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1. Introduction

Let A denote the class of analytic functions in U = {z € C: |z| < 1} of the form:
fz)=z+ ) az" (zel). (1)
n=2

Furthermore, let S C A denote the class of functions that are univalent in U.
Let f and g be two analytic functions in U. We say that the function f is subordinate
to the function g and is written as follows:

f(z) < g(2)

if there is a Schwarz function w such that

(z e U,

Further, if the function g is univalent in U, then it follows that
f(z) < g(2)(z € U) & £(0) = g(0) and f(U) C g(U).
Denoted by P is the class of analytic functions ¢ having the form:
@(z) =14+ Biz+Byz> + B3z +---  (B; >0)

and Regp(z) > 0 (z € U).
For functions f € A and u € A given by

u(z) =z+ ) up2" (zel),
n=2
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the Hadamard product (or convolution) of f and u is defined by

(fxu)(z) =z+ i anunz" = (ux f)(z) (z e U).

n=2

Fora,b,c € Cand ¢ # 0,—1,—2,—3- - -, the Gauss hypergeometric function »F; (a, b; ¢; z)
is defined as:

0 ay b nzn
2F1(a,b;;z) :Z:O()(C)()n'

(b)n—1 z"1

- (a)n—l
1+ 11;2 (€)n-1 (n—1)! (zel), ()

where (a), is the Pochhammer symbol, written in terms of the Gamma function T, by

_T(a+n) (1 (n=0)
=" = aer Dt Do) (1=12.30)

For positive real values 4, b, ¢, using the Hadamard product and Gauss hypergeomet-
ric function, Hohlov (see [1,2]) proposed and studied a linear operator J,;..f: A — A
defined by

Japef(2) = z2F1(a,b;¢;2) * f(2)
=z+ ) Puaz" (z€U), (3)
n=2
where
P = (@)n—1(0)n—1
" (Ona(n =)
It is well known that every univalent function f € S has an inverse f ! which satisfies
@) =z (zeu)
and .
frt@n = (ll <ntfin(f) = 7).
where
g(w) = fHw) = w — apw® + (245 — a3)w® — (5a3 — 5azaz +ag) + - - -

=w + Z bnwn- (4)
n=2

We say that a function f € A is bi-univalent in U if both f and f~! are univalent in
U and denote a class of normalized analytic and bi-univalent functions by £(C S). Some
elements of functions in X are presented below:

ﬁ@=1z,mw=4%a—ﬂm¢ﬁﬂ=;%c+9'

zZ

and their corresponding inverses given by:

_62“]—1
e 417

_ W 1y, €01 1
71_’_(‘]’ f2 (w)* oW and f3 ((U)
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Certain subclasses S5 (a) and Cy,(«) of X introduced by Brannan and Taha [3] are simi-
lar to the subclasses S*(a) and C(«) of starlike and convex functions of order a(0 < a < 1),
respectively. In [3], Brannan and Taha obtained the non-sharp estimates on the first two
Taylor-Maclaurin coefficients |a;| and |a3| of S5 (a) and Cs(«). Recently, many scholars
have defined various subclasses of bi-univalent functions (see [4-12]) and investigated the
non-sharp estimates of the first two coefficients of the Taylor-Maclaurin series expansion.

The Hankel determinant is one of the important tools in the study of the theory of
univalent functions. Noonan and Thomas [13] defined the g-th Hankel determinant of
feAas:

an Ant1 0 Apdg—1
An+1 an42 - An+q

Hy(n) = | . A | (m=1n>04>1),
An+q-1 Antq " An2q-2

The Hankel determinants

ay az 2
Hz(l) = :a3—a2
ap 4as
and
az as 2
H>(2) = =ara4 — a
2(2) - 204 — 03

are called the Fekete-Szego functional and the second Hankel determinant functional,
respectively. Further, Fekete and Szeg® [14] considered the generalized functional a3 — pa3,
where y is a real number. Recently, several authors (see [15-19]) proved the upper bounds
for the Hankel determinant for functions in various subclasses of the bi-univalent functions.
On the other hand, Zaprawa [20] extended the study of the Fekete-Szegt inequality to
several classes of bi-univalent functions. Deniz et al. [21] discussed the upper bounds of
H>(2).

Now we introduce a new subclass of bi-univalent functions associated with the
Hohlov operator.

