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Abstract: We formulate an integrated pest management model to control natural pests of the crop
through the periodic application of biopesticide and chemical pesticides. In a theoretical analysis of
the system pest eradication, a periodic solution is found and established. All the system variables
are proved to be bounded. Our main goal is then to ensure that pesticides are optimized, in terms
of pesticide concentration and pesticide application frequency, and that the optimum combination
of pesticides is found to provide the most benefit to the crop. By using Floquet theory and the
small amplitude perturbation method, we prove that the pest eradication periodic solution is locally
and globally stable. The acquired results establish a threshold time limit for the impulsive release
of various controls as well as some valid theoretical conclusions for effective pest management.
Furthermore, after a numerical comparison, we conclude that integrated pest management is more
effective than single biological or chemical controls. Finally, we illustrate the analytical results through
numerical simulations.

Keywords: integrated pest management (IPM); impulsive differential equations; stability; Floquet
theory; perturbation method; numerical simulations
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1. Introduction

In today’s farming systems, a variety of approaches are used for pest control. Maintain-
ing high output while guaranteeing sustainability is crucial for the entire agriculture sector.
Since the beginning of human civilization, insect and pest control has been one of the most
significant difficulties in the agricultural sector [1,2]. Every day, people come up with fresh
ideas for equipment and tactics to use in their fight against pests. As a result of human
efforts to manage pests, our natural ecology and nature are on the verge of extinction [3].

Chemical controls are less expensive to implement, yet they result in significant
environmental damage [4–6]. On the other hand, biological controls are more costly to
implement but have less environmental impact [7]. However, frequently, the use of a single
control method is not beneficial to control pest resistance and preserve environmental
quality [8,9]. In order to reduce insect populations below economic levels, integrated
pest management (IPM), a safer and more effective method, was developed. IPM is
used for a variety of agronomic crops and is now widely used as an economical and
environment-friendly pest control method in several nations [8–10]. When the ecological
cost of management is added to the economic price of controls, a combination of chemical
and biological controls yields a superior result when they are used with proper rate and with
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tolerable intervals. Modeling of this phenomenon leads naturally to the use of impulsive
differential equations [11,12].

Many researchers have designed mathematical models for pest management through
control strategies, some of which promote chemical agents [4,7], some advocate the use of
biological agents to impose a total solution of pest and disease [1,2,10,13–15], and some
researchers use both the chemical and biopesticides in their mathematical models [5,16–18].
Mathematical-model-based works using impulsive differential equations are also available
in the literature, as already mentioned [19–26]. Recently, Li, Huang, and Liu proposed a pest
management model to simulate the application of pesticides and build a pesticide function
with residual and delayed effects of pesticides, proposing pest management with pollutant
emission [27]. Liu et al. constructed a mathematical model for pest control in which
susceptible and infected pests are separated from the pest population and only susceptible
pests are harmful to crops [28]. They weighed the two approaches of spraying pesticides and
releasing diseased pests and natural enemies to control vulnerable pests when completing
their task. Alzabut established a mathematical model based on the sense of biological
survey in the field of agriculture, and introduced various control methods to determine
how to protect the crops from destructive pests [29]. In [24], an integrated pest management
model using impulsive differential equations was proposed and analyzed for Jatropha curcas
using the release of infective pests and spraying of chemical pesticides. The existence and
stability of susceptible pest-eradication solutions were analyzed using Floquet theory and
the small amplitude perturbation method. To the best of our knowledge, all available
articles deal with single-impulse differential equation models where the stability analysis
of the periodic pest extinction solution is obtained by the Floquet theory, the method of
small amplitude perturbation, and the comparison theorem. However, none of the prior
research available in the literature employs the concentration of chemical pesticides as a
system variable as we do here. Moreover, in our study, we spray biological and chemical
pesticides at two different time intervals, simultaneously varying the time period.

Pest control models using a single impulse are available (see, e.g., [30]), but using
double-impulsive controls is rare [31,32]. The authors of [31] took a predator population
along with biopesticides in an impulsive periodic way for the control of crop pests. The
authors of [32] proposed a predator–prey model with disease in the prey and investigated
it for the purpose of integrated pest management. The permanence of the system and
global stability of the susceptible pest-eradication periodic solution were shown by means
of the released amounts of infective prey and predator. In contrast, here, impulses on both
chemical and biopesticides were assumed in the formulation of the mathematical model
for crop pest management.

