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Abstract: Designing efficient vaccination programs that consider the needs of the population is very
relevant to prevent reoccurrence of the COVID-19 pandemic. The government needs to provide
vaccination points to give out vaccine doses to the population. In this paper, the authors analyze the
location of vaccination points whilst addressing the inhabitants’ preferences. Two objectives that
prevent crowding of inhabitants are considered. The government aims for the minimum distance
between located vaccination points is maximized, and for the number of inhabitants that attend the
different vaccination points to be equitable. One of the key aspects of this problem is the assumption
that inhabitants freely choose the located vaccination point to go. That decision affects the objectives
of the government, since crowding at vaccination points may appear due to the inhabitants’ decisions.
This problem is modeled as a bi-objective, bi-level program, in which the upper level is associated
to the government and the lower level to the inhabitants. To approximate the Pareto front of this
problem, a cross-entropy metaheuristic is proposed. The algorithm incorporates criteria to handle
two objective functions in a simultaneous manner, and optimally solve the lower-level problem for
each government decision. The proposed algorithm is tested over an adapted set of benchmark
instances and pertinent analysis of the results is included. An important managerial insight is that
locating far vaccination points does not lead us to a more equitable allocation of inhabitants.

Keywords: bi-level programming; COVID-19; public facility location; vaccination system; cross-entropy
metaheuristic

1. Introduction

In December 2019, the World Health Organization wrote about the existence of a new
virus: SARS-CoV-2, which causes the COVID-19 disease. Some of its common symptoms
are fever, dry cough, and tiredness. Measures to prevent the spread of COVID-19 include
physical distancing from other people, face masks, washing one’s hands periodically,
and covering one’s mouth with a flexed elbow or a handkerchief when coughing. As of 11
September 2022, 605 million confirmed cases and 6.4 million deaths have been reported
worldwide.

However, the vaccine against this virus is already available. Vaccination of inhabitants
seems to be the safest and most effective way to control the COVID-19 pandemic. In the
Ref. [1], the authors state that a single dose of vaccine can be a drop in the ocean, but several
doses together can save a population.

During the worst of the pandemic and up to this day, there has been high acceptance
of the COVID-19 vaccine, and strong demand for it. This is the main reason for designing
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appropriate vaccination programs is of upmost importance. Having appropriate vaccina-
tion programs according to the needs of the population to be vaccinated is an essential
element to prevent the re-emergence of this pandemic.

Our research is oriented to humanitarian logistics, looking at cases where the govern-
ment needs to locate different vaccination points for the inhabitants of a certain region,
in such a way that there is the most equitable access to vaccines. Vaccination of inhabitants
seems to be the safest and most effective way to control the COVID-19 pandemic. In the
Ref. [1], the authors state that a single dose of vaccine can be a drop in the ocean, but several
doses together can save a population.

In this paper, a problem concerns the vaccination strategic decisions is studied. the gov-
ernment needs to locate different vaccination points (VPs). In trying to maintain the healthy
distance and avoid agglomerations, two objectives are pursued: (i) that the located VPs are
as far as possible from each other, and (ii) that inhabitants are equally distributed (as much
as possible) within the VPs.

The vaccination strategy imposes some mobility constraints, such as, only the cur-
rent inhabitants of the municipality will receive the vaccine in the VPs of that specific
municipality. However, the government cannot impose this restriction on an inhabitant,
each inhabitant is free to attend the VP he/she prefers. This assumption lead us to take
into account the inhabitants preferences towards the VPs. Therefore, the allocation of
inhabitants to VPs is chosen by each inhabitant and not by the government.

In summary, the government decides the location of VPs within the municipality and
the inhabitants attend the VP they prefer. It is evident that the inhabitants’ decisions directly
affect the crowding in the VPs, which is of interest to the government. Hence, due to the
existing hierarchy in this situation and the relationship between the decisions, a bi-level
programming approach is suitable to study this problem. Two objectives are considered at
the upper level, simultaneously, and this prevents application of the well-known single-
level reformulation in an efficient manner. That is, despite the fact that the bi-level model
may be reformulated as an equivalent single-level one by using the optimality conditions
of the lower level, the analysis must not lose sight of the fact that two objective functions
are being optimized at the lower level. Thus, a bi-objective single-level complex model
must be solved.

In order to handle the inherent complexity of this bi-objective bi-level problem, a cross-
entropy algorithm is proposed to approximate the Pareto front of this VPs location problem.
Several adaptations are needed to design the proposed algorithm. Firstly, an adaptation
is made to guide the search while considering the two objective functions. Secondly,
a strategy to deal with the parameterized lower-level problem at each stage of the algorithm
is designed.

We can highlight five main contributions of this research to the literature. First,
the combination of a p-dispersion problem with a facility location problem that balances
the allocation of the users in the located facilities is performed for the first time. This
can be considered as an extension of the p-dispersion problem. Second, a bi-objective
bi-level program is proposed to model the problem under study. Third, the proposed
model is applied to a vaccination system that aims to maintain the healthy distance among
inhabitants without imposing restrictions regarding the VPs that they need to attend. In the
literature, there are no papers with those characteristics, that is, neither the proposed
variant of the p-dispersion problem nor the application to the location of VPs. Fourth,
the proposal of a cross-entropy metaheuristic that simultaneously deals with two objectives,
and handles the bi-level structure of the problem. That is, it solves the lower-level problem
while considering the upper-level decisions. This is the first time that cross-entropy is
applied towards solving a bi-objective bi-level problem, so the specific components for
dealing with both objectives and the lower-level are carefully designed. Fifth, extensive
computational experimentation is conducted to validate the proposed metaheuristic and to
obtain important managerial insights regarding the location of VPs and social distancing.
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The rest of this paper is organized as follows. Section 2 reviews the literature of facility
location problems, users’ preferences and applications related to COVID-19 pandemic.
Section 3 presents the bi-level formulation of the problem. Section 4 describes the proposed
metaheuristic and its components. Section 5 presents the computational results on adapted
test instances and the respective analyses. Finally, Section 6 outlines the conclusions of our
research and lists some interesting further research directions.