Definition 1. For 0 < A < 1and ], .. given by (3), a function f € X given by (1) is said to be in
the class Mgb;c(/\, @) if it satisfies the following subordination conditions:

R (7w A B ww n RUCICS

and

A{1+ (]”'b;cg(w))/ }+(1 )L){ ]a,b;cg(w) }-<(P(w) (we ),

where ¢ € P and the function g is the inverse of f given by (4).

Remark 1. For a = c and b = 1 in the above definition, we have M& (A, ¢) = Msx(A, ¢),
introduced and studied by Ali et al. [22].

To prove our main results, the following lemmas are needed.

Lemma 1 ([23]). Let a function v(z) = 11z + v2z> + 1323 + - - - be analytic in U, v(0) = 0 and
[v(z)| <1, then |v,| <1 (n € N).
Lemma 2 ([24]). Let u(z) = Y571 unz" (z € U) be a Schwarz function, then

up = x(1—u?)
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and
uz = (1—uf)(1—|x[*)s —uy (1 — uf)x?

for some complex number x and s satisfying |x| < 1and |s| < 1.
In this paper, we investigate some properties such as the coefficient bounds, Fekete-

Szego inequality and the second Hankel determinant for functions in the class Mg’b;c (A, @).
In particular, several previous results are generalized.

2. Main Results

In this section, we find estimates for the general Taylor-Maclaurin coefficients of the
functions in the class M%Z"(A, ).

Theorem 1. Let 0 < A < 1and the function f € X given by (1) belong to the class M&" (A, ¢).

Then
By
1A
a2 Smin{ " B VBl
\/|[2(1+2A)¢3—(1+3A)¢§]B§—(1+A)232\
and
Bl + B%
las| < min 21+20)¢3 1 (1+A4)2¢3 ,
- By By
2(1+2A)¢3 T [[2(14+2A)p3— (1+3A) 3| B2 — (1+A4)2By |

Proof. Let f € X given by (1) belong to the class M;'b;c()L, ®). There exist two Schwarz
functions:
u(z) = urz 4 upz® + uzz® + - --

and
v(w) = 11w + 120 + V3w’ + - - -,
such that Y oy
Z{Jab;eJ (2 Z{Jab;eJ \Z
A “NJabie) \mJ) _ 4 BVabe/\Z)) |
o ey + - { T ) = e Q
and (] ( ))// (] ( ))/
W\ Jg b;e8\W W\ Jg b;e8\W
/\ 1 o 7 1 _/\ “W\Jab,es\W)) _ ,
{ " (Ja,pe8(@))’ } * ){ Japic8(w) } p(v(w)) (6)
where
@(u(z)) =1+ Byuyz + (Byup + Byu?)z? + (Byuz + 2Bouyuy + B3ud)z> + - -- %
and
p(v(w)) =1+ Biyyw + (Byva + Bav?)w? + (Byvz + 2Bovivn + Bt )w® +--- . (8)

Since f and ¢ = f~! have the Taylor series expansion (1) and (4), respectively, we
obtain

Z(]a,h;cf(z))// B Z(]a,b;cf(z)),
A{” Unie () }”l ”{ Toncf2) }

=14 (14 A)ypaoz + [2(1 + 2A)p3az — (1 + 3A)y3a3]2>
+ [3(1 4 3A) gy — 3(1 + 5A) Potpzazas + (14 7A)5a3]z% + - - - ©9)
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and
w(Jape8(w))" _ W (Japeg(w))’
i Gty -0 e
=1+ (1+ A)pabaw + [2(1 +2A)y3bs — (1 + 37 p3b3]w?

+ [3(1 + 3A)abs — 3(1 4 50)opsbabs + (1 + 7A)y3b3]w® + - - -

Now, from (5), (7) and (9), we obtain
(1+A)ypaz = Byug

and
2(1 4 2A)yza3 — (1+3A)g3a5 = Byuo + Byus.

Similarly, from (6), (8) and (10), we obtain
7(1 + }\)1[]2612 = By

and
2(1+4 2A)1p3(2a% —a3)— (1+ 3)\)1/1%{1% = Bivp + Bzv%.

It follows from (11) and (13) that

By —Binq

f2 = (1+)\)l/]2 - (1+)\)1/J2.

Thus, we have
upy = —1mn

and
2(14 A)2p3a3 = B3 (u2 +v2).