Our use of the concentration profile of the chemical pesticide as a model variable is a
novel approach. We demonstrated the dynamics using both the chemical and biological
pesticides in the system in an impulsive way, which is, to the best of our knowledge, a novel
concept in crop pest control. The proposed double-impulsive system was analyzed with
proper analytical methods, namely, using Floquet theory and the perturbation method.

Floquet theory is a powerful mathematical tool for analyzing periodic systems, and it
can be extended to impulsive models with periodic impulses. In impulsive models, the
system’s behavior is characterized by a sequence of discrete impulses applied at regular
intervals. These impulses may arise in many practical scenarios, including electrical circuits,
control systems, and biological systems. Floquet theory provides a robust framework for
analyzing and designing control strategies for impulsive models with periodic impulses.
One can analyze the stability of the impulsive system by examining the eigenvalues of the
Floquet matrix [33]. In our analysis, we utilize small amplitude perturbation techniques
and Floquet theory and obtain some valid theoretical results for successful management
of pests. Moreover, we also establish the threshold time limit for the impulsive release
of control agents. Our approach for using the Floquet theory is novel. Additionally, we
examined the dynamics of the system for biological and chemical pesticides used as a sole
control measure.
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The paper is organized as follows. In Section 2, we derive the model by using impulsive
differential equations for capturing the IPM system dynamics, taking plant, pest, virus,
and chemical pesticide as model variables. The mathematical analysis of the model is then
discussed in Section 3, which contains three subsections. In Section 3.1, we determine
susceptible pest-eradication periodic solutions and check the feasibility–boundedness of
the system variables discussed in Section 3.2. The local and global stability conditions
around the susceptible pest-eradication periodic solutions are explored in Section 3.3. In
Section 4, we exhibit our mathematical results through numerical simulations. Finally,
in Section 5, we provide a discussion on the three types of control strategies: spraying
chemical pesticide only, impulsively incorporating of infected pest only, and integrated
control with a fixed and a variable impulse period, to make the final conclusion.

2. Derivation of the Impulsive Control Model

The following assumptions are taken to formulate the desired model: the crop plant
and susceptible pest populations are denoted by x and y, respectively, and we denote z as
the infected pest population.

Due to the finite size of a crop field, which, however, may be large, we assume logistic
growth for the biomass of the crop, with net growth rate r and carrying capacity k. Crops
become affected by pests, thereby causing considerable crop reduction.

Let α be the contact rate between crop and susceptible pest; let v(t) be the biopesticide
(virus); and s be the concentration of chemical pesticide. A virus infects the susceptible
pest at a rate, λ. The chemical pesticide kills the susceptible and infected pests at the rates
m1 and m2, respectively. Parameters c1 and c2 are the conversion factors of susceptible
and infected pests, respectively, due to consumption of crop; d and d + δ are the mortality
rates of susceptible and infected pest, respectively; θ is the virus replication rate; and γ is
the lysis rate of the virus. Finally, we introduce a periodic application of biopesticide and
chemical pesticide with different time intervals.

Based on the above assumptions, the desired impulsive system for integrated pest
management is given as

dx
dt

= rx
(

1− x
k

)
− αxy− φαxz, t 6= (nτ1, nτ2),

dy
dt

= c1αxy− λyv− dy−m1sy, t 6= (nτ1, nτ2),

dz
dt

= c2φαxz + λyv− (d + δ)z−m2sz, t 6= (nτ1, nτ2),

dv
dt

= θ(d + δ)z− γv, t 6= (nτ1, nτ2),

ds
dt

= −µs, t 6= (nτ1, nτ2),

v(t+) = v(t−) + vi, t = nτ1,

s(t+) = s(t−) + si, t = nτ2,

(1)

where vi and si are the strength of biopesticide and chemical pesticide application in the
system at t = nτ1 and t = nτ2, respectively; n = 0, 1, 2, 3, . . ., where τ1 and τ2 are the time
periods. Here, v(t−) and s(t−) are the strength of biopesticide and chemical pesticide
before the periodic input, and v(t+) and s(t+) are the strength of biopesticide and chemical
pesticide after the periodic input.