2. Literature Review

The literature is divided in three main directions. First, a general overview of facility
location problems is presented. Particular attention is focus on the p-dispersion problem
and the ones that balance allocation of users. Second, some previous researches that
consider the preferences of the users in the allocation phase are reviewed. Third, a review
on vaccine logistics, in general, with special emphasis on systems for the COVID-19
pandemic is conducted.

2.1. Facility Location

Facility location problems (FLPs) have been intensively studied during the last decades
under different assumptions. In general, FLPs consist of the following: given a set of
potential locations and a set of users, two decisions have to be made, (i) where to locate the
facilities and (ii) which users allocate in each located facility. Decisions are taken in such a
way that a predetermined objective function is optimized [2].

Due to the versatility of FLPs, many different variants have been proposed in the
literature. For instance, the consideration of a limited capacity in the facilities, a coverage
radius, users with unitary demand, balanced facilities with respect of the allocated users,
the location of a predetermined number of facilities, among others. In the Refs. [3,4] some
variants and applications are presented. Additionally, their corresponding mathematical
models and the proposed methods for solving each specific problem are detailed.

In particular, we are interested in two closely related and well-known FLPs. The first
one studies the case when p facilities must be located but aiming to be as far as possible. This
problem is called as the p-dispersion problem [5,6]. Since the objective is to maximize the
minimum distance between located facilities, the allocation of users is irrelevant. In many
contexts it is important to bear in mind the allocation of users. That is one of the reasons
why allocation is considered in the problem under study.

The second one is the FLP that balances the allocation of users in the located facilities.
This problem is proposed in the Ref. [7], in which the objective is to minimize the difference
between the maximum and the minimum number of users allocated to the facilities. In that
problem, users are allocated to the nearest located facilities.

As mentioned above, one of the main contributions of our study was to combine these
two FLPs in the same model. The nature of the original p-dispersion problem neglects the
allocation of users. However, there are situations in which it is important to be considered.
Additionally, the balance of users allocated to each located facility may be pursued to
enhance stability of the system. In other words, it is aimed at that the workload of the
facilities is similar. For the best knowledge of the authors, this is the first time that these
two problems have been merged into a single one.

2.2. Allocation Based on the Users’ Preferences

Preferences are an important factor that are commonly included to consider the be-
havior of users in allocation problems. For example, in the stable marriage problem,
the elements of one set place their preferences towards the elements of the other set,
and vice versa [8,9]. Another approach when considering preferences in the decision-
making process corresponds to the allocation of users in FLPs. In this case, users patronize
the facilities based on their own preferences, which can be based on attractiveness, prox-
imity, and quality, among others. This may be seen as the allocation rule followed by the
users in a facility location scheme.
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Users’ preferences were considered for the first time in FLPs in the Ref. [10], in which
users ordered the potential facilities based on their own preferences. Once some facilities
are located, the ordered list of preferences determines the allocation of users. Since then,
different FLPs have considered the preferences of the users, such as in the Refs. [11,12].
Moreover, considering users’ preferences yields to a hierarchized structure of the problem,
which can be naturally modeled with bi-level programming [13–16].

Recently, a bi-level programming problem that balances the number of allocated users
to the located facilities while considering users’ preferences was studied in the Ref. [17].
The main difference of our study with respect to the Ref. [17] is that we are considering
two objective functions simultaneously. Therefore, the algorithm designed in that research
cannot be easily extended to our bi-objective problem. Considering two objective functions
complicates the guidance towards improving solutions. That model arises from a 5G
network’s configuration context.

2.3. Applications Related to COVID-19

It is evident that the emergence of COVID-19 has generated profound social and
economic changes. Consequently, different approaches must be enabled to prevent and
control this disease. For this reason, in the last couple of years, significant efforts have
been dedicated to the COVID-19 pandemic. For example, studies related to the supply
chain [18–20], allocation of patients [21–23], distribution of test kits [24,25], medicines and
medical equipment distribution [26,27], and location of COVID-19 testing centers [28–30].

Since the start of the pandemic, we have been facing an unprecedented race to develop
a vaccine. Successful efforts have been identified and vaccines are available. However,
the production rate is not enough to vaccinate the entire global population. Therefore,
the limited amount of available vaccines creates another great challenge: how can we
distribute vaccines to mitigate the impact of the virus near the end of the pandemic?

In recent years, there has been an increasing interest in vaccination logistics [31].
For example, studies that consider equitable distribution of the vaccines can be found
in the Refs. [32–35]. Particularly, in the Ref. [36], a model that seeks to optimize the
distribution strategy of vaccines is proposed. The main decision of the problem is to
locate vaccination centers within a nation. They conclude that determining the number
and location of vaccination centers is also essential to ensure that vaccines are available
to the entire population. There are some studies where it is studied how to locate and
distribute vaccines, for example in the Ref. [35], and the authors present a mixed-integer
linear programming model for inventory and location problems. However, they focus on an
equitable distribution of influenza vaccines in developing countries during the pandemic.
Their proposed model uses an objective function that aims to distribute vaccines in an
equitable manner. They present a case study from a developing country to showcase the
effectiveness and demonstrate the applicability of their proposed optimization model.

It is worth mentioning that due to the rapid spread of COVID-19, the demand for
emergency medical facilities has grown tremendously. Regarding this topic, in the Ref. [37]
the authors addressed a situation in which location and allocation problems were integrated,
aiming to help in managing the main public health emergencies. It aims at minimization of
the time spent in the locations and the assignment of emergency medical facilities in case of
the occurrence of a public health emergency. In addition, a genetic algorithm is proposed
to provide solutions to the problem.

The allocation of vaccines while considering factors such as geographical region, oper-
ational limitations, capacity of medical centers, and availability of vaccines are considered
in the Refs. [38,39]. In the first one, that is, in the Ref. [38], a decision process in which
vaccinations are carried out in two phases to contain the outbreak of an infectious disease
in a set of geographical regions was considered. In the first phase, a limited number of
vaccine doses are assigned to each region; whereas in the second phase, additional doses
can be assigned to regions where the epidemic has not been contained. They formulated
the vaccine allocation problem as a two-step stochastic linear program and reduced it to a
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linear program for obtaining acceptable solutions. In the second one, the authors proposed
a mixed-integer linear programming problem aiming to develop an effective vaccine alloca-
tion model based on the parameters of the total population susceptible to COVID-19 and
the risk of exposure (see the Ref. [39]). They analyzed a case study in which the proposed
model was applied to test different vaccine allocation and distribution scenarios.

