT plot of data that explains this data set is increasing, and the right is a hazard
estimated plot line that indicates the HF is increasing.
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6.2. Analysis for Second Data

Data set II: The second set of data shows the United Kingdom COVID-19 mortality
rates over a 28-day period (1 January 2022 to 28 January 2022). The information is as
follows: 0.1484, 0.1174, 0.0522, 0.0296, 0.0339, 0.2274, 0.1555, 0.1530, 0.2079, 0.0640, 0.1407,
0.2463, 0.2569, 0.2150, 0.1723, 0.1823, 0.1807, 0.1823, 0.2736, 0.2228, 0.2036, 0.1767, 0.1814,
0.1361, 0.1620, 0.2639, 0.2067, 0.2008.

00 02 04 06 08 1.0
F
00 02 04 06 08 10

T T T T T T T T T T
0.15 0.20 0.25 0.30 0.0 0.2 0.4 0.6 0.8 1.0

X probability (x)

Figure 8. The CDF plot with empirical line and PP plot for Saudi Arabia data set.
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0.15
I

i’n
Figure 9. Boxplot, TTT plots and hazard line of UPBXD plot for Saudi Arabia data set.

Table 8 shows the ML estimate of parameters for each distribution and obtained the
goodness of fit measures as KSS, WS, and AD. By the results of Table 8, we can see that the
UPBXD is better than the other distributions, such as TLPTLE, TLGE, K, Beta, UW, UEHL,
and MOK, for COVID-19 mortality rates in the United Kingdom data set. Additionally, we
can see that the TLPTLE, TLGE, K, Beta, UW, UEHL, and MOK distributions work well
for modelling the COVID-19 mortality rates of the United Kingdom data set, though the
UPBXD is the best. This is based on a significance level of 0.05.

Table 8. Estimates with SE and goodness of fit statistics of ML: The United Kingdom data set.

a b J KSS p-Value WS AS

UPBXD

Estimates

2.3471 0.3354 2154.8742

SE

1 .8512 A11 72
0.0716 0.0478 402.9847 01100 085 01115 07238

TLPTLE

Estimates

3760.8372 0.1127 0.0216

SE

0.2571 0.0404 0.4656 2.6059
5117.2571 0.0287 0.0151

TLGE

Estimates

0.2968 10.3896 13.8963

SE

0.2097 0.1471 0.2804 1.6718
0.3076 2.3410 15.4726

Estimates

2.9163 125.0007

SE

132 .657! 1492 .94
0.4689 94,0394 0.1329 0.6570 0.149 0.9456

Beta

Estimates

3.9277 19.1899

SE

0.1925 0.2202 0.2609 1.5673
1.0090 5.1885
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Table 8. Cont.

a

b

KSS

p-Value

WS

Estimates

0.0904

3.2548

Uw
SE

0.0386

0.4231

0.2468

0.0548

0.4622

2.5905

Estimates

2.9789

69.5723

UEHL
SE

0.4808

53.4192

0.1294

0.6888

0.1476

0.9369

Estimates

0.0124

3.5483

6.7014

MOK
SE

0.0299

0.6026

14.9920

0.1506

0.5020

0.3117

1.8656

Figure 10 illustrates the PP plots for the COVID-19 mortality rates of the United
Kingdom data set, which demonstrate the empirical findings reported in Table 8 and the
empirical CDF line (black) with the estimated CDF line (red). Figure 11 shows three plots
of COVID-19 mortality rates for the United Kingdom data set, where the left is a boxplot of
data that explains that these data have no outlier values, the center is a TTT plot of data
that explains that these data are increasing, and the right is a hazard estimated plot line
that indicates the hazard is increasing.

6.3. Data Analysis via Bayesian Method

Here, we analyze data sets presented in previous sub-sections using the proposed
Bayesian estimation method.

The Bayesian estimation parameters of UPBXD for each of the data sets, respectively
are given in Table 9. The Bayesian estimates of UPBXD parameters under SELF and the
corresponding SEs are calculated. The lower and upper HPD intervals are also calculated.

