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Abstract: In this paper, first derivatives of the Whittaker function Mκ,µ(x) are calculated with respect
to the parameters. Using the confluent hypergeometric function, these derivarives can be expressed
as infinite sums of quotients of the digamma and gamma functions. Moreover, from the integral
representation of Mκ,µ(x) it is possible to obtain these parameter derivatives in terms of finite and
infinite integrals with integrands containing elementary functions (products of algebraic, exponential,
and logarithmic functions). These infinite sums and integrals can be expressed in closed form for
particular values of the parameters. For this purpose, we have obtained the parameter derivative of
the incomplete gamma function in closed form. As an application, reduction formulas for parameter
derivatives of the confluent hypergeometric function are derived, along with finite and infinite
integrals containing products of algebraic, exponential, logarithmic, and Bessel functions. Finally,
reduction formulas for the Whittaker functions Mκ,µ(x) and integral Whittaker functions Miκ,µ(x)
and miκ,µ(x) are calculated.

Keywords: derivatives with respect to parameters; Whittaker functions; integral Whittaker functions;
incomplete gamma functions; sums of infinite series of psi and gamma; finite and infinite logarithmic
integrals and Bessel functions
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1. Introduction

Introduced in 1903 by Whittaker [1], the Mκ,µ(z) and Wκ,µ(z) functions are defined as
follows:

Mκ,µ(z) = zµ+1/2e−z/2
1F1

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣z), (1)

2µ 6= −1,−2, . . .

and

Wκ,µ(z) =
Γ(−2µ)

Γ
(

1
2 − µ− κ

)Mκ,µ(z) +
Γ(2µ)

Γ
(

1
2 + µ− κ

)Mκ,−µ(z), (2)

2µ 6= ±1,±2, . . .
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respectively, where Γ(x) denotes the gamma function and z ∈ C \ (−∞, 0]. These functions,
called Whittaker functions, are closely associated with the following confluent hypergeometric
function (Kummer function):

1F1

(
a
b

∣∣∣∣z) =
Γ(b)
Γ(a)

∞

∑
n=0

Γ(a + n)
Γ(b + n)

zn

n!
, (3)

where pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) denotes the generalized hypergeometric function.

For particular values of the parameters κ and µ, the Whittaker functions can be reduced
to a variety of elementary and special functions. Whittaker [1] discussed the connection
between the functions defined in (1) and (2) and many other special functions, such as the
modified Bessel function, the incomplete gamma functions, the parabolic cylinder function,
the error functions, the logarithmic and the cosine integrals, and the generalized Hermite
and Laguerre polynomials. Monographs and treatises dealing with special functions [2–10]
present properties of the Whittaker functions with more or less extension.

The Whittaker functions are frequently applied in various areas of mathematical
physics (see for example [11–13]), such as the well-known solution of the Schrödinger
equation for the harmonic oscillator [14].

Mκ,µ(x) and Wκ,µ(x) are usually treated as functions of variable x with fixed values
of the parameters κ and µ. However, there are other investigations which consider κ and
µ as variables. For instance, Laurenzi [15] discussed methods to calculate derivatives of
Mκ,1/2(x) and Wκ,1/2(x) with respect to κ when this parameter is an integer. Using the
Mellin transform, Buschman [16] showed that the derivatives of the Whittaker functions
with respect to the parameters for certain particular values of these parameters can be
expressed in finite sums of Whittaker functions. López and Sesma [17] considered the
behaviour of Mκ,µ(x) as a function of κ. They derived a convergent expansion in ascending
powers of κ and an asymptotic expansion in descending powers of κ. Using series of
Bessel functions and Buchholz polynomials, Abad and Sesma [18] presented an algorithm
for the calculation of the nth derivative of the Whittaker functions with respect to the
κ parameter. Becker [19] investigated certain integrals with respect to the µ parameter.
Ancarini and Gasaneo [20] presented a general case of differentiation of generalized hyper-
geometric functions with respect to the parameters in terms of infinite series containing the
digamma function. In addition, Sofostasios and Brychkov [21] considered derivatives of
hypergeometric functions and classical polynomials with respect to the parameters.

The primary focus of this research is a systematic investigation of the first derivatives
of Mκ,µ(x) with respect to the parameters. We primarily base our findings on two distinct
methods. The first pertains to the series representation of Mκ,µ(x), whereas the second
pertains to the integral representations of Mκ,µ(x). Regarding the first approach, direct
differentiation of (1) with respect to the parameters leads to infinite sums of quotients
of digamma and gamma functions. It is possible to calculate such sums in closed form
for particular values of the parameters. The parameter differentiation of the integral
representations of Mκ,µ(x) leads to finite and infinite integrals of elementary functions,
such as products of algebraic, exponential, and logarithmic functions. These integrals are
similar to those investigated by Kölbig [22] and Geddes et al. [23]. As in the case of the first
approach, it is possible to calculate such integrals in closed form for some particular values
of the parameters.

In the Appendices, we calculate the first derivative of the incomplete gamma functions
γ(ν, x) and Γ(ν, x) with respect to the parameter ν. These results are used when we calculate
several of the integrals found in the second approach mentioned above. In addition, we
calculate new reduction formulas of the integral Whittaker functions which we recently
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introduced in [24]. These are defined in a similar way as other integral functions in the
mathematical literature:

Miκ,µ(x) =
∫ x

0

Mκ,µ(t)
t

dt, (4)

miκ,µ(x) =
∫ ∞

x

Mκ,µ(t)
t

dt. (5)

Finally, we include a list of reduction formulas for the Whittaker function Mκ,µ(x) in
the Appendices.

2. Parameter Differentiation of Mκ,µ via Kummer Function 1F1

As mentioned above, the Whittaker function Mκ,µ(x) is closely related to the confluent
hypergeometric function 1F1(a; b; x). Likewise, the parameter derivatives of Mκ,µ(x) are
related to the parameter derivatives of 1F1(a; b; x). Below, we introduce the following
notation set by Ancarini and Gasaneo [20].

Definition 1. Define the parameter derivatives of the confluent hypergeometric function as

G(1)
(

a
b

∣∣∣∣x) =
∂

∂a

[
1F1

(
a
b

∣∣∣∣x)], (6)

and

H(1)
(

a
b

∣∣∣∣x) =
∂

∂b

[
1F1

(
a
b

∣∣∣∣x)]. (7)

According to (3), we have

G(1)
(

a
b

∣∣∣∣x) =
Γ(b)
Γ(a)

∞

∑
n=0

Γ(a + n)
Γ(b + n)

[ψ(a + n)− ψ(a)]
xn

n!
,

H(1)
(

a
b

∣∣∣∣x) = −Γ(b)
Γ(a)

∞

∑
n=0

Γ(a + n)
Γ(b + n)

[ψ(b + n)− ψ(b)]
xn

n!
.

Additionally, according to [25], we have

G(1)
(

a
b

∣∣∣∣z) =
z
b

∞

∑
m=0

(a)m zm

(b + 1)m(2)m
2F2

(
1, a + m + 1

m + 2, b + m + 1

∣∣∣∣z), (8)

and

H(1)
(

a
b

∣∣∣∣z) = − a z
b2

∞

∑
m=0

(a + 1)m(b)m zm

[(b + 1)m]
2(2)m

2F2

(
1, a + m + 1

m + 2, b + m + 1

∣∣∣∣z). (9)

Because one of the integral representations of the confluent hypergeometric function
is ([6], Section 6.5.1)

1F1

(
a
b

∣∣∣∣x) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
extta−1(1− t)b−a−1dt (10)

Re b > Re a > 0,

by direct differentiation of (10) with respect to parameters a and b we obtain

G(1)
(

a
b

∣∣∣∣x) = [ψ(b)− ψ(a)] 1F1

(
a
b

∣∣∣∣x)
+

Γ(b)
Γ(a)Γ(b− a)

∫ 1

0
extta−1(1− t)b−a−1 ln

(
t

1− t

)
dt,
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and

H(1)
(

a
b

∣∣∣∣x) = −[ψ(b)− ψ(b− a)] 1F1

(
a
b

∣∣∣∣x)
+

Γ(b)
Γ(a)Γ(b− a)

∫ 1

0
extta−1(1− t)b−a−1 ln(1− t)dt.

Because our main focus is the systematic investigation of the parameter derivatives
of Mκ,µ(x), we present these parameter derivatives as Theorems throughout the paper
and the corresponding results for G(1)(a; b; x) and H(1)(a; b; x) as Corollaries. Additionally,
note that all the results regarding G(1)(a; b; x) can be transformed according to the next
Theorem.

Theorem 1. The following transformation holds true:

G(1)
(

a
b

∣∣∣∣x) = −exG(1)
(

b− a
b

∣∣∣∣− x
)

.

Proof. Differentiate Kummer’s transformation formula ([8], Equation 13.2.39) with respect
to a:

1F1

(
a
b

∣∣∣∣x) = ex
1F1

(
b− a

b

∣∣∣∣− x
)

to obtain the desired result.