In the impulsive model (1), we assumed the concentration of chemical pesticide as
a model population, which is realistic and a novel idea. We use two different impulse
intervals for two control agents (biopesticide and chemical pesticide) that will be analyzed
both analytically and numerically. We proceed by analyzing the dynamics of model (1) by
discussing the existence of equilibria with their stability.
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3. Dynamics of the Impulsive Model

In this section, we analyze the boundedness of the solutions of system (1), we find out
its pest-eradication steady state, and we analyze the local and global stability. Finally, we
discuss the permanence of the impulsive system.

3.1. Boundedness of the Model Variables

Let V(t) = x(t) + y(t) + z(t) + v(t) + s(t) and

dV
dt

+ mV ≤
(
rx + mx− rx2

k
)
− (1− c1)αxy− (1− c2)φαxz− {(d−m}y

−{(1− θ)(d + δ)−m}z− (γ−m)v− (µ−m)s.

Now, let us define m = min{d, γ, µ, (d + δ)(1 − θ)}. As 0 < c1, c2, θ < 1, then
1− c1 > 0, 1− c2 > 0, and 1− θ > 0, so we can write that

dV(t)
dt

+ mV(t) ≤ M0, (2)

where
k(m + r)2

4r
= M0. At t = nτ1, we have

V(nτ+
1 ) ≤ V(nτ1) + vi. (3)

By the comparison theorem, for t ≥ 0 we have

V(t) ≤ V(0)e−mt +
M0(1− e−mt)

m
+ vi

e−m(t−τ1)

1− emτ1
+ vi

emτ1

emτ1 − 1

→ M0

m
+ vi

emτ1

emτ1 − 1
as t→ ∞. (4)

When t = nτ2,

V(nτ+
2 ) ≤ V(nτ2) + vi (5)

and from the comparison theorem it follows that

V(t) ≤ V(0)e−mt +
M0(1− e−mt)

m
+ vi

e−m(t−τ2)

1− emτ2
+ vi

emτ2

emτ2 − 1

→ M0

m
+ vi

emτ2

emτ2 − 1
as t→ ∞. (6)

Thus, V(t) is uniformly bounded and there exists a positive constant M > 0 such that
x(t) ≤ M, y(t) ≤ M, z(t) ≤ M, v(t) ≤ M, and s(t) ≤ M for all t.

From the above discussion, we have the following theorem.

Theorem 1. For the impulsive system (1), there exists a positive constant M such that x(t) ≤ M,
y(t) ≤ M, z(t) ≤ M, v(t) ≤ M, and s(t) ≤ M for all t.

For non-negative solutions, the following lemma follows from [13].

Lemma 1. Let X(t) be a solution of the impulsive system (1) with X(0+) ≥ 0. Then X(t) ≥ 0 for
all t > 0.
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3.2. Existence of the Pest-Free Periodic Orbit

Since both pests are assumed to be harmful for crops, we discuss stability at infected
and susceptible pest-eradication solutions of the system when y = 0 and z = 0, t 6=
(nτ1, nτ2), and the linear forms of the fourth and fifth equation of (1) are

dv
dt

= −γv and
ds
dt

= −µs, (7)

respectively. For an impulse control, we must have

v(t+) = v(t−) + vi, for t = τ1,

s(t+) = s(t−) + si, for t = τ2.
(8)

From (7) and (8) it is clear that v and s are independent of each other. Thus, the solution of
Equation (7) can be given as follows:

v(t) = {v(0+)− v∗(0+)}e−γt + v∗(t), f or t ∈ (τ1, (n + 1)τ1],

s(t) = {s(0+)− s∗(0+)}e−µt + s∗(t), f or ∈ (τ2, (n + 1)τ2], (9)

where v∗(t) and s∗(t), the positive periodic solution of (7), are given by

v∗(t) =
vie−γ(t−nτ1)

1− e−γτ1
, s∗(t) =

sie−µ(t−nτ2)

1− e−µτ2
, (10)

with initial values
v∗(0+) =

vi
1− e−γτ1

, s∗(0+) =
si

1− e−µτ2
. (11)

If y(t) = 0 and z(t) = 0, then the first equation of (1) is

dx
dt

= rx
(

1− x
k

)
, (12)

which is a logistic equation, and its solution is

x(t) =
kx(0)

x(0) + (k− x(0))ert for t 6= (nτ1, nτ2). (13)

Clearly, (13) has two equilibria, such as x = 0 and x = k. Therefore, (1) has two pest-
eradication solutions, (0, 0, 0, v∗, s∗) and (k, 0, 0, v∗, s∗). Obviously, at x = 0 the system (13)
is impossible from the perspective of ecology. For this reason, in the following subsection
we study the stability for the system (1) at E = (k, 0, 0, v∗, s∗).