08
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— +

F
00 02 04 06 08 10

0.0
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T T T T T
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Figure 10. The CDF plot with empirical line and PP plot for the United Kingdom data set.
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Figure 11. Boxplot, TTT plots and hazard line of UPBXD plot for the United Kingdom data set.
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Table 9. Bayesian estimation based on SELF for parameters of UPBXD.

Data Estimates SE Lower Upper

a 2.3235 0.0619 1.9541 2.7490

Saudi Arabia b 0.5556 0.0558 0.3990 0.7320
o 2979.2033 2.4931 2974.2166 2984.1337

a 2.3852 0.0560 2.0108 2.8278

The United b

Kingdom 0.3353 0.0314 0.2064 0.4830

0 2154.8743 0.0787 2154.7169 2155.0299

Figures 12 and 13 display the trace plot of the UPBXD’s parameter values for the
MCMC finding.
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Figure 12. Trace plots of MCMC results with interval limit line for Saudi Arabia data set.
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Figure 13. Trace plots of MCMC results with interval limit line for the United Kingdom data set.

The autocorrelation function (ACF) is generated as shown in Figures 14 and 15.
Figures 16 and 17 demonstrate the symmetric normal distribution of the posterior den-
sity for the parameters of the UPBXD.

Figures 18 and 19 display the parameter convergence charts for UPBXD draws as well
as the parameter random draw plot, respectively.
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Figure 14. The ACF plot of MCMC results for Saudi Arabia data set.
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Figure 15. ACF plot of MCMC results for the United Kingdom data set.
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Figure 16. Histogram plots of MCMC results for Saudi Arabia data set.
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Figure 17. Histogram plots of MCMC results for the United Kingdom data set.



Axioms 2023, 12,297

24 of 26

mean(a)

mean(a)

230 235

2.25

235 240 245

2.30

2979.5
I

0.55
Il

0.54
Il

mean(b)
mean(d)
29785

l

0.53
Il

0.52
L

29775
1

0

T T T T T T T T T T T T T T T
2000 4000 6000 8000 (o) 2000 4000 6000 8000 o 2000 4000 6000 8000

Iterations Iterations Iterations

Figure 18. Convergence lines of MCMC results for Saudi Arabia data set.
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Figure 19. Convergence lines of MCMC results for the United Kingdom data set.

7. Conclusions

This article focuses on a three-parameter unit distribution created based on the power
Burr X distribution and called the UPBXD. The statistical properties of the UPBXD have
been derived and expressed in closed forms. The presented unit distribution can be used
as a statistical tool to model different types of HFs, including those that are bathtub,
increasing and unimodally shaped. Its important features are carefully studied, including
the analytical expression of moments, quantile function, incomplete moments, stochastic
ordering, and stress—strength reliability. Moreover, the uncertainty-measuring metrics
Rényi, Havrda, and Charvat as well as d-generalized entropy were obtained. The UPBXD
parameters have been estimated utilizing ML approach as well as Bayesian estimation
approach with different loss functions. Additionally, Bayesian credible intervals were
constructed based on the marginal posterior distribution. For some difficult calculations,
the Markov chain Monte Carlo method was used. To assess how various estimates work,
simulation studies based on various sample sizes have been carried out. In light of the
simulation study’s findings, it was found that the Bayesian-based symmetric loss function
and LINEX loss function techniques work quite effectively for estimating the UPBXD
parameters. Bayesian estimates under an entropy loss function with positive weight are
superior to those under other loss functions. The MSE and length of the credible confidence
interval for Bayesian estimates with positive weight are smaller than the corresponding
values with negative weight. Finally, two actual COVID-19 mortality rate data sets from
Saudi Arabia and the United Kingdom have been analyzed and discussed to illustrate
the notability of the UPBXD. The UPBXD gives superior fits over several other competing
models, as shown by a real data application. Future discussions can be expanded on the
use of Bayesian estimation in stress—strength reliability for the UPBXD based on some
sampling techniques [36-38]. Furthermore, the proposed methodology can be expanded in
multivariate and Bivariate case as [39-41].
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