2.1. Derivative with Respect to the First Parameter ∂Mκ,µ(x)/∂κ

Using (1) and (3), the first derivative of Mκ,µ(x) with respect to the first parameter κ is

∂Mκ,µ(x)
∂κ

= ψ

(
1
2
+ µ− κ

)
Mκ,µ(x) (11)

− Γ(1 + 2µ)

Γ
(

1
2 + µ− κ

) xµ+1/2e−x/2S1(κ, µ, x),

where ψ(x) denotes the digamma function and

S1(κ, µ, x) =
∞

∑
n=0

Γ
(

1
2 + µ− κ + n

)
Γ(1 + 2µ + n)

ψ

(
1
2
+ µ− κ + n

)
xn

n!
. (12)

Theorem 2. For 2µ 6∈ Z− and for x ∈ R, x 6= 0, the following parameter derivative formula of
Mκ,µ(x) holds true:

∂Mκ,µ(x)
∂κ

∣∣∣∣
κ=−µ−1/2

= − xµ+3/2

2µ + 1
ex/2

2F2

(
1, 1

2(µ + 1), 2

∣∣∣∣− x
)

. (13)

Proof. For κ = −µ− 1/2, Equation (11) becomes

∂Mκ,µ(x)
∂κ

∣∣∣∣
κ=−µ−1/2

= xµ+1/2e−x/2

[
ψ(1 + 2µ)

∞

∑
n=0

xn

n!
−

∞

∑
n=0

ψ(2µ + 1 + n)
xn

n!

]
.
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Apply ([26], Equation 6.2.1(60))

∞

∑
k=0

tk

k!
ψ(k + a) = et

[
ψ(a) +

t
a 2F2

(
1, 1

a + 1, 2

∣∣∣∣− t
)]

(14)

to obtain (13), completing the proof.

Corollary 1. For a ∈ R, a 6= 0, and for x ∈ R, the following reduction formula holds true:

G(1)
(

a
a

∣∣∣∣x) =
x ex

a 2F2

(
1, 1

a + 1, 2

∣∣∣∣− x
)

. (15)

Proof. Direct differentiation of (1) yields

∂Mκ,µ(x)
∂κ

= −xµ+1/2e−x/2G(1)
( 1

2 + µ− κ
1 + 2µ

∣∣∣∣x), (16)

thus, by comparing (16) with κ = −µ − 1
2 to (13), we arrive at (15), as we wanted to

prove.

Corollary 2. For a ∈ R, a 6= 0 and for x ∈ R, the following sum holds true:

∞

∑
m=0

γ(m + 1, x)
(m + a)m!

=
x
a 2F2

(
1, 1

a + 1, 2

∣∣∣∣− x
)

,

where γ(ν, z) denotes the lower incomplete gamma function (A1).

Proof. According to (8) and the reduction formula ([9], Equation 7.11.1(15))

1F1

(
1
b

∣∣∣∣z) = (b− 1)z1−bezγ(b− 1, z),

we have

G(1)
(

a
a

∣∣∣∣x) =
x
a

∞

∑
m=0

(a)m xm

(a + 1)m(m + 1)! 1F1

(
1

m + 2

∣∣∣∣x)
= ex

∞

∑
m=0

γ(m + 1, x)
(m + a)m!

. (17)

Comparing (15) to (17) completes the proof.

Table 1 presents explicit expressions for particular values of (13) and x ∈ R, obtained
with the help of the MATHEMATICA program. Note that the Shi(x) and Chi(x) functions
are defined in (61) and (62), respectively.

Next, we present other reduction formula of ∂Mκ,µ(x)/∂κ from the result found in [15]
for x ∈ R:

∂Mκ,µ(x)
∂κ

∣∣∣∣
κ=n,µ=1/2

(18)

= [ln|x| − ψ(n + 1)− Ei(x)]Mn,1/2(x) +
n−1

∑
`=0

(a` + b` ex)M`,1/2(x),

where Ei(x) denotes the exponential integral, and for n, ` = 1, 2, . . .

a` =
1
n

(
n + `

n− `

)
(19)
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and

b` =


1
n

n−`−1

∑
k=0

(`)k2k

(`+ n)k
, ` = 1, 2, . . .

0, ` = 0.
(20)

Table 1. Derivative of Mκ,µ with respect to κ using (13).

κ µ
∂Mκ,µ(x)

∂κ

− 3
4

1
4 − 2

3 x7/4ex/2
2F2

(
1, 1; 5

2 , 2;−x
)

− 1
2 0 −

√
xex/2[γ + ln x + Shi(x)−Chi(x)]

− 1
4 − 1

4 −2x5/4ex/2
2F2

(
1, 1; 3

2 , 2;−x
)

− 1
6 − 1

3 −3x7/6ex/2
2F2

(
1, 1; 4

3 , 2;−x
)

0 1
2 e−x/2[Shi(x) + Chi(x)− ln x− γ]− ex/2[Shi(x)−Chi(x) + ln x + γ]

1
6 − 2

3 3x5/6ex/2
2F2

(
1, 1; 2

3 , 2;−x
)

1
2 1

− 2√
x

{
ex/2[γ + 1 + ln x + Shi(x)−Chi(x)]

+ e−x/2(x + 1)[γ− 1 + ln x− Shi(x)−Chi(x)]
}

1 3
2

− 3
x

{
e−x/2[(x2 + 2x + 2

)
(ln x− Shi(x)−Chi(x) + γ)

]
+ ex/2[2 ln x + 2 Shi(x)− 2 Chi(x) + x + 2γ + 3]

}

In order to calculate the finite sum provided in (20), we derive the following Lemma.

Lemma 1. The following finite sum holds true ∀n, ` = 1, 2, . . .

S(n, `) =
n−`−1

∑
k=0

(`)k2k

(`+ n)k
= Re

[
2F1

(
1, `
`+ n

∣∣∣∣2)]. (21)

Proof. Split the sum in two as

S(n, `) =
∞

∑
k=0

(`)k(1)k2k

k!(`+ n)k︸ ︷︷ ︸
S1(n,`)

−
∞

∑
k=n−`

(`)k(1)k2k

k!(`+ n)k︸ ︷︷ ︸
S2(n,`)

,

where

S1(n, `) = 2F1

(
1, `
`+ n

∣∣∣∣2),

and

S2(n, `) = 2n−`
∞

∑
s=0

(`)s+n−`(1)s2
s

s!(`+ n)s+n−`

= 2n−` (`)n
(n)n

∞

∑
s=0

(n)s(1)s2
s

s!(2n)s

= 2n−` (`)n
(n)n

2F1

(
1, n
2n

∣∣∣∣2).
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Take a = 1, b = n, and z = 2 in the quadratic transformation ([8], Equation 15.18.3)

2F1

(
a, b
2b

∣∣∣∣z)
= (1− z)−a/2

2F1

( a
2 , b− a

2
b + 1

2

∣∣∣∣ z2

4(z− 1)

)
,

to obtain

2F1

(
1, n
2n

∣∣∣∣2) = i 2F1

( 1
2 , n− 1

2
n + 1

2

∣∣∣∣1).

Now, apply Gauss’s summation theorem ([8], Equation 15.4.20)

2F1

(
a, b
c

∣∣∣∣1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

Re (c− a− b) > 0,

and the formula ([7], Equation 43:4:3)

Γ
(

n +
1
2

)
=

(2n− 1)!!
2n

√
π,

to arrive at

2F1

(
1, n
2n

∣∣∣∣2) = iπ
(2n− 1)!!
2n(n− 1)!

.

Therefore, S2(n, `) is a pure imaginary number. Because S(n, `) is a real number, we
conclude that S(n, `) = Re[S1(n, `)], as we wanted to prove.

Theorem 3. The following reduction formula holds true for n = 1, 2, . . . and x ∈ R:

∂Mκ,µ(x)
∂κ

∣∣∣∣
κ=n,µ=1/2

(22)

=
2
n

sinh
( x

2

)
+

x e−x/2

n{
[ln|x|+ γ− Hn − Ei(x)] L(1)

n−1(x)

+
n−1

∑
`=1

(
n + `

n− `
− ex Re

[
2F1

(
1, `
`+ n

∣∣∣∣2)]) L(1)
`−1(x)
`

,

where L(α)
n (x) denotes the Laguerre polynomials (A14) and Hn = ∑n

k=1
1
k the n-th harmonic

number.

Proof. From (21) and (20), we can see that

b` = Re
[

2F1

(
1, `
`+ n

∣∣∣∣2)], ` = 1, 2, . . . (23)

Additionally, according to ([8], Equation 13.18.1),

M0,1/2(x) = 2 sinh
( x

2

)
. (24)

By performing the transformations κ → κ + 1, κ → 0, and n → n− 1 in (A13), we
obtain ∀n = 1, 2, . . .

Mn,1/2(x) =
x e−x/2

n
L(1)

n−1(x). (25)
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Finally, we have the following for n = 1, 2, . . . ([27], Equation 1.3.7):

ψ(n + 1) = −γ + Hn. (26)

Now, insert (19) and (20)–(26) in (18) to arrive at (22), as we wanted to prove.

Corollary 3. The following reduction formula holds true for n = 1, 2, . . . and x ∈ R,

G(1)
(

1− n
2

∣∣∣∣x)
=

1
n

{
1− ex

x
− [ln|x|+ γ− Hn − Ei(x)] L(1)

n−1(x)

−
n−1

∑
`=1

(
n + `

n− `
− ex Re

[
2F1

(
1, `
`+ n

∣∣∣∣2)]) L(1)
`−1(x)
`

.