An important aspect to consider with the location and allocation of vaccines is the
equity. In the Ref. [32], the problem to be resolved was the minimization of the number of
vaccine doses distributed to effectively extinguish an emerging outbreak in its early stages.
The authors proposed an equity constraint to help health public authorities to distribute
vaccines in a fairer manner when making decisions about vaccine distribution.

An important approach in the context of the pandemic is to consider multiple objec-
tives, simultaneously, for the same problem. The latter helps to provide more managerial
insights related to the location and allocation of vaccines. The reason is that a compro-
mise between two different objective functions can be identified to evaluate different
decision-making scenarios. In the Ref. [40], a multi-period vaccination planning problem is
addressed. That problem minimizes the total travel distance of the inhabitants vaccinated
and minimizes the operating cost of the health program. An optimal plan determines,
for each period, which vaccination points to open, how many vaccination stations to enable
at each site, how to assign inhabitants from different regions to open vaccination points,
and the amount of restocking at each vaccination point. They formulate the problem as a
mixed-integer linear bi-objective program. Initially, they propose two solution methods:
the weighted sum and ε-constraint methods. In addition, they develop a genetic algorithm
where an allocation strategy and a new dynamic programming method are included in
the algorithm to obtain good feasible solutions. Additionally, a case study is presented
indicating that the methods reduce operating cost and total travel distance. In the Ref. [41],
a multi-target mixed-integer non-linear programming model is proposed to help the centers
for disease control and prevention determine the locations of vaccination stations and,
at the same time, consider travel distance, operating cost and working hours.

Another related bi-objective study appears in the Ref. [34], which seeks to optimize the
design of a vaccine distribution network through a mixed-integer non-linear programming
model, but while considering two objectives: the minimization of the expected total number
of deaths in the population and the minimization of the total distribution costs associated
with the vaccination campaign. The proposed model is linearized and validated through
a real case study of the vaccination campaign against COVID-19 in France. In addition,
the authors show that a vaccination strategy that combines population prioritization and
quarantine restrictions leads to an 8.5% decrease in the total number of deaths.

Starting from the previous idea of prioritizing the population in the process of vaccina-
tion against COVID-19, we consider that the inhabitants are free to decide which VP to go to
and be vaccinated at. Therefore, we consider the preferences of the inhabitants with respect
to each of the possible VPs. It is worth highlighting that the preferences of the inhabitants
that will receive a vaccination dose against COVID-19 have not been considered before in
the literature. Moreover, in this problem, the government authorities do not impose on the
inhabitants which VP to go to, but the VP’s location clearly affects the inhabitants’ decisions.
This kind of hierarchy in the decision-making process has also not been considered before
in the literature of a COVID-19 vaccination planning problem.

To summarize, in this study, a bi-objective bi-level programming problem is proposed.
The decision-maker associated to the upper level aims to balance the inhabitants that attend
each vaccination point, and also aims to locate the vaccination points the farthest from
each other to motivate inhabitants to go and receive a vaccine dose. On the other hand,
the decision-maker associated to the lower level aims to maximize the preferences of the
inhabitants regarding the vaccination points they will approach.
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2.4. Summary of the Literature Review

To better illustrate the gap in the literature that our research is filling up, the main
characteristics of the closely related and above referred papers are summarized in Table 1.

Table 1. Summary of the characteristics considered in the closely related FLPs.

Reference Objective Biobjective Bilevel Preferences Metaheuristic COVID-19

[5] Max min distance

[6] Max min distance

[7] Min disbalance

[10] Min costs X

[11] Min costs X

[12] Min costs X X

[13] Min costs X X PSO, SA, VNS

[14] Min costs X X EA + PR

[15] Min costs X X EA

[16] Min costs X X EA

[17] Min max disbalance X X EA

[37] Min relief time GA X

[32] Min vaccines used X

[40] Min costs
Min travel distance X NSGA-II X

[34] Min costs
Min deaths X X

This paper Max min distance
Min disbalance X X X BONXEA X

It can be noticed that the characteristics of the problem under study in this research
have not been considered in previous research, simultaneously. This fact highlights one of
our main contributions.

3. Problem Statement and Its Mathematical Model

Consider the situation described in Section 1, in which the government needs to locate
a predefined number of VPs for vaccination inhabitants against COVID-19. The inhabitants
are free to attend the VP they prefer. The latter decision directly affects the crowding in
the VPs, which is undesirable. This situation can be modeled under a bi-objective bi-level
programming approach. The upper level is associated with the government, and the lower
level to the inhabitants.

First, the sets, parameters, decision and auxiliary variables involved in the model are
defined. Let I be the set of VPs that must be located, and let J be the set of all inhabitants
who need to receive the vaccine. The predefined number of VPs that must be located is
denoted by p. The distance between a VP i ∈ I and the inhabitant j ∈ J is represented by
dij. Additionally, gij represents the preference that an inhabitant j ∈ J has for a VP i ∈ I.

The binary decision variables associated with the upper level are yi, which is 1 when
VP is located in location i ∈ I, and 0 if not. On the other hand, binary decision variables of
the lower level are denoted by xij, where 1 is when the inhabitant j ∈ J receives the vaccine
from VP i ∈ I, and 0 in other case.
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Auxiliary continuous variables U and L compute the maximum and minimum number
of inhabitants assigned to any VP, respectively.