From (15) and Lemma 1, we obtain

By
| < —mM8M.
o2l < T 0

Adding (12) to (14), we obtain

B3 (uy 4 v5)

2 _
27 Ta(1 1 20) 95 —2(1+ 30)92] B2 — 2(1 + A)2B,

Therefore, by using Lemma 1, we have

B3
|ap|? < L .
|[2(1+2A) g5 — (1+3M) 93] Bf — (1+ A)2B,|
It follows that
lay] < Bi1v/Bq

V201 +20)9s — (14+30)93] B — (1+ A)2B,|
Subtracting (14) from (12) and with some calculations, we obtain

By (uz —v7)

_ 2
BT A1 2n)gs T2

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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By using Lemma 1, we obtain

ot |a|*. (22)

B B2
laz| < 1 1
2(14+20) 3 (14 A)2y3

Similarly, putting (20) into (22), we obtain

By B}
12095 201+ 20 — (11 3A)93] BE — (14 1)2By]

<
|ll3| = 2(

O

This completes the proof of Theorem 1.
Fora = cand b = 1 in Theorem 1, we obtain a result of the class My, (A, ¢), considered
by Ali et al. [22].

Corollary 1. Let 0 < A < 1 and the function f € X given by (1) belong to the class Mx(A, ¢).

Then
By
| ™
|az| < min B VB
\/(1+A)|B§—(1+A)Bz|
and
o + T
. 2(1+2 T+A
az| < min
las| < B, B

2+ T (1+7)[B3—(1+7)By |

Theorem 2. Let 0 < A < 1, 0 € C and the function f € % given by (1) belong to the class
MZP(A, @). Then

5 B
|a3 —(fa%\ < m 0 <|h(o)| < m)
| 2/k(0)] Ih(0)| > MW)

where ’ i
— — 0 1
"o = [4(1+2A) 3 — 2(1+3M) 93] B2 —2(1 + A)2By (23)

Proof. From (21), we get

2 Bi(uz —12)

az —oa; = 211209 +(1—0)a3. (24)
Putting (19) into (24), we have
25— o = By (uz —12) Bi(1—0)(uz +12)
2414203 [4(1+F20) s — 2(1+3A)p2] B2 —2(1 + A)2B,
. Bq By
= (1o gz ) (40 g @

where h(0) is given by (23).
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From (25) and Lemma 1, we derive

B
s — 043 < { A EO < o) < i)

2|h(0)| [h(o)[ > W

O

This completes the proof of Theorem 2.
Fora = cand b = 1 in Theorem 2, we obtain a result of the class My (A, ¢), introduced
by Ali et al. [22].

Corollary 2. Let 0 < A < 1,0 € Cand the function f € X given by (1) be in the class Mx. (A, ¢).

Then
B
oo < | T (01O < )
20n(@) (1(0)] > grirs )

where
(1-0)B}

2(1+A)(B2— (1+A)By)’

h(o) =

Theorem 3. Let 0 < A < 1 and the function f € ¥ given by (1) belong to the class M%7 (A, ¢).

Then
Qs (<00 < Qz)
s — 2 < Byl Q+Q+Q (Q>001>-%)or(Q<0,0>-Q)
Llfész (Qz >0,0Q < —%),
where
0, = Bs N [B(1+5A)patps — (1 +7A)p3 — 3(1+3A)y4 B3
P31+ A) (1 +3A) oy 3(14+A)4(1+3A) iy,
B2 B 2|By| + By By
41+ A)2(1+20) 923 3(1+A)(1+3A)pagps  4(1+24)292
Q, = B} n 2|By| + By _ B,
2T A A2(T 20 ¢3gs 3L+ A)A+3M) oty 2(1+224)2¢3
and
_ By
%=1 AT

Proof. From (5), (7) and (9), we have

3(1+ 3A)aas — 3(1+ 5A)Poypsazaz + (14 7A)p3a;
= Byus + 2Byuquy + Baus. (26)

Similarly, from (6), (8) and (10), we obtain

—3(1 +3A) 04 (5a3 — 5azaz + ay) + 3(1 4 5A) apsaz(2a3 — a3) — (1 + 70345
= Byus + 2Byuyvs + Bavs. (27)
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Subtracting (27) from (26) and with some calculations, we have