Proof. Consider (16) and (22) to arrive at the desired result.

In Table 2, we collect particular cases of (22) for x ∈ R obtained with the help of the
MATHEMATICA program.

Table 2. Derivative of Mκ,µ with respect to κ using (22).

κ µ
∂Mκ,µ(x)

∂κ

1 1
2 x e−x/2[ln|x| − Ei(x) + γ− 1] + 2 sinh

( x
2
)

2 1
2

1
2 x e−x/2

{
(2− x)

[
ln|x| − Ei(x) + γ− 3

2

]
− ex + 3

}
+ sinh

( x
2
)

3 1
2

1
6 x e−x/2

[(
x2 − 6x + 6

)(
ln|x| − Ei(x) + γ− 11

6

)
+(ex − 5)(x− 2)− 3ex + 4] + 2

3 sinh
( x

2
)

2.2. Derivative with Respect to the Second Parameter ∂Mκ,µ(x)/∂µ

Using (1) and (3), the first derivative of Mκ,µ(x) with respect to the parameter µ is

∂Mκ,µ(x)
∂µ

(27)

=

[
ln x + 2 ψ(1 + 2µ)− ψ

(
1
2
+ µ− κ

)]
Mκ,µ(x)

+xµ+1/2e−x/2 Γ(1 + 2µ)

Γ
(

1
2 + µ− κ

) [S1(κ, µ, x)− S2(κ, µ, x)],

where S1(κ, µ, x) is provided in (12) and the series S2(κ, µ, x) is

S2(κ, µ, x) = 2
∞

∑
n=0

Γ
(

1
2 + µ− κ + n

)
Γ(1 + 2µ + n)

ψ(1 + 2µ + n)
xn

n!
. (28)

Theorem 4. For µ 6= −1/2 and x ∈ R, the following parameter derivative formula of Mκ,µ(x)
holds true:

∂Mκ,µ(x)
∂µ

∣∣∣∣
κ=−µ−1/2

(29)

= xµ+1/2ex/2
[

ln x− x
1 + 2µ

2F2

(
1, 1

2(µ + 1), 2

∣∣∣∣− x
)]

.
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Proof. For κ = −µ− 1/2, we have S2(κ, µ, x) = 2 S1(κ, µ, x); therefore, (27) becomes

∂Mκ,µ(x)
∂µ

∣∣∣∣
κ=−µ−1/2

= [ln x + ψ(1 + 2µ)]M−µ−1/2,µ(x)− xµ+1/2e−x/2S1

(
−µ− 1

2
, µ, x

)
,

where

S1

(
−µ− 1

2
, µ, x

)
=

∞

∑
n=0

ψ(1 + 2µ + n)
xn

n!
.

Thus, using (14),

∂Mκ,µ(x)
∂µ

∣∣∣∣
κ=−µ−1/2

(30)

= [ln x + ψ(1 + 2µ)]M−µ−1/2,µ(x)

−xµ+1/2ex/2
[

ψ(1 + 2µ) +
x

1 + 2µ
2F2

(
1, 1

2µ + 2, 2

∣∣∣∣− x
)]

.

Because, according to (1) and (3),

M−µ−1/2,µ(x) = xµ+1/2ex/2,

(30) now takes the simple form provided in (29), as we wanted to prove.

Corollary 4. For a ∈ R, a 6= 0, and x ∈ R, the following reduction formula holds true:

H(1)
(

a
a

∣∣∣∣x) = − x ex

a 2F2

(
1, 1

a + 1, 2

∣∣∣∣− x
)

. (31)

Proof. Direct differentiation of (1) yields

∂Mκ,µ(x)
∂µ

= ln x Mκ,µ(x) + xµ+1/2e−x/2 (32)[
G(1)

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)+ 2 H(1)
( 1

2 + µ− κ
1 + 2µ

∣∣∣∣x)],

thus, comparing (32) with κ = −µ− 1
2 to (29) and taking into account (15), we arrive at

(31), as we wanted to prove.

Using (29), the derivative of Mκ,µ(x) with respect µ can be calculated for particular
values of κ and µ with x ∈ R; as obtained with the help of MATHEMATICA, these are
presented in Table 3.

Note that for µ = −1/2, we obtain an indeterminate expression in (29). For this case,
we present the following result.

Theorem 5. The following parameter derivative formula of Mκ,µ(x) holds true for x ∈ R:

∂Mκ,µ(x)
∂µ

∣∣∣∣
κ=0

(33)

= 4µ
√

x Γ(1 + µ)

{
Iµ

( x
2

)
[ln 4 + ψ(1 + µ)] +

∂Iµ(x/2)
∂µ

}
,

where Iν(x) denotes the modified Bessel function.
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Table 3. Derivative of Mκ,µ with respect to µ using (29).

κ µ
∂Mκ,µ(x)

∂µ

− 3
2 1 1√

x

{
ex/2

[
x2(Chi(x)− Shi(x)− γ) + 3

2 x2 − 2x + 1
]
+ e−x/2(x− 1)

}
−1 1

2 x ex/2[Chi(x)− Shi(x)− γ + 1]− 2 sinh
( x

2
)

− 3
4

1
4 ex/2x3/4

[
ln x− 2

3 x 2F2

(
1, 1
2, 5

2

∣∣∣∣− x
)]

− 1
2 0 ex/2√x[Chi(x)− Shi(x)− γ]

− 1
4 − 1

4 ex/2x1/4
[

ln x− 2x 2F2

(
1, 1
2, 3

2

∣∣∣∣− x
)]

− 1
6 − 1

3 ex/2x1/6
[

ln x− 3x 2F2

(
1, 1
2, 4

3

∣∣∣∣− x
)]

1
6 − 2

3 ex/2x−1/6
[

ln x + 3x 2F2

(
1, 1
2, 2

3

∣∣∣∣− x
)]

Proof. Differentiating with respect to µ the expression ([8], Equation 13.18.8)

M0,µ(x) = 4µ Γ(1 + µ)
√

xIµ

( x
2

)
, (34)

we obtain (33), as we wanted to prove.

The order derivative of the modified Bessel function Iµ(x) is provided in terms of the
Meijer-G function and the generalized hypergeometric function ∀Re x > 0, µ ≥ 0 [28]:

∂Iµ(x)
∂µ

= −
µ Iµ(x)
2
√

π
G3,1

2,4

(
x2
∣∣∣∣ 1

2 , 1
0, 0, µ,−µ

)
(35)

−
Kµ(x)

Γ2(µ + 1)

( x
2

)2µ

2F3

(
µ, µ + 1

2
µ + 1, µ + 1, 2µ + 1

∣∣∣∣x2
)

,

where Kν(x) is the modified Bessel function of the second kind, or in terms of generalized
hypergeometric functions, only ∀Re x > 0, µ > 0, µ /∈ Z [29]:

∂Iµ(x)
∂µ

(36)

= Iµ(x)
[

x2

4(1− µ2)
3F4

(
1, 1, 3

2
2, 2, 2− µ, 2 + µ

∣∣∣∣x2
)
+ ln

( x
2

)
− ψ(µ)− 1

2µ

]
−I−µ(x)

π csc(πµ)

2 Γ2(µ + 1)

( x
2

)2µ

2F3

(
µ, µ + 1

2
µ + 1, µ + 1, 2µ + 1

∣∣∣∣x2
)

.

There are different expressions for the order derivatives of the Bessel functions [30,31].
This subject is summarized in [32], where more general results are presented in terms of
convolution integrals, while order derivatives of Bessel functions are found for particular
values of the order.

Using (33), (35), and (36), derivatives of Mκ,µ(x) with respect to µ can be calculated for
x ∈ R; these are presented in Table 4 as obtained with the help of MATHEMATICA.
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Table 4. Derivative of Mκ,µ with respect to µ using (33).

κ µ
∂Mκ,µ(x)

∂µ

0 − 1
2 [Chi(x)− γ] cosh

( x
2
)
− 2

x sinh3( x
2
)

0 0
√

x
[
(ln 4− γ)I0

( x
2
)
− K0

( x
2
)]

0 1
4

x3/4

15 0F1

(
; 5

4 ; x2

16

)[
x2

3F4

(
1, 1, 3

2 ; 7
4 , 2, 2, 9

4 ; x2

4

)
+ 15(ln x + 2)

]
− 2π x

Γ( 1
4 )

I− 1
4

( x
2
)

2F3

(
1
4 , 3

4 ; 5
4 , 5

4 , 3
2 ; x2

4

)
0 1

3

x5/6

128

{
0F1

(
; 4

3 ; x2

16

)[
9x2

3F4

(
1, 1, 3

2 ; 5
3 , 2, 2, 7

3 ; x2

4

)
+ 64(2 ln x + 3)

]
−192 0F1

(
; 2

3 ; x2

16

)
2F3

(
1
3 , 5

6 ; 4
3 , 4

3 , 5
3 ; x2

4

)}
0 1

2 2[Chi(x)− γ + 2] sinh
( x

2
)
− 2 Shi(x) cosh

( x
2
)

