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Abstract: We find the sharp radius of uniformly convex γ-spirallikeness for Nν(z) = az2 J′′ν (z) +
bzJ′ν(z) + cJν(z) (here Jν(z) is the Bessel function of the first kind of order ν) with three different kinds
of normalizations of the function Nν(z). As an application, we derive sufficient conditions on the
parameters for the functions to be uniformly convex γ-spirallikeness and, consequently, generate
examples of uniform convex γ-spirallike via Nν(z). Results are well-supported by the relevant graphs
and tables.
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1. Introduction

Let A be the class of analytic functions normalized by the condition f (0) = 0 =
f ′(0)− 1 in the unit disk D := D1, where Dr := {z ∈ C : |z| < r}. Now let Γw be the image
of an arc Γz : z = z(t), (a ≤ t ≤ b) under the function w = f (z), and let w0 be a point not
on Γw. Let γ ∈

(
−π

2 , π
2
)
. The arc Γw is γ-spirallike with respect to w0 if

arg
z′(t) f ′(t)
f (z)− w0

lies between γ and γ + π. Further, an arc Γw is convex γ-spirallike if

arg
(

z′′(t)
z′(t)

+
z′(t) f ′′(z)

f ′(z)

)
lies between γ and γ + π. In the form of one variable, equivalently, we say that a function
f ∈ A is γ-spirallike of order α if and only if

Re
(

e−iγ z f ′(z)
f (z)

)
> α cos γ,

where γ ∈
(
−π

2 , π
2
)

and 0 ≤ α < 1. We denote the class of such functions by Sγ
p (α). In view

of the well-known Alexander’s relation, let CSγ
p(α) be the class of convex γ-spirallike

functions of order α, which is defined below:

Re
(

e−iγ
(

1 +
z f ′′(z)
f ′(z)

))
> α cos γ.

Spacek [1] introduced and studied the class Sγ
p (0). Each function in Sγ

p (α) is univalent in
D, but they are not necessarily starlike. Further, it is worth mentioning that, for general

Axioms 2023, 12, 468. https://doi.org/10.3390/axioms12050468 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12050468
https://doi.org/10.3390/axioms12050468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-7135-6504
https://orcid.org/0000-0002-4196-4127
https://doi.org/10.3390/axioms12050468
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12050468?type=check_update&version=1


Axioms 2023, 12, 468 2 of 11

values of γ(|γ| < π/2), a function in CSγ
p(0) need not be univalent in D. For example,

f (z) = i(1− z)i − i ∈ CSπ/4
p (0), but this is not univalent. In this context, see Figure 1.

Indeed, f ∈ CSγ
p(0) is univalent if 0 < cos γ < 1/2; see Robertson [2] and Pfaltzgraff [3].

Note that, for γ = 0, the classes Sγ
p (α) and CSγ

p(α) reduce to the classes of starlike and
convex functions of order α, given by

Re
(

z f ′(z)
f (z)

)
> α and Re

(
1 +

z f ′′(z)
f ′(z)

)
> α,

which we denote by S∗(α) and C(α), respectively.
In the above context and using the idea of uniformly starlike and uniformly convex

functions introduced and studied in [4–8], Ravichandran et al. [9] introduced the concept
of uniformly γ-spiral functions as described below:

Definition 1 ([9]). The function f is a uniformly convex γ-spiral function if the image of every
circular arc Γz with center at ζ lying in D is a convex γ-spiral.

We denote the class of such functions by UCSP(γ). These functions have an analytic
characterization (see [9]) as follows:

f ∈ UCSP(γ)⇔ Re
{

e−iγ
(

1 +
(z− ζ) f ′′(z)

f ′(z)

)}
≥ 0, z 6= ζ, z, ζ ∈ D.

Indeed, authors in [9] obtained the one-variable characterization as:

f ∈ UCSP(γ)⇔ Re
(

e−iγ
(

1 +
z f ′′(z)
f ′(z)

))
>

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣.
Special functions and their geometric properties frequently appear in univalent func-

tion theory. In the recent past, normalized function properties have been explored in terms
of radius problems [10–13]. In particular, for a normalized special function f , we define

S∗(α)− radius := sup
{

r ∈ R+ : Re
(

z f ′(z)
f (z)

)
> α, z ∈ Dr

}
and, similarly, one may define the C(α)-radius. In this direction, the S∗(α)-radius of Bessel
functions was obtained in [10], and Ramanujan-type entire functions were dealt with in [11].
A unified treatment of the radius of Ma–Minda classes [14] and more for some special
functions was studied in [13,15,16].