. Bi(uz —v3) | Boug(uz +17) Bau
YT 6(143A0) s | 3(1+3A)ps | 3(1+3A)ps
5 [6(1 4 5A)atps — 15(1 + 3A)pps — 2(1 + 77) 93]
+§ﬂ2ﬂ3+ 6(1+3A)1/J4

a3. (28)

From (15) and (21), we obtain

oe— Bi(uz —v3) | Boui(uz +12) Bsu$
YT 6(1 430y 3(1+3M)py  3(1+3A)uy
5B3uy (up — 1) [3(1+5A)p3 — (14 7A)3]Bjug
8(1+A)(1+2A) 913 3(14 A)3(1+37) ¢y

(29)

Thus, we obtain

ty— % — [3(1 4+ 5A) a3 — (1 +7A) 93 — 3(1 + 31)¢y) B
3(14+A)4(1 437y
B1B3 4
TN 32 }”1
Bui (uy — v7) B1Bou? (up + 1)
(T4+A)2(1+20)g3yps  3(1+A)(143A) gy
Blui(uz —v3)  Bf(uz —1)?
(T+2A)(1+30) s 16(1+24)%93

+
8

+z (30)
By using Lemma 2, we derive
up = x(1—u?), 1 =y(1—v3),
us = (1—ud)(1— [x|?)s — ug (1 — ud)x?

and
vs=(1—=v})(1— |y ) —vi(1—27)y?,

where |x| <1, |y| <1, |s| <1and |k| < 1. With some calculations, we obtain

Uy + 1y = (1—u%)(x—|—y), Uy —Vp = (1—u%)(x—y), (31)

ws—vs = (=) | (1= [xPhs — (1= y2h] —m(1 -2+, ()

By substituting the relations (31) and (32) into (30), we have

wrs = { [B(1+5M0)paps — (1+7A)y3 — 3(1 +3A)yu] Bf
3(1+A)4(1+3M1)y5¢pa
B1B3 }u4

T+ A)(1+3M)goyy [
Bjud(1—u2)(x—y) | BiBul(1—u})(x+y)

8(1+A)2(1+20)¢2yps  3(1+A)(1+3A) gy
L Bl (=) {[(1— xP)s = (L= lyP)h] - (2 +42)}

6(1+A) (14 3A) 9oty

BI(1 —ui)?*(x —y)?

o 16(1+24)292

3
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It follows that

asas — 2] = |{ BTSN Y2ws = AL+ 70)y3 — 3(1 4 31)gu] B}
2 3(1+A)4(1+3A)ply,
BiBs }u4
(T+A) (1430 )gopy
B%ul(l — u%) [(1- |x]2)s - (1- |y|2)h]
6(1+ A)(1+3A) oty
Blui(1—u})(x—y) | BiBud(1—u})(x+y)
8(1+A)2(1+20)y3ys  3(1+A)(1+3A)¢ayy
Blui(l—uf)(x* +y%)  Bi(1—uj)*(x—y)?
61+ A)A+3A)as 16(1+22)2¢2

3

According to Lemmas 1 and 2, we assume without restriction that u = u; € [0,1].
By applying the triangular inequality, we obtain

[B(1+5M) a3 — (1+7A)93 — 3(1+31)yu] B}
3(1+ A)4(1+3A)y5¢a
B; A B3u?(1 — u?)(|x| + |y|))
(1+A)(1+3A) oty 8(14 A)2(1421)p2ys
|Ba|u?(1 — u?)(|x| +|y]) | Bi(u?—u)(1—u?)(|x|* + |y|?)

|axay — a3| < 31{

"3

+ 3(1+A)(1+3A) iy 6(1+ A)(1+3A) oy
n Biu(1 —u?) By (1 —u?)?(|x| + |y])?
3(1+A)(1+3A) Py 16(1 4 27)2y3 '

Now, letting # = |x| < 1and 7 = |y| < 1, we have

@20y = 3| < By [Ty + (7 + VT + (1 +97)Ts+ (1 +7)°Ta| = BiF(n,7),

where
() — { | BOCE SN a9s — (147093 = 501+ 30) gl 7
1=Ti(u) = 3(1+A)H(1+3A)phey
Bs 4 Byu(l—u?)
R (S 3<1+A><1+3A>¢2¢4} =0

B Cu?(1—u?) B} B

2= 200 = 5 g, ST A+ 20995 | 30+ 3009
B _ Bi(w?—u)(1—u?)