0 2
3

x7/6

80

{
0F1

(
; 5

3 ; x2

16

)[
9x2

3F4

(
1, 1, 3

2 ; 4
3 , 2, 2, 8

3 ; x2

4

)
+ 80 ln x + 60

]
−60 0F1

(
; 1

3 ; x2

16

)
2F3

(
2
3 , 7

6 ; 5
3 , 5

3 , 7
3 ; x2

4

)}
0 3

4

x5/4

21 0F1

(
; 7

4 ; x2

16

)[
3x2

3F4

(
1, 1, 3

2 ; 5
4 , 2, 2, 11

4 ; x2

4

)
+ 21 ln x + 14

]
− π x2

4 Γ( 7
4 )

I− 3
4

( x
2
)

2F3

(
3
4 , 5

4 ; 7
4 , 7

4 , 5
2 ; x2

4

)
0 1

4
√

x
{

I1
( x

2
)[

1− γ + ln 4− 1
2
√

π
G2,1

1,3

(
x2

4 ; 1
2 ; 0, 0,−1

)]
−K1

( x
2
)[

I2
0
( x

2
)
− I2

1
( x

2
)
− 1
]}

0 3
2

4
x
{

sinh
( x

2
)
[6γ− 6 Chi(x)− 3x Shi(x)− 28]

+ cosh
( x

2
)
[(3 Chi(x) + 8− 3γ)x + 6 Shi(x)]

}
0 2

32
√

x
{

I2
( x

2
)[ 3

2 − γ + ln 4− 1√
π

G3,1
2,4

(
x2

4 ; 1
2 , 1; 0, 0, 2,−2

)]
+K2

( x
2
)[

2 1F2

(
1
2 ; 1, 3; x2

4

)
− 2F3

(
1
2 , 2; 1, 1, 3; x2

4

)
− 1
]}

3. Parameter Differentiation of Mκ,µ via Integral Representations
3.1. Derivative with Respect to the First Parameter ∂Mκ,µ(x)/∂κ

Integral representations of Mκ,µ(x) can be obtained via integral representations of
confluent hypergeometric functions ([6], Section 7.4.1); thus,

Mκ,µ(x)

=
xµ+1/2e−x/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) ∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2dt (37)

=
xµ+1/2ex/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) ∫ 1

0
e−xttµ+κ−1/2(1− t)µ−κ−1/2dt (38)

Re
(

µ± κ +
1
2

)
> 0,

where

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

(39)

denotes the beta function. In order to calculate the first derivative of Mκ,µ(x) with respect
to parameter κ, we introduce the following finite logarithmic integrals.
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Definition 2.

I1(κ, µ; x) =
∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2 ln

(
1− t

t

)
dt, (40)

I2(κ, µ; x) =
∫ 1

0
e−xttµ+κ−1/2(1− t)µ−κ−1/2 ln

(
t

1− t

)
dt. (41)

Differentiation of (37) and (38) with respect to parameter κ yields, respectively,

∂Mκ,µ(x)
∂κ

=

[
ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)]
Mκ,µ(x) (42)

+
xµ+1/2e−x/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) I1(κ, µ; x)

=

[
ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)]
Mκ,µ(x) (43)

+
xµ+1/2ex/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) I2(κ, µ; x),

Note that from (42) and (43) we have

I2(κ, µ; x) = e−x I1(κ, µ; x). (44)

Likewise, we can depart from other integral respresentations of Mκ,µ(x) ([6], Sec-
tion 7.4.1) (note that there are several typos in this reference regarding these integral
representations) to obtain

Mκ,µ(x) =
2−2µ xµ+1/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) (45)

∫ 1

−1
ext/2(1 + t)µ−κ−1/2(1− t)µ+κ−1/2dt

=
2−2µ xµ+1/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) (46)

∫ 1

−1
e−xt/2(1 + t)µ+κ−1/2(1− t)µ−κ−1/2dt

Re
(

µ± κ +
1
2

)
> 0,

and consequently, we have

∂Mκ,µ(x)
∂κ

=

[
ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)]
Mκ,µ(x) (47)

+
2−2µ xµ+1/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) I3(κ, µ; x)

=

[
ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)]
Mκ,µ(x) (48)

+
2−2µ xµ+1/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) I4(κ, µ; x),

where we have defined the following logarithmic integrals.
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Definition 3.

I3(κ, µ; x) =
∫ 1

−1
ext/2(1 + t)µ−κ−1/2(1− t)µ+κ−1/2 ln

(
1− t
1 + t

)
dt, (49)

I4(κ, µ; x) =
∫ 1

−1
e−xt/2(1 + t)µ+κ−1/2(1− t)µ−κ−1/2 ln

(
1 + t
1− t

)
dt. (50)

Note that from (47) and (48), we have

I3(κ, µ; x) = I4(κ, µ; x) = 22µe−x/2 I1(κ, µ; x). (51)

Because I2(κ, µ; x), I3(κ, µ; x), and I4(κ, µ; x) are reduced to the calculation of I1(κ, µ; x),
we next calculate the latter integral.

Theorem 6. The following integral holds true for x ∈ R:

I1(κ, µ; x) (52)

= B
(

µ + κ +
1
2

, µ− κ +
1
2

)
{[

ψ

(
1
2
+ µ + κ

)
− ψ

(
1
2
+ µ− κ

)]
1F1

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)
−G(1)

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)}.

Proof. Comparing (42) to (16) and taking into account (1), we arrive at (52), as we wanted
to prove.

Corollary 5. For κ = 0, Equation (52) is reduced to

I1(0, µ; x) = −B
(

µ +
1
2

, µ +
1
2

)
G(1)

( 1
2 + µ

1 + 2µ

∣∣∣∣x). (53)

Theorem 7. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following integral holds true for
x ∈ R:

I1

(
`

2
, m +

1− `

2
; x
)
= exF (−`, m− `,−x)−F (`, m, x), (54)

where

F (s, k, z) (55)

=
k

∑
n=0

(−1)n
(

k
n

)
dn+k−s

dzn+k−s

[
ln z−Chi(z)− Shi(z) + γ

z

]
,

and the functions Shi(z) and Chi(z) denote the hyperbolic sine and cosine integrals.

Proof. From the definition of I1(κ, µ; x) provided in (40), we have

I1(κ, µ; x) =
∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2 ln(1− t)dt

−
∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2 ln t dt.

We can change the variables τ = 1− t in the first integral above to arrive at

I1(κ, µ; x) = exI1(−κ, µ;−x)− I1(κ, µ; x), (56)
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where we have set

I1(κ, µ; x) =
∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2 ln t dt. (57)

Taking into account the binomial theorem and the integral (A9) calculated in Appendix A,
i.e., ∫ 1

0
exttm ln t dt =

−1

(m + 1)2 2F2

(
m + 1, m + 1
m + 2, m + 2

∣∣∣∣x),

we can calculate

I1

(
`

2
, m +

1− `

2
; x
)

(58)

=
∫ 1

0
exttm−`(1− t)m ln t dt

=
m

∑
n=0

(
m
n

)
(−1)n

∫ 1

0
exttm+n−` ln t dt

=
m

∑
n=0

(
m
n

)
(−1)n+1

(n + m− `+ 1)2 2F2

(
n + m− `+ 1, n + m− `+ 1
n + m− `+ 2, n + m− `+ 2

∣∣∣∣x).

Now, we can apply the differentiation formula ([8], Equation 16.3.1)

dn

dzn pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) =
(a1)n · · ·

(
ap
)

n
(b1)n · · ·

(
bq
)

n
pFq

(
a1 + n, . . . , ap + n
b1 + n, . . . , bq + n

∣∣∣∣z),

to obtain

I1

(
`

2
, m +

1− `

2
; x
)
=

m

∑
n=0

(
m
n

)
(−1)n+1 dn+m−`

dxn+m−` 2F2

(
1, 1
2, 2

∣∣∣∣x). (59)

According to ([9], Equation 7.12.2(67)), we have

2F2

(
1, 1
2, 2

∣∣∣∣x) =
Ei(x)− ln(−x)− γ

x
, (60)

In order to obtain similar expressions to those obtained in Table 1, we can derive an
alternative form of (60). Indeed, from the definition of the hyperbolic sine and cosine integrals
([8], Equations 6.2.15–6.2.16), ∀z ∈ C,

Shi(z) =
∫ z

0

sinh t
t

dt (61)

Chi(z) = γ + ln z +
∫ z

0

cosh t− 1
t

dt, (62)

it is easy to prove that

Shi(−z) = −Shi(z), (63)

Chi(−z) = Chi(z)− ln z + ln(−z). (64)

Additionally, from the definition of a complementary exponential integral ([8], Equa-
tion 6.2.3)

Ein(z) =
∫ z

0

1− e−t

t
dt

and the property ∀x > 0 ([8], Equation 6.2.7)

Ei(−x) = −Ein(x) + ln x + γ,
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it is easy to prove that
Ei(−x) = Chi(x)− Shi(x),

thus, taking into account (63) and (64), we have

Ei(x) = Chi(x)− ln x + ln(−x) + Shi(x). (65)

We can insert (65) in (60) to obtain

2F2

(
1, 1
2, 2

∣∣∣∣x) =
Chi(x)− ln x + Shi(x)− γ

x
. (66)

Finally, by substituting (66) in (59) while taking into account (55), we arrive at

I1

(
`

2
, m +

1− `

2
; x
)

=
m

∑
n=0

(
m
n

)
(−1)n+1 dn+m−`

dxn+m−`

[
Chi(x)− ln x + Shi(x)− γ

x

]
= F (`, m, x).