As mentioned previously, the government aims to maintain the healthy distance,
and prevent crowds. Therefore, two objectives are considered in this problem. The first
one is to balance the number of inhabitants assigned to each VP, that is, that population
is equally distributed (as possible) into the VPs. This objective function is formulated
as follows:

min U − L (1)

The second objective function aims to have the VPs as far as possible from each other,
that is, to maximize the minimum distance between the located VPs. This objective function
is represented as follows:

max min
i,k∈I; i<k

{dikyiyk} (2)

The latter equation can be linearized by introducing an auxiliary continuous variable
r, which indicates the minimum distance between each pair of located vaccination points.
Hence, the linearized second objective function is:

max r (3)

An additional set of constraints must be included to achieve linearization of Equation (2).
Let M be a sufficiently large positive constant, usually referred to as the big-M. The distance
from each pair of located VPs is computed, and r will take the minimum value between all
of them. This is as follows:

r ≤ M(2− yi − yk) + dik ∀i, k ∈ I, i < k (4)

The manner in which the linearization works is explained next. Equation (4) establishes
upper bounds for the value of r. Since M is a large constant, note that this constraint is
relaxed when neither the i-th nor k-th VPs are located. When two specific VPs are located,
then the first term of the right-hand side is zero. In this case, r is bounded by the distance
between these two VPs. Due to the sign of the inequality given in Equation (4) and by the
orientation of objective function defined in Equation (3), the smaller value of the distances
involved in the bounding constraints is assigned to r (which is the maximum possible one).

Consider that there is a predefined number of VPs to be located. This is ensured by
the following constraint:

∑
i∈I

yi = p (5)

As indicated above, the upper-level decision variables are binary:

yi ∈ {0, 1} ∀i ∈ I (6)

Once the government has chosen the VPs to be located (x), the inhabitants need to
be allocated to the VPs to get vaccinated (y). Since we are assuming that the allocation of
inhabitants to VPs is performed by each inhabitant and not imposed by the government,
their preferences gij towards the VPs are considered. Preferences are given as a ranking of
VPs, in which 1 indicates the least preferred VP and |I| the most preferred one. Therefore,
the maximization of these preferences is aimed at. The objective function associated with
the lower level is as follows:

max ∑
i∈I

∑
j∈J

xijgij (7)

There are some constraints associated with the lower level. The first one indicates that
inhabitants can be allocated only to located VPs.

xij ≤ yi ∀i ∈ I, ∀j ∈ J (8)
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Another imposed constraint must guarantee that inhabitants each receive only one
vaccine. That is, a unique allocation from inhabitants to VPs is allowed.

∑
i∈I

xij = 1 ∀j ∈ J (9)

Let n be the total number of inhabitants that will receive a vaccine, that is, n = |J|.
Therefore, the maximum and minimum numbers of inhabitants allocated to the located
VPs are computed by the following constraints, respectively:

U ≥ ∑
j∈J

xij ∀i ∈ I (10)

L ≤ ∑
j∈J

xij + n(1− yi) ∀i ∈ I (11)

Note that Equation (10) counts the number of inhabitants allocated to the VPs. By con-
sidering the inequality of the type greater or equal than, the value of U that satisfies
Equation (10) is bounded by the maximum number of allocations to a specific VP. On the
other hand, Equation (11) differentiates between opened and closed VPs and helps to
compute the minimum number of inhabitants allocated to a specific VP. In detail, if a VP
is located at a specific potential site, then the second term of the right-hand side is zero.
Due to the sign of the inequality, the value of L that satisfies Equation (11) is the minimum
number of inhabitants allocated. If a VP is not located, inhabitants cannot be allocated by
Equation (8). Thus, constraint (11) is relaxed since it is bounded by n.

Finally, lower-level decision variables are binary.

xi,j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (12)

The resulting bi-objective bi-level programming model is defined by:

[Equation (1), Equation (3)]

s.t. : Equations (4)–(6)

where for a fixed y, x optimally solves:

Equation (7)

s.t. : Equations (8)–(12)

It is worthwhile to note that if each of the inhabitants have a different order of pref-
erences for the located VPs, then a unique optimal solution of the lower level exists (see
the Ref. [12]). However, this may be unrealistic in our problem due to the large number
of inhabitants in comparison with the located VPs. Thus, it is expected that more than
one inhabitant will have the same ranking of preferences, which leads to the existence of
multiple optimal solutions for the lower level. In that case, different optimal lower-level
solutions, for a fixed upper-level decision, could lead to different values of the upper-level
objective function. The optimistic or pessimistic approaches can be assumed to handle that
issue [42,43]. In the former, the lower-level decision-maker selects the optimal solution that
is more convenient to the upper-level decision-maker (cooperative approach), while in the
latter, the solution that most negatively affects the upper-level decision-maker is selected
by the lower-level decision-maker. In this study, the optimistic approach is followed.

The latter assumption is necessary to have a well-defined bi-level programming
problem. Nevertheless, in the problem under study, it is not straightforward to identify the
optimistic approach since we are simultaneously optimizing two objective functions. Note
that both objective functions can be seen as separable, that is, Equation (1) is determined
by the lower-level variables, and Equation (3) is only defined by upper-level variables.
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Therefore, the optimistic approach relies on choosing the optimal solution of the lower level
that is more convenient for balancing the inhabitants that attend the vaccination points.

To obtain all the possible multiple optimal solutions of the lower level, the correspond-
ing separation problem is identified [44]. That is, all the allocations of inhabitants to located
VPs are identified and the appropriate constraint is added. This means it is prohibited
that all the identified allocations are repeated in the augmented problem. Additionally,
a constraint that guarantees that the lower-level objective function value is maintained is
included. Then, the augmented lower-level problem is solved. If it is infeasible, it implies
that no more optimal lower-level solutions exist. In the other case, the optimal solutions
are recorded and at the end, the one that offers greater balance for the crowding in the VPs
is selected.

4. A Bi-Objective Nested Cross-Entropy Algorithm (BONXEA)

Cross-entropy (XE) is an iterative method with two main phases. First, it creates a
random sample of solutions by a specific mechanism. Then, it updates the parameters
involved in the solutions generator. The latter is achieved by considering the characteristics
of the previous random sample in order to create improved solutions in the next iteration.

XE has a relatively short history in optimization problems. Rubinstein developed XE as
a method for estimating the probability of rare events in complex stochastic networks [45].
A few years later, XE was applied for the first time in the context of combinatorial opti-
mization, which inspired its application in diverse applications in operational research:
capacitated facility location [46–48], closed-loop supply chain in the Ref. [49], sustainable
supply chain in the Ref. [50], job-shop scheduling [51], facility layout [52], and water
distribution systems [53], among others.

Described in detail, XE consists of the repeated execution of the following steps [54]:

1. Generate a random sample of solutions based on a prespecified probability distribu-
tion function.

2. Use the random sample to select an elite set that is used to modify the parameters of
the probability distribution function seeking to produce a sample with better objective
function values in the next iteration.