3.3. Stability of the Pest-Free Periodic Solution

We establish the following theorem for the stability of the pest-free periodic orbit.

Theorem 2. System (1) is both locally and globally stable around the pest-free periodic solution
E = (k, 0, 0, v∗, s∗) for the following:

(i) Application of biopesticide and chemical pesticide with same time interval t = nτ, provided
that

c1α− d− λvie−γ(t−nτ)

1− e−γτ
− m1sie−µ(t−nτ)

1− e−µτ < 0,

c2φkα− (d + δ)− m2sie−µ(t−nτ)

1− e−µτ < 0; (14)
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(ii) Application of biopesticide with time interval t = nτ1 and chemical pesticide with time interval
t = nτ2, i.e., for different time intervals, where τ1 6= τ2, provided that

c1α− d− λvie−γ(t−nτ1)

1− e−γτ1
< 0,

c2φkα− (d + δ) < 0,

c1α− d− m1sie−µ(t−nτ2)

1− e−µτ2
< 0.

(15)

Proof. We need to prove the stability of the system in two cases:
(i) Application of chemical pesticide and biopesticide with same time interval;
(ii) Application of biopesticide and chemical pesticide with different time intervals.
(i) In this case, let t = nt1 = nt2 = nτ. We discuss the stability of the system through

the small amplitude perturbation method at the periodic solution (k, 0, 0, v∗, s∗). Let

x(t) = k + ε1(t), y(t) = ε2(t), z(t) = ε3(t),

v(t) = v∗(t) + ε4(t), s(t) = s∗(t) + ε5(t). (16)

Here, ε1, ε2, ε3, ε4, and ε5 denote small amplitude perturbations. Thus, the corresponding
system of (1) at (k, 0, 0, v∗, s∗) is given by

dε1
dt

= r{k + ε1(t)}
(

1− k + ε1(t)
k

)
− α{k + ε1(t)}ε2(t)

−φα{k + ε1(t)}ε3(t), t 6= nτ,
dε2
dt

= c1α{k + ε1(t)}ε2(t)− λε2(t){v∗(t) + ε4(t)}

−dε2(t)−m1{s∗(t) + ε5(t)}ε2(t), t 6= nτ,
dε3
dt

= c2φα{k + ε1(t)}ε3(t) + λε2(t){v∗(t) + ε4(t)} − (d + δ)ε3(t)

−m2{s∗(t) + ε5(t)}ε3(t), t 6= nτ,
dε4
dt

= θ(d + δ)ε3(t)− γ{v∗(t) + ε4(t)}, t 6= nτ,

dε5
dt

= −µ{s∗(t) + ε5(t)}, t 6= nτ,

4{v∗(t) + ε4(t)} = vi, t = nτ,

4{s∗(t) + ε5(t)} = si, t = nτ. (17)

Now, the linear system corresponding to the system (17) is given as

dε1
dt

= −rε1(t)− αkε2(t)− φαkε3(t), t 6= nτ,

dε2
dt

= c1αkε2(t)− λε2(t)v∗(t)− dε2(t)−m1s∗(t)ε2(t), t 6= nτ,

dε3
dt

= c2φkαε3(t) + λε2(t)v∗(t)− (d + δ)ε3(t)−m2s∗(t)ε3(t), t 6= nτ,

dε4
dt

= θ(d + δ)ε3(t)− γε4(t), t 6= nτ,

dε5
dt

= −µε5(t), t 6= nτ,

4ε4(t) = vi, t = nτ,

4ε5(t) = si, t = nτ. (18)
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The fundamental matrix M(t) of (18) is obtained as

dM(t)
dt

=
1
m


−r −αk −φαk 0 0
0 c1αk− λv∗(t)− d−m1s∗(t) 0 0 0
0 λv∗(t) m33 0 0
0 0 θ(d + δ) −γ 0
0 0 0 0 −µ


with initial condition M(t) = I5 (the identity matrix) and m33 = c2φkα− (d + δ)−m2s∗(t).
Now, the fundamental solution matrix is given by

M(t) =
1
m


exp (−rt) M1(t) M2(t) 0 0

0 M3(t) 0 0 0
0 M4(t) M5 0 0
0 0 M5(t) exp (−γt) 0
0 0 0 0 exp (−µt)

.