Similarly, we can calculate

I1

(
− `

2
, m +

1− `

2
;−x

)
= F (−`, m− `,−x). (67)

Finally, according to (56), we arrive at (54), as we wanted to prove.

Table 5 shows the integral I1(κ, µ; x) for x ∈ R and particular values of the parameters
κ and/or µ obtained from (52) and (54) with the aid of MATHEMATICA program.

Table 5. Integral I1(κ, µ; x) for particular values of κ and µ.

κ µ I1(κ, µ; x)

− 1
2 1 1

x2 {ex(1− x)[ln x + γ + Shi(x)−Chi(x)] + ln x + γ−Chi(x)− Shi(x)}

− 1
2 µ −

√
π

2 Γ(µ)
{

ex/2x1/2−µ

µ

[
Iµ−1/2

( x
2
)
+ Iµ+1/2

( x
2
)]

+ 21−2µ

Γ(µ+ 1
2 )

G(1)(µ + 1; 2µ + 1; x)
}

1
2 1 1

x2 {(x + ex + 1)[Chi(x)− ln x− γ] + (x− ex + 1)Shi(x)}

1
2 µ

√
π

2 Γ(µ)
{

ex/2x1/2−µ

µ

[
Iµ−1/2

( x
2
)
− Iµ+1/2

( x
2
)]
− 21−2µ

Γ(µ+ 1
2 )

G(1)(µ; 2µ + 1; x)
}

1 µ
Γ
(

µ− 1
2

){
4
√

πµ ex/2x−µ

4µ2−1

[
(2µ− x + 1)Iµ

( x
2
)
+ x Iµ+1

( x
2
)]

− Γ(µ+ 2
3 )

Γ(2µ+1) G(1)
(

µ− 1
2 ; 2µ + 1; x

)}
κ 0 π sec(π κ)

[
π tan(π κ)Lκ−1/2(x)− G(1)

(
1
2 − κ; 1; x

)]
κ 1

2 −π csc(π κ)
{
[π κ cot(π κ)− 1] 1F1(1− κ; 2; x) + κ G(1)(1− κ; 2; x)

}
κ κ

√
π

Γ(2κ+ 1
2 )

Γ(2κ+1)

{
[H2κ−1/2 + 2 ln 2] 1F1

(
1
2 ; 2κ + 1; x

)
− G(1)

(
1
2 ; 2κ + 1; x

)}
1
4

1
4

4ex ln 2√
x F

(√
x
)
− 2G(1)

(
1
2 ; 3

2 ; x
)

Theorem 8. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following reduction formula holds
true for x ∈ R:
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M`/2,m+(1−`)/2(x) (68)

= (2m− `+ 1)
(

2m− `

m

)
(−1)m−`x`/2−m[

ex/2P(−`, m− `,−x)− e−x/2P(`, m, x)
]
,

where we have set the polynomials:

P(s, k, z) =
k

∑
n=0

(
k
n

)
(2k− s− n)! zn. (69)

Proof. According to the definition of Mκ,µ(x) (1), we have

M`/2,m+(1−`)/2(x) = xm+1−`/2e−x/2
1F1

(
m + 1− `

2(m + 1)− `

∣∣∣∣x). (70)

Applying the property ([7], Equation 18:5:1)

(−x)n = (−1)n(x− n + 1)n

and the reduction formula ([9], Equation 7.11.1(12))

1F1

(
n
m

∣∣∣∣z) =
(m− 2)!(1−m)n

(n− 1)!
z1−m{

m−n−1

∑
k=0

(1 + n−m)k
k!(2−m)k

zk − ez
n−1

∑
k=0

(1− n)k
k!(2−m)k

(−z)k

}
,

where n, m = 1, 2, . . . and m > n, after some algebra we arrive at

1F1

(
m + 1− `

2(m + 1)− `

∣∣∣∣x)
= (2m− `+ 1)

(
2m− `

m

)
(−1)m+1−`x`−2m (71){

m

∑
k=0

(
m
k

)
(2m− `− k)!xk − ex

m−`
∑
k=0

(
m− `

k

)
(2m− `− k)!(−x)k

}
.

We can now insert (71) in (70) to obtain (68), as we wanted to prove.

In addition to (68), other reduction formulas for the Whittaker function Mκ,µ(x) are
presented in Appendix C. A large list of reduction formulas for Mκ,µ(x) is available in [24]
and in other monographs dealing with the special functions [2–10,26].

Theorem 9. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following reduction formula holds
true for x ∈ R:

∂Mκ,µ(x)
∂κ

∣∣∣∣
κ=`/2,µ=m+(1−`)/2

(72)

= (2m− `+ 1)
(

2m− `

m

)
x`/2−me−x/2{

(−1)m−`(Hm−` − Hm)[exP(−`, m− `,−x)−P(`, m, x)]

+ x2m+1−`[exF (−`, m− `,−x)−F (`, m, x)]
}

.
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Proof. According to (42), we have

∂Mκ,µ(x)
∂κ

∣∣∣∣
κ=`/2,µ=m+(1−`)/2

= [ψ(m− `+ 1)− ψ(m + 1)]M`/2,m+(1−`)/2(x)

+
xm+1+`/2e−x/2

B(m + 1, m− `+ 1)
I1

(
`

2
, m +

1− `

2
; x
)

.

Now, we can apply (39) and the property (26) to obtain

∂Mκ,µ(x)
∂κ

∣∣∣∣
κ=`/2,µ=m+(1−`)/2

= (Hm−` − Hm)M`/2,m+(1−`)/2(x)

+(2m− `+ 1)
(

2m− `

m

)
xm+1−`/2e−x/2 I1

(
`

2
, m +

1− `

2
; x
)

.

Finally, by applying the results provided in (54) and (68), we arrive at (72), as we
wanted to prove.

Corollary 6. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following reduction formula holds
true for x ∈ R:

G(1)
(

m + 1− `
2(m + 1)− `

∣∣∣∣x) (73)

= (2m− `+ 1)
(

2m− `

m

)
{
(−1)m−`x`−2m−1(Hm−` − Hm)[P(`, m, x)− exP(−`, m− `,−x)]

+F (`, m, x)− exF (−`, m− `,−x)}.

Proof. Set (16) for κ = `
2 and µ = m + 1−`

2 and compare the result to (72).

Table 6 shows the first derivative of Mκ,µ(x) with respect to the κ parameter for
particular values of κ and µ and for x ∈ R, which are calculated from (72) and are not
contained in Table 1.

Table 6. Derivative of Mκ,µ with respect to κ using (72).

κ µ
∂Mκ,µ(x)

∂κ

− 3
2 2

− 4
x3/2

{
ex/2

[(
x3 − 3x2 + 6x− 6

)
(Shi(x)−Chi(x) + ln x + γ)− 11

6 x3 + 15
2 x2 − 15x + 11

]
+ e−x/2[6(Chi(x) + Shi(x)− ln x− γ)− x2 + 4x− 11

]}
−1 3

2

3
2x

{
ex/2[(2x2 − 4x + 4

)
(Chi(x)− Shi(x)− ln x− γ) + 3x2 − 8x + 6

]
+2 e−x/2[2 Chi(x) + 2 Shi(x) + x− 2 ln x− 2γ− 3]

}
− 1

2 1
2√
x

{
ex/2(x− 1)(Chi(x)− Shi(x)− ln x− γ + 1)

+ e−x/2(ln x−Chi(x)− Shi(x) + γ + 1)
}

− 1
2 2

6
x3/2

{
ex/2[(x2 − 4x + 6

)
(2 Chi(x)− 2 Shi(x)− 2 ln x− 2γ + 3)− 12

]
+ e−x/2[6(x− 1)− 4(x + 3)(ln x−Chi(x)− Shi(x) + γ)]

}
0 3

2

6
x

{
ex/2[(x− 2)(Chi(x)− Shi(x)− ln x− γ) + x]

+ e−x/2[(x + 2)(ln x−Chi(x)− Shi(x) + γ)− x]
}
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Table 6. Cont.

κ µ ∂Mκ,µ(x)
∂κ

1
2 2

6
x3/2

{
ex/2[6(x + 1)− 4(x− 3)(ln x + Shi(x)−Chi(x) + γ)]

+ e−x/2[(x2 + 4x + 6
)
(2 ln x− 2 Chi(x)− 2 Shi(x) + 2γ− 3) + 12

]}

3.2. Application to the Calculation of Infinite Integrals

Additional integral representations of the Whittaker function Mκ,µ(x) in terms of
Bessel functions ([6], Section 6.5.1) are known:

Mκ,µ(x)

=
Γ(1 + 2µ) x1/2e−x/2

Γ
(

µ− κ + 1
2

) ∫ ∞

0
e−tt−κ−1/2 I2µ

(
2
√

xt
)

dt (74)

=
Γ(1 + 2µ) x1/2ex/2

Γ
(

µ + κ + 1
2

) ∫ ∞

0
e−ttκ−1/2 J2µ

(
2
√

xt
)

dt (75)

Re
(
−1

2
− µ + κ

)
> 0.

Let us next introduce the following infinite logarithmic integrals.