The general idea is to obtain a sequence of parameter values that are being updated
in an appropriate manner from one iteration to the next one. If successful, the search
converges to the global optimum, or at least, to a local optimum.

XE has been successfully applied in discrete problems related to the papers studied
herein. For example, in the Ref. [46] a location-allocation problem was studied. Therein,
capacity and fixed costs of the facilities are considered, and the minimization of the total
cost is aimed. A non-linear mixed-integer formulation is proposed and the XE method
is implemented to solve the problem. Three different stages occur, each with different
density functions. In the first stage, a location problem with coverage is solved by using a
multivariate normal function. In the second stage, the allocation is made by following a
multinomial density function. Then, in the third stage, a continuous single-facility location
problem is solved. The proposed approach obtains good results in comparison to solutions
obtained by GAMS. Additionally, in the Ref. [47], a hybrid algorithm for the capacitated
multiperiod multicommodity lot-sizing problem was presented. In that problem, many
commodities competed for the space and limited resources at each period. The proposed
solution approach considers a Lagrangian relaxation and applies a metaheuristic based on
XE for the uncapacitated version of the problem.

Additionally, XE has been applied to solve facility location problems modeled as
bi-level programs. For example, in the Ref. [48] a bi-level problem was studied. Therein,
the upper level is associated with a company that locates capacitated facilities aiming to
minimize location and distribution costs. In the lower level, customers seek to maximize
their preferences of being allocated to their most preferred facilities. A XE algorithm is
designed to obtain upper-level solutions, while the lower level is solved through three
different approaches via an adaptive random procedure, via a procedure based on a regret
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cost, and by an exact method. The XE algorithm builds a set of upper-level solutions and
for each of them, the resulting lower-level problem is solved. In other words, the classical
nested approach is used, of algorithms designed to solve bi-level problems.

There exist other applications of XE in the context of multi-objective programming. In
the Ref. [55] it was used to find efficient frontiers for problems with multiple multimodal
objective functions of continuous variables. To obtain the Pareto fronts, the set of non-
dominated solutions is divided in groups and a XE procedure is applied to each of them.
That method is very similar to that proposed by the Ref. [56]. In the Ref. [57], an adapted
XE method for estimating the Pareto front was proposed. To achieve the latter, a uniform
grid in the space of the objectives is formed. Each cell in the grid contains its own elite
population (with non-dominated solutions). As a consequence, the associated probability
vectors are updated, respectively. At the end of the process, the approximation of the Pareto
front consists of the union of the set of non-dominated solutions in each cell. Recently, in
the Ref. [50] a multi-objective XE method was designed to solve a sustainable food supply
chain. When the solutions’ set is generated, a dominant matrix is considered to identify the
best solution.

As mentioned before, the problem studied in this research is to be approached by a
bi-objective nested cross-entropy algorithm (BONXEA). To design the BONXEA, the XE
methods proposed in the Refs. [48,57] are considered. In the former, a discrete bi-level
facility location problem with capacities is studied; meanwhile, in the latter, different
multi-objective problems are analyzed. To initialize our proposed BONXEA, a grid in
the objectives space must be defined. Since we are considering two objective functions, a
3× 3 grid is created. The number of cells in the grid corresponds to the number of objectives
being considered plus one. The rationale is to find the best solutions for each objective
and for the central region of the Pareto frontier. To construct the grid, the minimum and
maximum values for each objective function are needed. Let F1, F2 and F3 be the objective
functions considered in the BONXEA, where F1 corresponds to the objective function
associated to the distance between the vaccination points, F2 is associated to the balance of
inhabitants in each vaccination point, and F3 is the weighted sum of the standardization of
F1 and F2.

After that, a population of N upper-level solutions (y) is created. For each of these
solutions, the lower-level problem is optimally solved (nested attribute of the BONXEA).
Now, the upper-level objective functions can be evaluated. Solutions in the initial popu-
lation are grouped into three subpopulations, each of them associated with F1, F2 and F3,
respectively. Three samples of size d that contain the best solutions, in terms of the quality
of the corresponding objective function, are formed. For each sample, the frequencies
of locating a vaccination point are updated in the construction phase. Therefore, new
subpopulations of solutions are created based on the updated frequency vectors for each
of the three samples. The procedure is repeated until a maximum number of iterations
is reached. Non-dominated solutions and their respective objective function values are
stored, and given as the output of our algorithm.

A pseudocode of the BONXEA is presented in Algorithm 1.
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Algorithm 1 BONXEA

Input: N, d, MaxIter
Output: P

1: Iter ← 0
2: P← ∅ (Pareto front)
3: γ(k) ← 0.5 (Initial frequencies)
4: Define a 3× 3 grid that bounds F1 and F2
5: while Iter < MaxIter do
6: for i : 1..N do
7: ȳi ← Create an upper level solution based on γ(k)

8: yi ← Repair an upper level solution(ȳi)
9: xi ← Optimally solve the lower level(yi)

10: Evaluate F1(xi), F2(yi) and F3(xi, yi)
11: end for
12: for each non-empty cell c of the 3× 3 grid do
13: Identify the d elite solutions
14: Update frequency vector γ(k)

15: Obtain Pc accordingly with F1 and F2
16: P← P ∪ Pc
17: end for
18: Update P with the non-dominated points
19: Iter ← Iter + 1
20: end while

4.1. BONXEA Description

Solution encoding
The proposed algorithm explores upper-level solutions, and for each of them, the opti-

mal reaction of the lower level is obtained. In this case, an upper-level solution at iteration
k is represented by the binary vector y(k) = (y(k)1 , . . . , y(k)|I| ), in which a 1 indicates that a VP
is located at site i ∈ I, and 0 otherwise.

Creation of solutions
At iteration k, N random solutions are created but based on a frequency vector

γ(k) = (p(k)1 , . . . , p(k)|I| ), that indicates the probability of locating a facility at each site.
At the beginning of the BONXEA, when k = 1, probabilities are set as 0.5, that is,
γ(1) = (0.5, . . . , 0.5). As the algorithm continues, frequency vectors γ(k) are going to
be updated from one iteration to the next. That will lead us to favoring the facilities more
convenient to locating VPs.