However, to the best of our knowledge, the UCSP(γ)-radius has not been studied to
date for the above-mentioned special functions. Therefore, we define the UCSP(γ)-radius
here:

Definition 2. Let f in A be a special function. Then, the radius of a uniformly convex γ-spirallike
is found as:

Rucs(γ; f ) = sup
{

r ∈ R+ : Re
(

e−iγ
(

1 +
z f ′′(z)
f ′(z)

))
>

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣, z ∈ Dr

}
.

In the present investigation, we consider our special normalized functions to be the
derivatives of Bessel functions. Recall that the Bessel function of the first kind of order ν is
defined by ([17], p. 217):

Jν(z) =
∞

∑
n=0

(−1)n

n!Γ(n + ν + 1)

( z
2

)2n+ν
(z ∈ C). (1)
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We know that all its zeros are real for ν > −1. Here we consider the general function

Nν(z) = az2 J′′ν (z) + bzJ′ν(z) + cJν(z),

which was studied by Mercer [18]. Here, as mentioned in [18], we take q = b − a and
(c = 0 and q 6= 0) or (c > 0 and q > 0). From (1), we now have the power series representation

Nν(z) =
∞

∑
n=0

Q(2n + ν)(−1)n

n!Γ(n + ν + 1)

( z
2

)2n+ν
(z ∈ C), (2)

where Q(ν) = aν(ν− 1) + bν + c (a, b, c ∈ R). There are three important reference works
dealing with the function Nν. Firstly, in Mercer’s paper [18], it is proved that the kth positive
zero of Nν increases with ν in ν > 0. Secondly, Ismail and Muldoon [19], under the
conditions a, b, c ∈ R such that c = 0 and b 6= a or c > 0 and b > a, showed the following
behavior of roots:

(i) For ν > 0, the zeros of Nν(z) are either real or purely imaginary.
(ii) For ν ≥ max{0, ν0}, where ν0 is the largest real root of the quadratic Q(ν) = aν(ν−

1) + bν + c, the the zeros of Nν(z) are real.
(iii) If ν > 0,

(
aν2 + (b− a)ν + c

)
�(b− a) > 0 and a�(b− a) < 0, the zeros of Nν(z) are

all real, except for a single pair that is conjugate and purely imaginary.

In 2016, Baricz et al. [20] obtained the sufficient and necessary conditions for the
starlikeness of a normalized form of Nν by using the results of Mercer [18], Ismail and
Muldoon [19], and Shah and Trimble [21].

Since the function Nν does not belong to A, to prove our results, we consider the
following normalizations of the function Nν as given by:

fν(z) =

[
2νΓ(ν + 1)

Q(ν)
Nν(z)

] 1
ν

, (3)

gν(z) =
2νΓ(ν + 1)z1−ν

Q(ν)
Nν(z), (4)

hν(z) =
2νΓ(ν + 1)z1− ν

2

Q(ν)
Nν(
√

z). (5)

In the rest of this paper, for the quadratic Q(ν) = aν(ν− 1) + bν+ c, we will always assume
that a, b, c ∈ R (c = 0 and a 6= b) or (c > 0 and a < b). Moreover, ν0 is the largest real
root of the quadratic Q(ν) defined according to the above conditions.

Since the functions Nν(z) and N′ν(z) are entire functions of order zero, then they have
infinitely many zeros. According to the Hadamard factorization theorem [22], we may
write

Nν(z) =
Q(ν)zν

2νΓ(ν + 1) ∏
n≥1

(
1− z2

λ2
ν,n

)
(6)

and

N′ν(z) =
Q(ν)zν−1ν

2νΓ(ν + 1) ∏
n≥1

(
1− z2

λ′2ν,n

)
, (7)

where λν,n and λ′ν,n denote the nth positive zero of Nν(z) and N′ν(z), respectively. For recent
updates on the geometric properties of Bessel functions, readers are urged to see [20,23–28]
and references therein.