Here, M5 = exp
∫ t

0
{c2φkα− (d + δ)−m2s∗(t)}dt,

M3(t) = exp
∫ τ

0
{c1αk− λv∗(t)− d−m1s∗(t)}dt,

where the other Mi(t)s are not required for our further analysis. According to Floquet
theory [33], the periodic solution E(k, 0, 0, v∗v, s∗) is asymptotically stable if the absolute
values of the eigenvalues of M(τ) are less than one.

The eigenvalues of M(t) are

λ1 = exp{−rτ}, λ2 = exp
∫ τ

0
{c1αk− λv∗(t)− d−m1s∗(t)}dt,

λ3 = exp
∫ τ

0
{c2φkα− (d + δ)−m2s∗(t)}dt, λ4 = exp{−γτ},

λ5 = exp{−µτ}.

Clearly, 0 < λ1 < 1, 0 < λ4 < 1 and 0 < λ5 < 1. Thus, when both pesticides are applied
with the same time interval, then the system is locally stable around the periodic solution
E = (k, 0, 0, v∗v, s∗) if 0 < λ2 < 1 and 0 < λ3 < 1. From this, we obtain

exp
∫ τ

0
{c1αk− λv∗(t)− d−m1s∗(t)}dt < 1,

exp
∫ τ

0
{c2φkα− (d + δ)−m2s∗(t)}dt < 1. (19)

From Equation (19), we can choose δ1 > 0 such that

η1 = exp
∫ (n+1)τ

nτ
{c1α− λ(v∗(t)− δ1)− d−m1(s∗(t)− δ1)}dt < 1,

η2 = exp
∫ (n+1)τ

nτ
{c2φkα− (d + δ)−m2(s∗(t− δ1))}dt < 1.

Since all state variables are positive,

dv
dt
≥ −γv;

ds
dt
≥ −µs.

Thus, according to the comparison theorem and Equations (10) and (11), for δ1 > 0 there
exists t0 > 0 such that v(t) ≥ v∗ − δ1, s(t) ≥ s∗ − δ1 for all t > t0.
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From the second equation of system (1), it can be written that

ẏ(t) ≤ y(t){c1α− λ(v∗(t)− δ1)− d−m1(s∗(t)− δ1)}, t 6= nτ,

y(t+) = y(t), t = nτ. (20)

Integrating (20) into [nτ, (n + 1)τ], it can be shown that

y{(n + 1)τ} ≤ y(nτ) exp
∫ (n+1)τ

nτ
{c1α− λ(v∗(t)− δ1)− d−m1(s∗(t)− δ1)}dt

= y(nτ)η1. (21)

Similarly,

y{nτ} ≤ y{(n− 1)τ}η1. (22)

Hence, from (21) and (22),

y{(n + 1)τ} ≤ y{(n− 1)τ}η2
1 .

Proceeding in this way, we obtain

y{(n + 1)τ} ≤ y(τ)ηn
1 . (23)

Since η1 < 1, one has ηn
1 → 0 whenever n→ ∞. Hence, y{(n + 1)τ} → 0 as n→ ∞. Now

we take nτ < t ≤ (n + 1)τ. Then, clearly, 0 < y(t) ≤ y(nτ) exp (n τ). Thus, y(t) → 0
as t→ ∞. For

η2 = exp
∫ (n+1)τ

nτ
{c2φkα− (d + δ)−m2(s∗(t− δ1))}dt < 1,

we can similarly prove that z(t)→ 0 as t→ ∞.
We now prove that v(t) → v∗(t) as t → ∞. Since z(t) → 0 as t → ∞, then for some

0 < δ2 < γ
θ(d+δ)

there exists t1 > 0 such that 0 < z(t) < δ2 for all t > t1. Thus, for t > t1

and from the fourth equation of system (1), we can write that

θ(d + δ)δ2 − γv(t) ≥ v̇(t) ≥ −θ(d + δ)δ2 − γv(t). (24)

Let v1(t) and v2(t) be the solutions of

v̇1(t) = −θ(d + δ)δ2 − γv1(t), t 6= nτ,

v1(t+) = v1(t) + vi, t = nτ,

and

v̇2(t) = θ(d + δ)δ2 − γv2(t), t 6= nτ,

v2(t+) = v2(t) + vi, t = nτ,

respectively. Then, the solution will be

v∗1(t) =
vie−γ(t−nτ)