Repair of solutions
In the case when an upper-level solution y(k) = (y(k)1 , . . . , y(k)|I| ) at iteration k has not

located the p required VPs, a specific routine is performed to repair the solution, that is,
to achieve feasibility. Specifically, the non-located VP associated with the higher frequency
in vector k = (p(k)1 , . . . , p(k)|I| ) is located. If more than one VP needs to be located to achieve
the p required, the repair procedure continues in an analogous manner. The repairing
procedure stops when p VPs are located.

Optimal solution of the lower-level problem
Recall that once the located vaccination points are known, inhabitants are optimally

allocated to these facilities. Allocation must take into account inhabitants’ preferences in
regard to the VPs. Since capacity at the VPs is not being taken into consideration, all the
inhabitants may be allocated to their most preferred located facilities.

Therefore, the lower-level problem may be optimally solved by using an auxiliary
matrix of ordered preferences, in which the indices of the facilities are ordered in a de-
creasing manner based on the preferences of each inhabitant. That is, each column of
the auxiliary matrix contains the ordered indices of the VPs. Once the auxiliary matrix is



Axioms 2023, 12, 305 12 of 20

constructed, the lower-level problem can be optimally solved by using an easy procedure.
For each inhabitant, their most preferred located VP is identified, and the allocation is
made. By following the procedure described, the optimal allocation of inhabitants to VPs is
achieved (see the Refs. [13,16]). Hence, an optimal solution of the lower level is obtained for
a given upper-level fixed solution, that is, x∗(k)(y(k)). For sake of simplicity, it is denoted
by x(k).

Evaluation of the objective functions
Once an upper-level solution y(k)i and its corresponding lower-level optimal response

x(k) are obtained, the objective functions considered in the BONXEA can be evaluated, that
is, F1, F2 and F3. Recall that F1 is given by Equation (1), F2 is given by Equation (3), and F3
is given by αNF1 + (1− α)NF2, where NF1 and NF2 are the standardization of F1 and F2,
respectively.

Creation of the subpopulations based on dominance
Firstly, we take the elite populations for each of the three cells considered in the

3× 3 grid. Each elite population is associated to each one of the three objective functions
considered, that is, F1, F2 and F3. Therefore, the best d solutions regarding objective F1
are selected, and the objective F2 is evaluated for such solutions. The non-dominated
solutions in that cell are stored, which are denoted by y1(k), y2(k), . . . , yd(k). After that,
the same procedure is repeated to identify the non-dominated solutions in the remaining
two cells, that is, regarding F2 and F3, respectively. The authors emphasize that to identify
the non-dominated solutions, only objectives F1 and F2 are used because they are the real
objectives in the problem under study. Recall that objective F3 is an auxiliary objective
function to identify the central part of the Pareto front.

Under this approach, three Pareto fronts are obtained, one for each of the three cells
considered in the grid. Likewise, each subpopulation evolves independently from the other
two subpopulations.

Updating the probabilities vector γ

At iteration k, vectors γ
(k)
l , with l = 1, 2, 3, are vectors that contain the frequency in

which a specific VP is located in the solutions of the corresponding elite subpopulation
performed, n. The reason for the use of vectors γ

(k)
l is to store information of the components

of the elite solutions, that is, to identify the repetition of VPs in the good-quality solutions.
This is performed so as to favor locating these VPs in the next random-biased solutions.
For each subpopulation l, the probabilities are obtained as follows:

γ
(k)
l =

∑d
s=1 ys(k)

1
d

,
∑d

s=1 ys(k)
2

d
, . . . ,

∑d
s=1 ys(k)

|I|
d


Creation of new solutions
To generate new solutions of each subpopulation l at iteration k, vectors γ

(k)
l are used

to determine whether a VP is located or not. As mentioned before, the procedure seeks to
favor the more convenient VPs regarding the information provided by the elite solutions of
each subpopulation. For the new created solutions, a random vector of size |I| is generated,
and if the random number associated to the i-th position is less than its corresponding
probability γ

(k)
il , then that VP is located.

If a 0 appears in one position within vectors γl , then it means that in the new created
solutions, a VP must not be located in that specific site. Otherwise, when a positive
probability appears, the possibility exists to locate a VP at that potential site. In the
case where the probability is 1, a VP must be located in that specific site for all the new
created solutions. By following this criterion, the algorithm iteratively converges to good-
quality solutions.

Stopping criterion
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The stopping criteria are established as a fixed maximum number of iterations, and a
predetermined number of iterations without updating the non-dominated set of solutions
at each subpopulation.

Final Pareto front
At each iteration of the BONXEA, a Pareto front for each one of the three subpopula-

tions is obtained. Furthermore, the obtained frontiers for each cell of the grid are updated
at each iteration taking the previous fronts.

At the end of the BONXEA, the non-dominated sets of points obtained for each elite
subpopulation are merged to form the final Pareto front. Some non-dominated solutions in
a cell are dominated by some solutions of the Pareto front of another cell. Hence, at the
end, only the non-dominated solutions of all the three cells are reported.

4.2. Computational Complexity of BONXEA

BONXEA starts by generating an initial population of N solutions of size |I|. Addi-
tionally, a repairing phase may be needed if less than p VPs are located. In the worst case,
p insertions from all the |I| possibilities are performed. Then, the lower level is optimally
solved via an allocation algorithm in O(|I| × |J|) time.

After that, a sample of d elite solutions is selected for each of the c cells in the 3× 3
grid, which incurs in O(d × c × |I|) time. The evaluation of the first objective function
requires O(d× c× |I| × |J|) time. The update of the probability vector requires the same
time as the selection of the sample, that is, O(d× c× |I|).

The algorithm repeats its main cycle for a predefined number MaxIter of iterations.
Hence, the computational complexity is MaxIter times the sum of all the computational
complexities identified above. In summary, the computational complexity of BONXEA is
O(d× c× |I| × |J| ×MaxIter), which is of polynomial time.

5. Experimental Results

To measure the performance of the proposed algorithm and its ability to approximate
the Pareto front, an intensive computational experimentation was carried out on a set of
instances adapted from the literature. All computational experiments were performed on
a computer with a 3.60 GHz Intel Core i7-4790 processor with 32.00 GB of RAM running
Windows 8.1. The BONXEA code was coded with FICO Xpress 8.11 software.