Definition 4.

H1(κ, µ; x) =
∫ ∞

0
e−tt−κ−1/2 I2µ

(
2
√

xt
)

ln t dt, (76)

H2(κ, µ; x) =
∫ ∞

0
e−ttκ−1/2 J2µ

(
2
√

xt
)

ln t dt. (77)

Differentiation of (74) and (75) with respect to the κ parameter respectively yields

∂Mκ,µ(x)
∂κ

= ψ

(
µ− κ +

1
2

)
Mκ,µ(x)− Γ(1 + 2µ) x1/2e−x/2

Γ
(

µ− κ + 1
2

) H1(κ, µ; x) (78)

= −ψ

(
µ + κ +

1
2

)
Mκ,µ(x) +

Γ(1 + 2µ) x1/2ex/2

Γ
(

µ + κ + 1
2

) H2(κ, µ; x). (79)

Note that from (42) and (78) we have

H1(κ, µ; x) (80)

=
Γ
(

µ− κ + 1
2

)
ψ
(

µ + κ + 1
2

)
Γ(1 + 2µ)

√
xex/2 Mκ,µ(x)− xµ I1(κ, µ; x)

Γ
(

µ + κ + 1
2

) ,

while from (42) and (79) we have

H2(κ, µ; x) (81)

=
Γ
(

µ + κ + 1
2

)
ψ
(

µ− κ + 1
2

)
Γ(1 + 2µ)

√
xex/2 Mκ,µ(x) +

e−xxµ I1(κ, µ; x)

Γ
(

µ− κ + 1
2

) .
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Corollary 7. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following infinite integrals holds
true for x ∈ R:

∫ ∞

0

e−t ln t
t(1+`)/2

I2m+1−`
(

2
√

xt
)

dt (82)

= H1

(
`

2
, m +

1− `

2
; x
)

=
1

m!

{
(−1)m−`(Hm − γ)x−m+(`−1)/2[exP(−`, m− `,−x)−P(`, m, x)]

− xm+(1−`)/2[exF (−`, m− `,−x)−F (`, m, x)]
}

.

and ∫ ∞

0

e−t ln t
t(1−`)/2

J2m+1−`
(

2
√

xt
)

dt (83)

= H2

(
`

2
, m +

1− `

2
; x
)

=
1

(m− `)!

{
(−1)m−`(Hm−` − γ)x−m+(`−1)/2[P(−`, m− `,−x)− e−xP(`, m, x)

]
+ xm+(1−`)/2[F (−`, m− `,−x)− e−xF (`, m, x)

]}
.

Proof. Substitute the results provided in (54) and (68) into (80) and (81) and apply (26).

3.3. Derivative with Respect to the Second Parameter ∂Mκ,µ(x)/∂µ

In order to calculate the first derivative of Mκ,µ(x) with respect to parameter µ, we
introduce the following finite logarithmic integrals.

Definition 5.

J1(κ, µ; x) =
∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2 ln[t(1− t)]dt, (84)

J2(κ, µ; x) =
∫ 1

0
e−xttµ+κ−1/2(1− t)µ−κ−1/2 ln[t(1− t)]dt, (85)

J3(κ, µ; x) =
∫ 1

−1
ext/2(1 + t)µ−κ−1/2(1− t)µ+κ−1/2 ln

(
1− t2

)
dt, (86)

J4(κ, µ; x) =
∫ 1

−1
e−xt/2(1 + t)µ+κ−1/2(1− t)µ−κ−1/2 ln

(
1− t2

)
dt. (87)

Differentiation of (37) and (38) with respect to the µ parameter provides us with

∂Mκ,µ(x)
∂µ

=

[
ln x− ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)
+ 2 ψ(2µ + 1)

]
Mκ,µ(x)

+
xµ+1/2e−x/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) J1(κ, µ; x) (88)

=

[
ln x− ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)
+ 2 ψ(2µ + 1)

]
Mκ,µ(x)

+
xµ+1/2ex/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) J2(κ, µ; x). (89)
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For the other integral representations provided in (45) and (46), we have

∂Mκ,µ(x)
∂µ

=

[
ln(x/4)− ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)
+ 2 ψ(2µ + 1)

]
Mκ,µ(x)

+
2−2µ xµ+1/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) J3(κ, µ; x) (90)

=

[
ln(x/4)− ψ

(
µ− κ +

1
2

)
− ψ

(
µ + κ +

1
2

)
+ 2 ψ(2µ + 1)

]
Mκ,µ(x)

+
2−2µ xµ+1/2

B
(

µ + κ + 1
2 , µ− κ + 1

2

) J4(κ, µ; x). (91)

From (88)–(91), we obtain the following interrelationships:

J2(κ, µ; x) = e−x J1(κ, µ; x),

J3(κ, µ; x) = 22µ

[
e−x/2 J1(κ, µ; x) +

ln 4
xµ+1/2 B

(
µ + κ +

1
2

, µ− κ +
1
2

)
Mκ,µ(x)

]
,

J4(κ, µ; x) = J3(κ, µ; x).

Because J2(κ, µ; x), J3(κ, µ; x), and J4(κ, µ; x) are reduced to the calculation of J1(κ, µ; x),
we next calculate the latter integral.

Theorem 10. According to the notation introduced in (6) and (7), the following integral holds true:

J1(κ, µ; x) (92)

= B
(

µ + κ +
1
2

, µ− κ +
1
2

)
{[

ψ

(
1
2
+ µ + κ

)
+ ψ

(
1
2
+ µ− κ

)
− 2 ψ(2µ + 1)

]
1F1

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)
+G(1)

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)+ 2 H(1)
( 1

2 + µ− κ
1 + 2µ

∣∣∣∣x)}.

Proof. Comparing (88) to (32) while taking into account (1), we arrive at (92), as we wanted
to prove.

Theorem 11. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following integral holds true for
x ∈ R:

J1

(
`

2
, m +

1− `

2
; x
)
= exF (−`, m− `,−x) +F (`, m, x). (93)

Proof. From the definition of J1(κ, µ; x) provided in (84), we have

J1(κ, µ; x) =
∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2 ln t dt

+
∫ 1

0
exttµ−κ−1/2(1− t)µ+κ−1/2 ln(1− t) dt.

By performing a change of variables τ = 1 − t in the second integral above, we
arrive at

J1(κ, µ; x) = exI1(−κ, µ;−x) + I1(κ, µ; x), (94)

where we follow the notation in (57) for the integral I1(κ, µ; x). According to the results
obtained in (58) and (67), we arrive at (93), as we wanted to prove.
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Theorem 12. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following reduction formula holds
true for x ∈ R:

∂Mκ,µ(x)
∂µ

∣∣∣∣
κ=`/2,µ=m+(1−`)/2

(95)

= (2m− `+ 1)
(

2m− `

m

)
x`/2−me−x/2{

(−1)m−`(ln x + 2 H2m−`+1 − Hm−` − Hm)[exP(−`, m− `,−x)−P(`, m, x)]

+ x2m+1−`[exF (−`, m− `,−x) +F (`, m, x)]
}

.

Proof. Insert (68) and (93) into (88) and apply (26).

Table 7 shows the first derivative of Mκ,µ(x) with respect to the µ parameter for
particular values of κ and µ and for x ∈ R, which are calculated from (95) and are not
contained in Tables 3 and 4.

Corollary 8. For ` ∈ Z and m = 0, 1, 2, . . ., with m ≥ `, the following reduction formula holds
true for x ∈ R:

H(1)
(

m + 1− `
2(m + 1)− `

∣∣∣∣x) (96)

= (2m− `+ 1)
(

2m− `

m

)
{
(−1)m−`x`−2m−1(H2m−`+1 − Hm)[exP(−`, m− `,−x)−P(`, m, x)]

+ exF (−`, m− `,−x)}.

Proof. Take κ = `
2 and µ = m + 1−`

2 in (32), and substitute the results provided in (68), (73),
and (95). After simplification, we arrive at (96), as we wanted to prove.

Table 7. Derivative of Mκ,µ with respect to µ using (95).

κ µ
∂Mκ,µ(x)

∂µ

− 3
2 2

4
x3/2

{
ex/2

[(
x3 − 3x2 + 6x− 6

)
(Chi(x)− Shi(x)− γ) + 7

3 x3 − 11x2 + 28x− 36
]

+ e−x/2[6(Chi(x) + Shi(x)− γ) + x2 − 4x + 36
]}

−1 3
2

1
x

{
ex/2

[
3
(

x2 − 2x + 2
)
(Chi(x)− Shi(x)− γ) + 13

2 x2 − 22x + 31
]

+ e−x/2[3(x− 2 Chi(x)− 2 Shi(x) + 2γ)− 31]
}

− 1
2 1

2√
x

{
ex/2[(x− 1)(Chi(x)− Shi(x)− γ + 2)− 2]

+ e−x/2(Chi(x) + Shi(x)− γ + 4)
}

− 1
2 2

8
x3/2

{
ex/2

[
3
(

1
2 x2 − 2x + 3

)
(Chi(x)− Shi(x)− γ) + 4x2 − 22x + 48

]
− e−x/2[3(x + 3)(Chi(x) + Shi(x)− γ) + 8(x + 6)]

}
1
2 1

2√
x

{
ex/2(Chi(x)− Shi(x)− γ + 4)

− e−x/2[(x + 1)(Chi(x) + Shi(x)− γ + 2) + 2]
}

1
2 2

4
x3/2

{
ex/2[6(x− 3)(Chi(x)− Shi(x)− γ) + 16(x− 6)]

+ e−x/2[3(x2 + 4x + 6
)
(Chi(x) + Shi(x)− γ) + 8x2 + 44x + 96

]}
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3.4. Application to the Calculation of Finite Integrals

Theorem 13. For µ ≥ 0 and x ∈ R, the following finite integral holds true:∫ 1

0
ext[t(1− t)]µ−1/2 ln[t(1− t)]dt (97)

= J1(0, µ; x)

= B
(

µ +
1
2

, µ +
1
2

)(
4
|x|

)µ

ex/2Γ(1 + µ){
Iµ

(
|x|
2

)[
ψ

(
µ +

1
2

)
− ln|x|

]
+

∂Iµ(|x|/2)
∂µ

}
,

where ∂Iµ(x)/∂µ is provided by (35) or (36).