1− e−γτ
+ θ(d + δ)δ2,

v∗2(t) =
vie−γ(t−nτ)

1− e−γτ
− θ(d + δ)δ2. (25)

From (25), it is clear that when δ2 → 0 we have v∗1(t) → v∗(t) and v∗2(t) → v∗(t).
Hence, it follows from (24) that v(t)→ v∗(t) as t→ ∞.
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Similarly, we can choose 0 < δ3 < µ and, in the same way, we can prove that
s(t)→ s∗(t) as t→ ∞.

Finally, we shall prove that x(t)→ k as t→ ∞. We already proved that y(t), z(t)→ 0
as t→ ∞. Thus, for δ3 > 0, there exists t3 > 0 such that y(t), z(t) < δ3 for all t > t3. Hence,
from the first equation of system (1), we can write that

rx(t)− rx2(t)
k

> ẋ(t) ≥ {r− δ3α(1 + φ)}x(t)− rx2(t)
k

,

which implies that

kx0

x0 + (k− x0)ert ≥ x(t) ≥ k{r− δ3α(1 + φ)}x0

rx0 + [k{r− δ3α(1 + φ)} − rx0]e−{r−δ3α(1+φ)}t . (26)

Hence, for δ3 → 0, x(t)→ k as t→ ∞. Thus, for application of biopesticide and chemical
pesticide together with the same time interval t = nτ, we can say that system (1) is locally
as well as globally stable if

c1α− d− λvie−γ(t−nτ)

1− e−γτ
− m1sie−µ(t−nτ)

1− e−µτ < 0,

c2φkα− (d + δ)− m2sie−µ(t−nτ)

1− e−µτ < 0. (27)

Two subcases arise here, namely,
Subcase I. Application of biopesticide with time interval t= nτ1.
In this case, si = 0. Hence, system (1) is locally as well as globally stable around the

periodic solution if

c1αk− d− λvie−γ(t−nτ1)

1− e−γτ1
< 0,

c2φkα− (d + δ) < 0. (28)

Subcase II. Application of chemical pesticide with time interval t= nτ2.
In this case, vi = 0, and hence system (1) is locally as well as globally stable around

the periodic solution if

c1αk− d− m1sie−µ(t−nτ2)

1− e−µτ2
< 0,

c2φkα− (d + δ)− m2sie−µ(t−nτ2)

1− e−µτ2
< 0. (29)

The proof is complete.

4. Numerical Simulations

Now we solve the impulsive system numerically and we graphically display the
results found. We varied the crucial parameters within their feasible ranges to observe their
impact on the impulsive model’s solution trajectories and equilibria. Precisely, we solved
the impulsive system and plotted the results in figures using the ode45 MATLAB solver.

In Figure 1, the impulsive time interval for microbial biological pesticide release is
5 days, and releasing of biopesticide was considered in different rates: vi = 0 (i.e., without
pesticides), vi = 6, and vi = 12. It is revealed that susceptible pest population decreases
with an increase in the release rate of biopesticides.
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Figure 1. Impact of biopesticide application in impulsive mode on system (1). Evolution of (a) crop;
(b) uninfected pest; (c) infected pest; (d) biopesticide. The set of parameters are r = 0.1, k = 1, α = 0.2,
β = 0.003, m1 = 0.8, m2 = 0.6, c1 = 0.5, c2 = 0.8, γ = 0.15, δ = 0.2, d = 0.05, κ = 100, s = 0.3, and
λ = 0.35. Here, the time interval is τ1 = 5 days and the rates of biopesticide release are vi = 0 (black
line), vi = 6 (red line), and vi = 12 (blue line).

In Figure 2, by taking different impulsive intervals, biopesticide is applied to the
system. A better result is obtained for lower intervals (2 days) but, with a higher release of
biopesticide, pests are present in the system. From Figures 1 and 2, we can conclude that
pest control using only biopesticides is very costly and a time-consuming process.
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Figure 2. Impact of biopesticide on system (1) for different impulse intervals and rates. Evolution of
(a) crop; (b) uninfected pest; (c) infected pest; (d) biopesticide. Red line indicates vi = 6 and τ1 = 5,
green line indicates vi = 12 and τ1 = 5, and blue line indicates vi = 12 and τ1 = 2.