In this paper, we find the radius of uniformly convex γ-spirallike for the functions
fν(z), gν(z), and hν(z) to be defined by (3)–(5) when ν ≥ max{0, ν0}. The key tools in their
proofs are special properties of the zeros of the function Nν and their derivatives.
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2. Zeros of Hyperbolic Polynomials and the Laguerre–Pólya Class of Entire Functions

In this section, we recall some necessary information about polynomials and entire
functions with real zeros. An algebraic polynomial is called hyperbolic if all its zeros are
real. We formulate the following specific statement that we shall need; see [25] for more
details. By definition, a real entire function ψ belongs to the Laguerre–Pólya class LP if it
can be represented in the form

ψ(x) = cxme−ax2+βx ∏
k≥1

(
1 +

x
xk

)
e−

x
xk ,

with c, β, xk ∈ R, a ≥ 0, m ∈ N∪ {0}, and ∑ x−2
k < ∞. Similarly, φ is said to be of type I in

the Laguerre–Pólya class, written ϕ ∈ LPI , if φ(x) or φ(−x) can be represented as

φ(x) = cxmeσx ∏
k≥1

(
1 +

x
xk

)
,

with c ∈ R, σ ≥ 0, m ∈ N∪ {0}, xk > 0, and ∑ x−1
k < ∞. The class LP is the complement of

the space of hyperbolic polynomials in the topology induced by the uniform convergence
on the compact sets of the complex plane, while LPI is the complement of the hyperbolic
polynomials whose zeros possess a preassigned constant sign. Given an entire function ϕ
with the Maclaurin expansion

ϕ(x) = ∑
k≥0

µk
xk

k!
,

its Jensen polynomials are defined by

Pm(ϕ; x) = Pm(x) =
m

∑
k=0

(
m
k

)
µkxk.

The next result of Jensen [29] is a well-known characterization of functions belonging
to LP .

Lemma 1. The function ϕ belongs to LP (LPI , respectively) if and only if all the polynomials
Pm(ϕ; x), m = 1, 2, . . . , are hyperbolic (hyperbolic with zeros of equal sign). Moreover, the sequence
Pm(ϕ; z�n) converges locally uniformly to ϕ(z).

The following result is a key tool in the proof of the main results.

Lemma 2 ([30]). The function z 7−→ Ψν(z) =
2νΓ(ν+1)

Q(ν)zν Nν(z) has infinitely many zeros, and all

of them are positive, if ν ≥ max{0, ν0}. Denoting by λν,n the nth positive zero of Ψν(z), under the
same conditions, the Weierstrassian decomposition

Ψν(z) = ∏
n≥1

(
1− z2

λ2
ν,n

)
is valid, and this product is uniformly convergent on compact subsets of the complex plane. Moreover,
if we denote by λ′ν,n the nth positive zero of Φ′ν(z), where Φν(z) = zνΨν(z), then the positive zeros
of Ψν(z) are interlaced with those of Φ′ν(z). In other words, the zeros satisfy the chain of inequalities

λ′ν,1 < λν,1 < λ′ν,2 < λν,2 < λ′ν,3 < λν,3 < · · · .

3. Main Results

Our principal result establishes the radius of UCSP(γ), see Table 1, and reads as
follows:



Axioms 2023, 12, 468 5 of 11

Theorem 1. Let γ ∈
(
−π

2 , π
2
)
. The following statements hold:

(a) If ν ≥ max{0, ν0}, ν 6= 0, then the radius of uniformly convex γ-spirallikeness of the function
fν is the smallest positive root of the equation

rN′′ν (r)
N′ν(r)

+

(
1
ν
− 1
)

rN′ν(r)
Nν(r)

=
cos γ

2
.

(b) If ν ≥ max{0, ν0}, then the radius of uniformly convex γ-spirallikeness of the function gν is
the smallest positive root of the equation

r2N′′ν (r) + (2− ν)rN′ν(r)
rN′ν(r) + (1− ν)Nν(r)

= ν− cos γ

2
.

(c) If ν ≥ max{0, ν0}, then the radius of uniformly convex γ-spirallikeness of the function hν is
the smallest positive root of the equation

√
rN′′ν (

√
r)

N′ν(
√

r)
+

√
rN′ν(

√
r)

Nν(
√

r)
= 1− cos γ.