Proof. First, consider that x > 0. Take κ = 0 in (88) and substitute (34) to arrive at

∂Mκ,µ(x)
∂µ

∣∣∣∣
κ=0

(98)

= 4µ Γ(1 + µ)
√

xIµ

( x
2

)[
ln x− 2 ψ

(
µ +

1
2

)
+ 2 ψ(2µ + 1)

]
+

xµ+1/2e−x/2

B
(

µ + 1
2 , µ + 1

2

) J1(0, µ; x)

Next, equate (98) to the expression provided in (33), and solve for J1(0, µ; x) to obtain

J1(0, µ; x) (99)

= B
(

µ +
1
2

, µ +
1
2

)(
4
x

)µ

ex/2Γ(1 + µ)

=

{
Iµ

( x
2

)[
ln
(

4
x

)
+ ψ(1 + µ) + 2ψ

(
µ +

1
2

)
− 2ψ(2µ + 1)

]
+

∂Iµ(x/2)
∂µ

}
.

Now, apply the property ([8], Equation 5.5.8)

ψ(2z) =
1
2

[
ψ(z) + ψ

(
z +

1
2

)]
+ ln 2

for z = µ + 1
2 to simplify (99) as

J1(0, µ; x) (100)

= B
(

µ +
1
2

, µ +
1
2

)(
4
x

)µ

ex/2Γ(1 + µ)

=

{
Iµ

( x
2

)[
ψ

(
µ +

1
2

)
− ln x

]
+

∂Iµ(x/2)
∂µ

}
,

where (100) holds true for x > 0. Finally, note that by performing the change of variables
τ = 1− t in (84) we obtain the reflection formula

J1(0, µ; x) = ex J1(0, µ;−x), (101)

thus, from (100) and (101) we arrive at (97), as we wanted to prove.

Theorem 14. For µ ≥ 0 and x ∈ R, the following finite integral holds true:
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∫ 1

−1
ext/2[t(1− t)]µ−1/2 ln[t(1− t)]dt (102)

= J3(0, µ; x)

= B
(

µ +
1
2

, µ +
1
2

)
Γ(1 + µ)

(
16
|x|

)µ

{
Iµ

(
|x|
2

)[
ψ

(
µ +

1
2

)
+ ln

(
4
|x|

)]
+

∂Iµ(|x|/2)
∂µ

}
,

where ∂Iµ(x)/∂µ is provided by (35) or (36).

Proof. Consider x > 0. Take κ = 0 in (90) and susbtitute (34) to obtain

J3(0, µ; x) (103)

= 22µe−x/2 J1(0, µ; x)

+24µ ln 4
xµ B

(
µ +

1
2

, µ +
1
2

)
Γ(1 + µ)Iµ

( x
2

)
.

Now, insert in (103) the result in (100) and simplify to obtain the following for x > 0:

J3(0, µ; x) (104)

= B
(

µ +
1
2

, µ +
1
2

)
Γ(1 + µ)

(
16
x

)µ

{
Iµ

( x
2

)[
ψ

(
µ +

1
2

)
+ ln

(
4
x

)]
+

∂Iµ(x/2)
∂µ

}
.

Finally, note that by performing the change of variables τ = −t in (86) we obtain the
reflection formula

J3(0, µ; x) = J3(0, µ;−x), (105)

thus, from (104) and (105) we arrive at (102), as we wanted to prove.

Table 8 shows the integral J1(κ, µ; x) for particular values of the parameters κ and
µ and for x ∈ R obtained from (92), (93), and (97) with the aid of the MATHEMATICA
program.

Table 8. Integral J1(κ, µ; x) for particular values of κ and µ.

κ µ J1(κ, µ; x)

−1 0 π
{

2 ex/2(ln 4− 2)
[
(x + 1)I0

( x
2
)
+ x I1

( x
2
)]
− G(1)

(
3
2 ; 1; x

)
− 2 H(1)

(
3
2 ; 1; x

)}
− 1

2 1 x−2{ex[(x− 1)(Chi(x)− Shi(x)− ln x− γ)− 2] + Chi(x) + Shi(x)− ln x− γ + 2}

− 1
3 0 2π

{
G(1)

(
5
6 ; 1; x

)
+ 2 H(1)

(
5
6 ; 1; x

)
− ln(432)L−5/6(x)

}
0 0 −π ex/2

{
K0

(
|x|
2

)
+ [ln(4|x|) + γ]I0

(
|x|
2

)}
0 1

2 x−1{ex[Chi(x)− Shi(x)− ln x− γ]−Chi(x)− Shi(x) + ln x + γ}

0 1

{
I1

(
|x|
2

)[
I1

(
|x|
2

)
K1

(
|x|
2

)
− ln(4|x|)− γ + 2− 1

2
√

π
G2,1

1,3

(
x2

4 ; 1/2; 0, 0,−1
)]

+K1

(
|x|
2

)[
1− I2

0

(
|x|
2

)]}
π

2|x| e
x/2

1
3 0 2π

{
G(1)

(
1
6 ; 1; x

)
+ 2 H(1)

(
1
6 ; 1; x

)
− ln(432)L−1/6(x)

}
1
2

1
2

π
2

{
G(1)

(
1
2 ; 2; x

)
+ 2 H(1)

(
1
2 ; 2; x

)
− 2 ex/2 ln 4

[
I0
( x

2
)
− I1

( x
2
)]}

1
2 1 x−2{ex[Chi(x)− Shi(x)− ln x− γ + 2]− (x + 1)[Chi(x) + Shi(x)− ln x− γ]− 2}
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4. Conclusions

The Whittaker function Mκ,µ(x) is defined in terms of the Kummer confluent hyper-
geometric function; hence, its derivative with respect to the parameters κ and µ can be
expressed as infinite sums of quotients of the digamma and gamma functions. In addition,
parameter differentiation of the integral representations of Mκ,µ(x) leads to finite and
infinite integrals of elementary functions. These sums and integrals have been calculated
for particular values of the parameters κ and µ in closed form. As an application of these
results, we have obtained several reduction formulas for the derivatives of the confluent
Kummer function with respect to the parameters, i.e., G(1)(a, b; x) and H(1)(a, b; x). Addi-
tionally, we have calculated finite integrals containing a combination of the exponential,
logarithmic, and algebraic functions, as well as several infinite integrals involving the
exponential, logarithmic, algebraic, and Bessel functions. It is worth noting that all the
results presented in this paper have been checked both numerically and symbolically with
the MATHEMATICA program.

In Appendix A, we obtain the first derivative of the incomplete gamma functions in
closed form. These results allow us to calculate a finite logarithmic integral, which is used
to calculate one of the integrals appearing in the body of the paper.

In Appendix B, we calculate new reduction formulas for the integral Whittaker func-
tions Miκ,µ(x) and miκ,µ(x) from two reduction formulas of the Whittaker function Mκ,µ(x).
One of the latter seems to have not been previously reported in the literature.

Finally, in Appendix C, we collect a number of reduction formulas for the Whittaker
function Mκ,µ(x).
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Appendix A. Parameter Differentiation of the Incomplete Gamma Functions

Definition A1. The lower incomplete gamma function is defined as follows [7]:

γ(ν, x) =
∫ x

0
tν−1e−tdt. (A1)

Definition A2. The upper incomplete gamma function is defined as follows ([7], Equation 45:3:2)

Γ(ν, x) =
∫ ∞

x
tν−1e−tdt. (A2)

The relation between both functions is

Γ(ν) = γ(ν, x) + Γ(ν, x). (A3)

The lower incomplete gamma function has the following series expansion ([7], Equa-
tion 45:6:1):

γ(ν, x) = e−x
∞

∑
k=0

xk+ν

(ν)k+1
. (A4)
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In addition, the following integral representations in terms of infinite integrals hold
true ([8], Equations 8.6.3 and 8.6.7) for Re z > 0:

γ(ν, z) = zν
∫ ∞

0
exp

(
−νt− z e−t)dt,

Γ(ν, z) = zν
∫ ∞

0
exp

(
νt− z e−t)dt.