The set of instances was adapted from the instances used for a discrete facility location
problem with balanced customer allocation, which was proposed in the Ref. [7]. In that
problem, the parameters regarding the instance size were included, that is, number of
possible facilities and number of clients (VPs and inhabitants in our case, respectively).
In addition, the distances between VPs and inhabitants were included. The missing param-
eters that are needed for our problem have been filled in as is described next. In particular,
data related to the preferences of the inhabitants towards VPs were missing. These prefer-
ences were generated through the process described in the Ref. [58]. Basically, this process
takes into account the existing costs, and generates modified fictitious costs to rank them
in ascending order. Based on this, preferences are generated, ensuring that the closest
VP is not always the most preferred by an inhabitant. It is worthwhile mentioning that
under these instances’ construction processes, all the generated instances are feasible for
our problem.

For the problem studied in this research, the instances must contain the data on the
number of VPs, the number of inhabitants, the predefined number of VPs that must be
located, the preferences and the distances of the inhabitants towards the VPs, respectively.

We denote an instance as follows: m− n− p− v, as in the Ref. [7]. For example, 30-50-
3-10 means that there are 30 potential VPs, 50 inhabitants, 3 VPs to be opened, and only
10 distance pairs that have been exchanged. The latter refers to a parameter that adds
complexity to the instance.

In total, 45 different instances were generated by combining different numbers of the
following parameters: (i) VPs to be opened (|I|), which were set from the set {20, 30, 50, 100};
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(ii) the number of inhabitants, which vary between {20, 30, 50, 100)}; (iii) the number of
VPs to open p, which were among {3, 4, 6, 10}; and (iv) the perturbation level v, which was
used to modify the values of an instance without losing the structure, those values were
chosen from {10, 30, 50, 100}.

Due to the stochasticity inherent in the BONXEA, 100 runs were performed for each
instance. A summary of the results obtained from the experimentation is shown in Table 2.
The first column indicates the label of the instance to which we refer. The remaining columns
are associated with the non-dominated solutions. The second and fourth columns show
the minimum and maximum number of non-dominated solutions obtained by BONXEA,
respectively. The third column shows the average of the obtained non-dominated solutions
among the 100 runs of the algorithm. The fifth and sixth columns show the minimum and
maximum values for the objective function F1, respectively. Recall that the said objective
function refers to the balance of the inhabitants in the open VPs. Finally, the minimum and
maximum values obtained for the second objective function F2 are shown in the seventh and
eighth columns. It should be noted that the second objective function seeks to maximize the
minimum distance between two open VPs. With these last four columns, we can identify
the extremes of the obtained approximated Pareto front.

From Table 2 it can be seen that the BONXEA always obtained non-dominated solu-
tions. The largest number of non-dominated solutions that was obtained is eight solutions
(see instance 50-100-6-50). On average, there are at least two non-dominated solutions for
each instance. We note that F1 refers to the balancing of inhabitants. In a case of perfect
balancing of inhabitants among the VPs, F1 = 0. If this is not possible, the range in which
F1 varies is very limited. That is, there are not many non-dominated solutions with large
F1 values. For example, for the instances 30-30-3-1 and 30-30-3-100, a perfect balance is
found, that is, there are exactly 10 inhabitants that go to each open VP. However, instance
100-100-3-10 shows a surprising result. A total of 100 clients were considered and the worst
reported balance was 49. This implies that there is a lot of disparity between the crowding
in the open VPs. However, after reviewing this solution, we realized that the balance of
49 corresponds to the best value for F2. That is, very distant VPs cause the inhabitants
to be mostly concentrated in a central VP. That occurs only in that particular instance,
and due to the spatial distribution of the inhabitants and potential VPs. It is also important
to clarify that the obtained values of F2 are integers because that is the manner in which
they are defined in the data, and Euclidean distances between inhabitants and VPs are not
being calculated.

From the results obtained, we also identify that the proposed algorithm finds solutions
that allow us to correctly approximate the Pareto fronts of this hierarchized problem.
To illustrate the above, some of the obtained Pareto fronts were randomly selected and
have been plotted in Figure 1.

It can be seen in Figure 1 that there is an adequate number of solutions plotted. In the
graphics presented, the maximum number of solutions obtained in the Pareto front is 9
and the minimum is 6. However, as already mentioned above, it is very important to take
into account that the first leader’s objective function (F1) seeks to minimize balance among
inhabitants that attend to a specific open VP, which is a small integer value, so excessive
possible values for that target do not exist.

In addition, these graphs show the 3× 3 grid that is carried out in each iteration
to consider the best solutions for the creation of the nine sub-populations of solutions.
Within the grid, it is observed that in the specific grid that corresponds to the best values
for F1 and F2, the number of solutions contained is from one to three. This validates the
idea of considering the grid to always find the best solution for each objective function.
At least in the 45 instances considered in this computational experimentation, this behavior
is maintained. Likewise, it can be observed that there is diversity within the solutions,
that is, some are better for F1, others better for F2, and some others that are in the center,
according to the weighted sum considering the objective function.
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Table 2. Summary of the solutions obtained by the BONXEA.

Instance Min Avg Max Min F1 Max F1 Min F2 Max F2

20-20-3-1 2 3.5 4 1 4 29 37
20-20-3-10 1 2.6 4 1 9 16 18
20-20-3-50 2 2 2 1 17 7 18

20-20-6-1 2 2.5 4 1 3 9 13
20-20-6-10 3 3.5 5 1 5 7 14
20-20-6-50 2 2.9 4 1 4 5 10

30-30-3-1 2 4.1 7 0 9 48 71
30-30-3-10 2 2.9 4 8 17 26 28
30-30-3-100 2 3.6 5 0 8 23 26

30-30-4-10 2 3 4 10 13 10 27
30-30-4-100 2 3.2 6 1 4 20 26

30-50-3-10 1 2.1 4 1 17 4 28
30-50-3-50 2 2.9 4 1 6 25 27
30-50-3-100 1 2.9 4 4 14 1 26