T =Ts(u) = 6(1+A)(1+3A)¢r¢py —

and

Ty = Ty(u) = By(1~ )"

C16(1+20)2F T
Next, we need to maximize the function F(#, y) in the closed square

A={(n,7):n€l01],y€[01]}

for u € [0,1]. Since F(n,7) is the maximum with regard to u, we must investigate it
accordingtou =0,u =1land u € (0,1).
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Foru =0, R
_ _Biln+1)
Fm) = 56 an g
we can easily obtain
B
max{F(n,7v) : (n,7) € [0,1] x [0,1]} = F(1,1) = m
Foru =1,
Fn7) = B; [3(1 4 5A)paips — (1+7A)p3 — 3(1 +3A) ] B}
T =130+ A) (T + 3A) s 3(1+A)4(1+3A) gl ’
we have
max{F(y,7) : (n,7) € [0,1] x [0,1]}
_ B3 [B(145A) 213 — (14 7A)93 — 3(1+3A) 4] B
B +A) (1 + 3Nt 3(1+ M1 +3M) 3¢ '

For 0 <u <1, by letting 7 + v = gand 7 - 7 = {, we obtain
F(n,7) = T1 + Tag + (Ts + Tu)¢” — 2T3¢ = J (¢, 0),

where ¢ € [0,2] and ¢ € [0,1]. Then we need to maximize the function:

J(g,8) e A={(¢,¢): c€[0,2,5 €[0,1]}.

By differentiating J(g, &), we let

{

The above results show that J(¢, ) does not have a critical point in A. Therefore,
the function F(7,y) does not have a critical point in A. As a result, the function F(#, )
cannot have a local maximum value in the interior of the square A. Next, we find the
maximum of F(#,y) on the boundary of the square A.

Fory =0and 0 <y <1(ory=0and 0 <7 < 1), we have

=T +2(T3 + T4)g =0
= -2T3 =0.

SIS ESS)
m‘\«m ‘\4

F0,v)=H(y) =Ti + T2 + 73 (T3 + Tu).

In order to investigate the maximum of H(y), the situation of H(y) as increasing or
decreasing is discussed below. By deriving the function H(7y), we have

H'(y) = To + 29(T3 + Ty).

(i) LetT;+ Ty > 0, then H'(y) > 0, such that H() is an increasing function. Thus, the
maximum of H(7y) occurs at y = 1 and

max{H('y) Y € [0,1}} = H(l) =T+ T+ T3+ T4
(i) Let Tz + Ty < 0. We need to consider the critical point y = ﬁ = %, where
6 = —(T3 + Tx) > 0. Now the following two cases arise:
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(iv) Let Tz + T4 < 0. We need to consider the critical point ¢y =

Case 1. Suppose that 7y = % >1.Then 6 < % < T, and T» + T3 + T4 > 0. We have
HO0)=T1 < Ty +To+ T3+ Ty = H(1).

2
Case 2. Suppose that y = g—g < 1. Since % > 0 and % < % < T, we obtain

T3 T>
H(0)=T1§T1+49=H(26> <Th+1

and
H(1>=T1+T2+T3+T4§T1+T2.

Therefore, the maximum of H(vy) occurs when T3 + Ty > 0:
max{H(y):vy€[0,1]} =H()=T1 + T, + T3 + Tu.
Forp =1land 0 <y <1(ory=1and 0 <y < 1), wehave
F(Ly)=D(y) =Ti+ Ta+ Tz + Ty + y(Tz + 2T3) + 7*(Ts + Tu).

In order to investigate the maximum of D(+y), the scenario of when D(7) in increasing
or decreasing is discussed. By deriving the function D(y), we have

D'(y) = To + 2Ty + 29(T5 + Ty).

(iii) Let T3+ Ty > 0 then D’(«y) > 0. This shows that D(y) is an increasing function. Thus,

the maximum of D(vy) occurs at y = 1:

max{D('y) Y € [0, 1]} = D(l) =Ty 42T, + 213 + 4Ty4.

42T, _ Tr+2Ty

2(T+1y) 20 , where

6 = —(T3 + Tx) > 0. The following two cases arise:

Case 3. Suppose that v = TZ%GH‘* > 1. Then 6 < % < T +2Tyand T, + T3 +
3T, > 0. We have

DO)=Th+ T+ T+Ty<T1+ T+ T3+ Ty+ (Tp + T3+ 3Ty) = D(1) = Ty + 2T, + 2T3 + 4T4.