Recall that in our model we take τ1 as the time period for biopesticide spraying
(generally a virus particle) and τ2 as the time period for chemical pesticide sprays. In
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Figure 3 we see the effect for the same time intervals, τ1 = τ2 = 5 days, whereas in Figure 4
we see the effect for different time intervals, τ1 = 3 days and τ2 = 2 days.

If both microbial biopesticides and chemical pesticides are released simultaneously,
with an equal time interval of 5 days, then the extinction of both infected and susceptible
pest populations is possible (see Figure 3).
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Figure 3. Impact of both biopesticide and chemical pesticide on system (1) with the same impulse
interval, τ1 = τ2 = 5. Evolution of (a) crop; (b) uninfected pest; (c) infected pest; (d) biopesticide;
(e) chemical pesticide. The rates of impulses are si = 0.15 and vi = 6 for black dotted color; si = 0.1
and vi = 6 for red dashed line; and si = 0.05 and vi = 6 for blue solid line.

Figure 4 illustrates the dynamics of the double impulse with different impulse intervals.
Double impulses occur at the time which is the common multiple of the two intervals.
For example, if we take τ1 = 2 and τ2 = 3, then simultaneous impulses will occur at the
times t = 6, t = 12, t = 18, and so on. Figure 4 is the most important figure characterizing
the impact of two different but simultaneous impulses on the total pest population with
different time intervals. It is observed that for vi = 12, si = 0.15, τ1 = 3, and τ2 = 2, the
total pest population becomes extinct. In Figure 4d, the impact of double impulses occurs
at t = 48, t = 54, t = 60 days, etc., which are common multiples of the two intervals τ1 = 2
and τ2 = 3.

It is also numerically checked that when the rate of the impulse control is high, a
comparatively lower interval can be taken for cost-effectiveness of the process.

Thus, the advantage of the impulsive control is that we can determine the proper rate
and a suitable interval of giving controlling agents in the system.
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Figure 4. Impact of both biopesticide and chemical pesticide on system (1) with same impulse
interval, τ1 = 3, τ2 = 2, and where the rates of impulses are si = 0.15 and vi = 6. Evolution of
(a) crop; (b) uninfected pest; (c) infected pest; (d) pesticides (biopesticide in blue, chemical pesticide
in red).

5. Discussion and Conclusions

In the present research, we studied impulsive periodic applications of integrated pesti-
cides, that is, simultaneous use of biopesticide and chemical pesticide in a pest management
system. We proposed a two-impulse mathematical model using an impulsive differen-
tial equation to observe the impact of periodic application of the combined pesticides in
impulsive modes.

In the previous models available in the literature, chemical and biological pesticides
were used in the model in a continuous way. In contrast, here, we used them in an
impulsive periodic way. Consequently, a two-impulse mathematical model was established.
Moreover, in the proposed model, we took chemical pesticides concentration as the model
population, which is a novel approach.

Stability theory (Floquet theory) and numerical calculations were used to examine
the system dynamical behavior. We determined the conditions under which the impulsive
system will be stable both locally and globally. For example, the local stability of a pest-free
periodic orbit was established. The dynamics varied with the rate of both biopesticide
recruitment and the chemical pesticide concentration.

Chemical pesticides minimize the oscillations in the system and make the system stable
in a shorter time. Numerical and analytical analysis reveals that increasing frequency of
pesticide application will require less administration of biopesticide and chemical pesticide,
which is economically beneficial and environmentally safe.

Our research is directed to optimize and find the right combination of pesticides with
maximum benefit to the crop plant. The numerical simulation also shows that control
over the spraying of chemical pesticides is needed to control pests and minimize the cost
of cultivation. On the other hand, chemical pesticides may have negative environmental
implications due to their lingering effects; nonetheless, the best control approach provides
the least amount of collateral damage to the environment.

In a nutshell, the promising feature of the system is the combined use of the pesticides
in impulsive control methods that reduce the cost and negative effects on the environment.
Using a combination of pesticides to deliver the pesticide can save the cost and reduce
the side effects of chemical pesticides. Our obtained results will give a new perspective to
farmers who implement this in a real-world setting.
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In the future, one can extend this work to an optimal impulsive system for cost-
effectiveness of the control process.
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