30-50-6-10 3 3.5 5 1 8 11 23
30-50-6-50 3 4.1 6 2 14 15 22
30-50-6-100 2 4.7 6 1 13 6 22

30-50-10-10 3 3.7 5 5 6 14 19
30-50-10-50 2 3.4 4 2 7 7 14

30-50-10-100 2 3.5 5 4 8 7 13

30-100-3-50 2 4.1 6 4 10 16 28
30-100-3-100 2 3.4 6 4 12 25 28

30-100-6-10 3 4 6 4 12 10 24
30-100-6-50 2 4.6 7 3 21 9 23

30-100-6-100 4 5.2 7 3 13 8 22

30-100-10-10 2 3.5 5 9 16 9 19
30-100-10-50 2 3.7 5 7 15 9 18

30-100-10-100 3 4.7 7 6 15 4 18

50-50-3-10 1 2.5 6 2 18 1 41
50-50-3-50 3 3.7 5 1 5 36 48
50-50-3-100 1 2.8 5 1 1 47 47

50-50-6-10 3 4.6 6 1 11 26 39

50-50-10-10 2 3.3 5 2 7 21 39
50-50-10-50 2 3.7 6 2 8 26 33

50-50-10-100 2 3.3 6 4 12 2 34

50-100-3-10 3 3.5 6 1 14 44 48
50-100-3-50 2 3.9 7 1 12 37 47

50-100-3-100 2 4.6 7 7 23 46 47

50-100-6-50 3 4.2 8 3 16 31 39
50-100-6-100 2 4 5 3 12 33 42

50-100-10-50 2 3.3 4 2 6 23 32
50-100-10-100 3 4 5 3 12 27 35

100-100-3-1 1 2.6 4 1 5 102 105
100-100-3-10 1 3.5 8 1 49 3 95
100-100-3-50 2 3.8 5 1 20 93 97
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Figure 1. Selected approximated Pareto fronts obtained by the BONXEA.

In order to illustrate the limited space in which the leader’s objective function is
embedded (regarding the balance), one independent run of the BONXEA was performed
and 100 runs were set as the stopping criterion. Therefore, we registered the best value
obtained for F1 at each iteration. This may give us an idea of the convergence capability
of the BONXEA. It can be seen in Figure 2 that from a balance value of 4 it improves to
2, and no further improvement is reported in the remaining 90 iterations. Additionally,
at each iteration of the BONXEA, other non-dominated solutions may arise, but this
particular analysis is performed to demonstrate the convergence of the BONXEA regarding
a particular leader’s objective function. In Figure 3, the same analysis is performed, but with
respect to F2. It can also be noticed that the BONXEA obtains the best value of F2 in the
first 40 iterations. This is a good indicator that the BONXEA contains a well-designed
intensification component.

Figure 2. Illustrating the convergence of BONXEA regarding F1.
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Figure 3. Illustrating the convergence of BONXEA regarding F2.

We may summarize that the proposed algorithm generates a reasonably-sized set of
efficient solutions for our problem. Therefore, the decision-maker will have to choose the
solution that is more convenient to him/her at the moment when the real problem is being
solved. In other words, among all the non-dominated solutions obtained by the BONXEA,
only one can be implemented in practice. However, this is common for bi-objective practical
decision-making problems.

6. Conclusions and Further Research Directions

As mentioned throughout this manuscript, implementing measures to fight the
COVID-19 pandemic is crucial. For example, social distancing (healthy distance) and
avoiding crowds are globally accepted as good steps to prevent infections and to try to
control the pandemic. It is in this context that a vaccination-point location problem that
considers inhabitants’ preferences arises. Its purpose is to contribute to maintaining the
healthy distance between inhabitants who come to receive their vaccine against the COVID-
19 virus. In this paper, the government sought to open vaccinations points as far from each
other as possible, but at the same time, sought to have a balanced demand for vaccines
at each open vaccination point. This is not straightforward because the government does
not impose restrictions on the inhabitants regarding which vaccination point they can
go to. On the contrary, inhabitants decide where to go based on their own preferences,
which may be decided by distance, personal interests, and type of vaccine, among others.
If the government assigns the inhabitants to the VPs in a mandatory manner, the closest
assignment rule can be selected and the problem reduces its complexity.

The situation is modeled under a bi-objective bi-level programming approach. the gov-
ernment is associated with the leader, and the inhabitants, with the follower. As mentioned,
the inhabitants’ preferences are taken into account when they are allocated to the open
vaccination points. Different constraints are considered, which complicate the problem.

To solve this problem, we proposed a metaheuristic approach that is capable of
approximating the Pareto front in an effective manner. A bi-objective nested cross-entropy
algorithm is designed. Both considered objective functions are taken into account in the
algorithm. The pertinent mechanisms are proposed to identify the approximation of the
Pareto front. Additionally, for each leader’s solution, the parameterized follower’s problem
is optimally solved. This is the nested approach of the proposed algorithm. Therefore,
initial solutions are randomly generated followed by a procedure that creates a grid to
classify solutions. Then, the more convenient components of a solution are identified,
with respect to the cell of the grid that the solution belongs to. Based on the latter, new
solutions are generated following a components-biased manner. The algorithms continue
until a stopping criterion is reached.
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It can be seen from the computational experimentation that the proposed algorithm
obtained a Pareto front in good shape. Insights can be gained from the obtained results.
However, it is important to point out that the structure of the first leader’s objective function
does not have many values. Thus, few values may be obtained, which significantly reduces
the number of solutions that may conform to the Pareto front. In the literature, to the best
knowledge of the authors, there are no papers with all the characteristics considered in
this study. As a consequence, this is the first bi-objective bi-level programming model for a
problem with these assumptions. For this reason, there are no benchmark algorithms or
instances that can be considered to compare our proposed algorithm.

A future research direction may be the application of this problem to a real case study.
However, it is well-known that government agencies are not often open to sharing data or
to allowing academic collaborations. A comparison against real implemented decisions
would give us interesting managerial insights. As a second research direction, we may
apply this model to a different context. Maybe in the private sector, a situation could arise
in which a company has similar interests as the ones stated by the leader in our problem.
Customers could be considered the inhabitants of our problem. Usually, it is important to
allow customers to be free to choose the service of their preference.
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