From (A1), the derivative of the lower incomplete gamma function with respect to the
order ν has the following integral representation:

∂γ(ν, x)
∂ν

=
∫ x

0
tν−1e−t ln t dt (A5)

Theorem A1. The parameter derivative of the lower incomplete gamma function is

∂γ(ν, x)
∂ν

= γ(ν, x) ln x− xν

ν2 2F2

(
ν, ν

ν + 1, ν + 1

∣∣∣∣− x
)

. (A6)

Proof. According to (A1) and (A4), the derivative of the lower incomplete gamma function
with respect to the parameter ν is

∂γ(ν, x)
∂ν

= e−x
∞

∑
k=0

xk+ν[ln x + ψ(ν)− ψ(k + 1 + ν)]

(ν)k+1

= [ln x + ψ(ν)]γ(ν, x)− e−x
∞

∑
k=0

xk+ν−1

(ν)k
ψ(k + ν).

Now, we apply the sum formula ([26], Equation 6.2.1(63))

∞

∑
k=0

tk

(a)k
ψ(k + a)

= ψ(a) + et
[

t1−aψ(a) γ(a, t) +
t

a2 2F2

(
a, a

a + 1, a + 1

∣∣∣∣− t
)]

,

to arrive at (A6), as we wanted to prove.

Theorem A2. The parameter derivative of the upper incomplete gamma function is

∂Γ(ν, x)
∂ν

(A7)

= Γ(ν)ψ(ν)− γ(ν, x) ln x +
xν

ν2 2F2

(
ν, ν

ν + 1, ν + 1

∣∣∣∣− x
)

.

Proof. Differentiate (A3) with respect to the parameter ν and apply the result provided
in (A6).

Corollary A1. From (A5) and (A6), we can calculate the following integral:

∫ x

0
tν−1e−t ln t dt = γ(ν, x) ln x− xν

ν2 2F2

(
ν, ν

ν + 1, ν + 1

∣∣∣∣− x
)

. (A8)

Corollary A2. The following integral holds true for x ∈ R:

∫ 1

0
exttν−1 ln t dt = − 1

ν2 2F2

(
ν, ν

ν + 1, ν + 1

∣∣∣∣x). (A9)
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Proof. Perform the change of variables t = z τ in the integral provided in (A8), split the
result in two integrals, and apply the change of variables t = x τ again to the first integral:∫ x

0
tν−1e−t ln t dt = xν

[
ln x

∫ 1

0
τν−1e−xτ dτ +

∫ 1

0
tν−1e−xτ ln τ dτ

]
= ln x

∫ x

0
tν−1e−t dt︸ ︷︷ ︸
γ(ν,x)

+ xν
∫ 1

0
τν−1e−xτ ln τ dτ. (A10)

Comparing (A8) to (A10), we obtain (A9), as we wanted to prove.

Corollary A3. According to the notation provided in (7), the following reduction formula holds
true for x ∈ R:

H(1)
(

1
b

∣∣∣∣x) = − x ex

b2 2F2

(
b, b

b + 1, b + 1

∣∣∣∣− x
)

. (A11)

Proof. Knowing that ([7], Equation 47:4:6)

1F1

(
1
b

∣∣∣∣z) = 1 + z1−bezγ(b, z)

and applying (A6), we can calculate (A11), as we wanted to prove.

Appendix B. Reduction Formulas for Integral Whittaker Functions Miκ,µ and miκ,µ

In [24], we found reduction formulas for the integral Whittaker function Miκ,µ(x).
Next, we derive new reduction formulas for Miκ,µ(x) and miκ,µ(x) from reduction formulas
of the Whittaker function Mκ,µ(x).

Theorem A3. The following reduction formula holds true for x ∈ R, n = 0, 1, 2, . . . and κ > 0:

Miκ+n,κ−1/2(x) = 2κ
n

∑
m=0

(
n
m

)
(−2)m

(2κ)m
γ(κ + m, x/2), (A12)

where γ(ν, z) denotes the lower incomplete gamma function.

Proof. Next, we can apply to the definition of the Whittaker function (1) the following
reduction formula ([9], Equation 7.11.1(17)):

1F1

(
−n
b

∣∣∣∣z) =
n!
(b)n

L(b−1)
n (z)

from which we obtain ([8], Equation 13.18.17)

Mκ+n,κ−1/2(x) =
n! e−x/2xκ

(2κ)n
L(2κ−1)

n (x), (A13)

where ([27], Equation 4.17.2)

L(α)
n (x) =

n

∑
m=0

Γ(n + α + 1)
Γ(m + α + 1)

(−x)m

m!(n−m)!
(A14)

denotes the Laguerre polynomials. We can now insert (A14) in (A13) and integrate term by
term according to the definition of the integral Whittaker function (4) to obtain
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Miκ+n,κ−1/2(x)

=
n

∑
m=0

(
n
m

)
(−1)m

(2κ)m

∫ x

0
e−t/2tκ+m−1dt.

Finally, taking into account the definition of the lower incomplete gamma function
(A1), we can simplify the result to arrive at (A12), as we wanted to prove.

Remark A1. Taking n = 0 in (A12), we recover the formula provided in [24].

Theorem A4. The following reduction formula holds true for x > 0, n = 0, 1, 2, . . . and κ ∈ R:

miκ+n,κ−1/2(x) = 2κ
n

∑
m=0

(
n
m

)
(−2)m

(2κ)m
Γ(κ + m, x/2), (A15)

where Γ(ν, z) denotes the upper incomplete gamma function.

Proof. Following similar steps as in the previous theorem, here we instead consider the
definition of the upper incomplete gamma function (A2).

Theorem A5. The following reduction formula holds true for x ∈ R, n = 0, 1, 2, . . ., and κ > 0:

Mi−κ−n,κ−1/2(x) = (−1)−sign(x)κ2κ
n

∑
m=0

(
n
m

)
(−2)m

(2κ)m
γ(κ + m,−x/2). (A16)

Proof. From the property for x > 0 ([7], Equation 48:13:3)

Mκ,µ(−x) = (−1)µ+1/2M−κ,µ(x),

for x ∈ R we have
M−κ,µ(x) = (−1)−sign(x)(µ+1/2)Mκ,µ(−x), (A17)

We can apply (A17) to (A13) to obtain

M−κ−n,−κ−1/2(x) = (−1)−sign(x) κ n! ex/2(−x)κ

(2κ)n
L(2κ−1)

n (−x). (A18)

Now, by inserting (A14) in (A13) and integrating term by term according to the
definition of the integral Whittaker function (4), we obtain

Mi−κ−n,κ−1/2(x)

= (−1)−sign(x) κ
n

∑
m=0

1
(2κ)m

(
n
m

) ∫ x

0
et/2tm−1(−t)κdt.

Finally, takeing into account the definition of the lower incomplete gamma function
(A1) and simplifying the result, we arrive at (A16), as we wanted to prove.

Remark A2. It is worth noting here that we could not locate the reduction Formula (A18) in the
existing literature.

Appendix C. Reduction Formulas for the Whittaker Function Mκ,µ(x)
For the convenience of readers, reduction formulas for the Whittaker function Mκ,µ(x)

are presented in their explicit forms in Table A1 for x ∈ R.
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Table A1. Whittaker function Mκ,µ(x) for particular values of κ and µ.

κ µ Mκ,µ(x)

− 1
4

1
4

√
π

2 ex/2x1/4erf
(√

x
)

− 1
2

1
2 x

[
I0
( x

2
)
+ I1

( x
2
)]

− 1
2

1
6 2−2/3x Γ

(
2
3

)[
I−1/3

( x
2
)
+ I2/3

( x
2
)]

− 1
2 1 x−1/2e−x/2[2 ex(x− 1) + 2]

0 0
√

x I0
( x

2
)

0 1
2 2 sinh

( x
2
)

0 1 4
√

x I1
( x

2
)

0 3
2 12

[
cosh

( x
2
)
− 2

x sinh
( x

2
)]

0 5
2 120 x−2[(x2 + 12

)
sinh

( x
2
)
− 6 x cosh

( x
2
)]

1
6 0

√
xe−x/2L−1/3(x)

1
4 − 1

4 x1/4e−x/2

1
4

1
4 x1/4ex/2F

(√
x
)

1
3 0

√
xe−x/2L−1/6(x)

1
2

1
6 2−2/3x Γ

(
2
3

)[
I−1/3

( x
2
)
− I2/3

( x
2
)]

1
2

1
4 2−1/2x Γ

(
3
4

)[
I−1/4

( x
2
)
− I3/4

( x
2
)]

1
2

1
2 x

[
I0
( x

2
)
− I1

( x
2
)]

1
2 1 2 x−1/2e−x/2 (ex − x− 1)
1
2 2 12 x−3/2e−x/2 [2 ex(x− 3) + x2 + 4x + 6

]
1 − 3

2 e−x/2
(

x
2 + 1 + 1

x

)
1 1 4

3
√

x
[
x I0
( x

2
)
− (x + 1)I1

( x
2
)]

1 3
2 x−1e−x/2 (6 ex − 3x2 − 6 x− 6

)
1 2 32

5 x−1/2[(x2 + 4x + 12
)

I1
( x

2
)
−
(

x2 + 3x
)

I0
( x

2
)]

2 2 32
35 x−1/2[x(2x2 + 2x + 3

)
I0
( x

2
)
− 2
(

x3 + 2x2 + 4x + 6
)

I1
( x

2
)]
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