2
Case 4. Suppose that v = TZ%GH‘* < 1. Since % > 0 and (TZZ%)T“) < T2+22T4 <
T, 4+ 2T, we obtain

T, +2T.
D(O):T1+T2+T3+T4§D<24)

20
<T1+TLh+T3+Ty+ T+ 214
=T1+2T,+ T3+ 3T,

and
D(1) =Ty + 2T, +2T3 + 4T, < Ty + 2T, + T3 + 3Ty.

Therefore, the maximum of D(vy) occurs when T3 + Ty > 0:
max{D(y):v € [0,1]} = D(1) = Ty + 2T, + 2T3 + 4T4.
Since H(1) < D(1) foru € (0,1), we have

max{F(n,7v) : (n,7) € [0,1] x [0,1]} = F(1,1) = Ty 4+ 2T, + 2T5 + 4Tj}. (33)
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LetK:[0,1] — R,

K(u) = Bymax{F(n,7) : (1,7) € [0,1] x [0,1]}
= B1F(1,1) = By(Ty +2T» + 2T5 + 4Ty).

Now, inserting T7, T, Tz and T into the function K, we obtain

K(u) = Bl{ [

[3(1+5A)pap3 — (1+7A) 93 — 3(1 +31)1py] B}

3(1+A)H(1+30) Pl
" Bs _ B}
B(14+A)(1+3M) s | 4(1+ A)2(1 427923
B 2|By| + By By A
B(T+A)(A+3A) oty 4(1+2A4)2y32
N B? B By
41+ A)2(1T+20) 9393 2(1+2A)%93
2|Bz| + B 2 By
REIFEG +3A)¢2¢4]” T +2A)2¢§}' (34)

Letting u? = t, we have

K(t) = Bi(Qif + Qat + Q3) (t€[0,1)),

where
0y — B [B(1+5M)atp3 — (1+7A)93 —3(1 4 34)pa] B}
LB+ A) (1 +3A) oy 3(1+A)4(1 430 plyy
B B2 B 2|By| + By B
41+ A2 +20)93ps  3(1+A) (143N )ops  4(1+2A)%93"
0, = B 2|By| + By _ By
2T A0+ AR 2093y B HA)(T+30 s 2(1+20)2%3
and
Q= 4(1+21)2¢2°
Since
Orgg;l(Qltz + Qot +Q3)
Q3 (Q<0,01 <-Q2)
— ! Q1 +Q2+Qs (Qz >0,Q1 > —%) or (Q2 <0,Q1 > —Q2)
74(213@31_(22 (Qz >0,Q1 < —%),
it shows that
Q3 (250,01 <—-Q)
|agay —a3) < B;{ Q1+t Q2+ Qs (Qz >0,Q01 > —%> or (Q2 <0,Q1 > —Q)
©0-¢ (0,500 <-%)
O

This completes the proof of Theorem 3.
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For a = cand b = 1 in Theorem 3, we derive a result of the class My (A, ¢), studied by
Ali et al. [22].

Corollary 3. Let 0 < A < 1and the function f € X given by (1) be in the class Mx (A, ¢). Then

Q3 (2 <0,01 <£-Q)
|agay —a3| < B;{ Qi+ Q+Qs (Qz >0,01 > —%) or (Q2<0,Q1 > —Q2)
4 e
©eG (0,002 %)
where
0, = B; B B} B B2
31+A)(1+30) 3(1+AB(1+3A)| 41+ A)2(1+24)
B 2|Bz| =+ Bl Bl
31+ A)(1+3A) " 4(1+20)2
Q, = B 2|B|+B1 B
AT+ N21+20) 31 +A) (1434 2(1+2A)72

and
_ By
Q= 4(1+270)2

3. Conclusions

In the study of bi-univalent functions, estimates on the first two Taylor-Maclaurin co-
efficients are usually considered. In this paper, we introduce a new subclass of bi-univalent
functions associated with the Hohlov operator. Some properties such as the coefficient
bounds, Fekete-Szego inequality and the second Hankel determinant for functions in
M;’b;c()\, @) are derived. In particular, several previous results are generalized.
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