Proof. We first prove part (a). From (3), we have

1 +
z f ′′ν (z)
f ′ν(z)

= 1 +
zN′′ν (z)
N′ν(z)

+

(
1
ν
− 1
)

zN′ν(z)
Nν(z)

,

and by means of (6) and (7), we obtain

1 +
z f ′′ν (z)
f ′ν(z)

= 1−
(

1
ν
− 1
)

∑
n≥1

2z2

λ2
ν,n − z2 − ∑

n≥1

2z2

λ′2ν,n − z2 .

For 1 ≥ ν > max{0, ν0}, we get

Re
(

e−iγ
(

1 +
z f ′′ν (z)
f ′ν(z)

))
= Re(e−iγ)− Re

(
e−iγ

(
∑
n≥1

2z2

λ′2ν,n − z2 +

(
1
ν
− 1
)

∑
n≥1

2z2

λ2
ν,n − z2

))

≥ cos γ−
(

1
ν
− 1
)

∑
n≥1

2r2

λ2
ν,n − r2 − ∑

n≥1

2r2

λ′2ν,n − r2

≥ cos γ +
r f ′′ν (r)
f ′ν(r)

(8)

where |z| = r. Moreover, observe that if we use the inequality ([31], Lemma 2.1)

µ Re
(

z
a− z

)
− Re

(
z

b− z

)
≥ µ

|z|
a− |z| −

|z|
b− |z| ,

where a > b > 0, µ ∈ [0, 1] and z ∈ C such that |z| < b, then we see that the inequality (8)
is also valid when ν ≥ 1. Here we have seen that the zeros of Nν and N′ν are interlacing
according to Lemma 1. In view of the Definition 2 and the above inequalities (8), let us
define Tfν

: (0, λ′ν,1)→ R, which is given by

Tfν
(r) = cos γ− 2

((
1
ν
− 1
)

∑
n≥1

2r2

λ2
ν,n − r2 + ∑

n≥1

2r2

λ′2ν,n − r2

)
.



Axioms 2023, 12, 468 6 of 11

Clearly, it can be seen that

Tfν
(0) = cos γ > 0 and lim

r↗λ′ν,1

Tfν
(r) = −∞

for all r ∈ (0, λ′ν,1). Moreover, for r ∈ (0, λ′ν,1) using Lemma 2,

T′fν
(r) = 2

{
−
(

1
ν
− 1
)

∑
n≥1

4rλ2
ν,n

(λ2
ν,n − r2)2 − ∑

n≥1

4rλ
′2
ν,n

(λ′2ν,n − r2)2

}
< 0.

Now let Rucs(γ; fν) be the smallest positive root of the equation T′fν
(r) = 0. Hence, the

inequality

Re
(

e−iγ
(

1 +
z f ′′(z)
f ′(z)

))
>

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣
holds whenever the following inequality is valid:

cos γ +
r f ′′ν (r)
f ′ν(r)

> − r f ′′ν (r)
f ′ν(r)

.

The above inequality may be equivalently read as Tfν
(r) > 0, which is valid for all |z| =

r < Rucs(γ; fν). The sharpness of the radius constant Rucs(γ; fν) can be observed, in view
of the maximum and minimum modulus principles by taking z = r > Rucs(γ; fν) such that
the following reverse inequality holds:

min
|z|=r

Re
(

e−iγ
(

1 +
z f ′′(z)
f ′(z)

))
= cos γ +

r f ′′ν (r)
f ′ν(r)

<max
|z|=r

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣
=− r f ′′ν (r)

f ′ν(r)
.

This completes the proof of part (a).
For the other parts, in view of Lemma 2, note that the functions gν and hν belong to

the Laguerre–Pólya class LP , which is closed under differentiation, that their derivatives
g′ν and h′ν also belong to LP , and that the zeros are real. Thus assuming δν,n and γν,n to be
the positive zeros of g′ν and h′ν, respectively, we have the following representations:

g′ν(z) = ∏
n≥1

(
1− z2

δ2
ν,n

)
and h′ν(z) = ∏

n≥1

(
1− z

γν,n

)
,

which yield

1 +
zg′′ν (z)
g′ν(z)

= 1− ∑
n≥1

2z2

δ2
ν,n − z2 and 1 +

zh′′ν (z)
h′ν(z)

= 1− ∑
n≥1

z
γν,n − z

.

Further, reasoning along the same lines as in part (a), the result follows at once.
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Table 1. Radii of uniformly convex π
3−spirallike for f1/2, g1/2, and h1/2 in Theorem 1.

b = 3 and c = 0 a = 1 and c = 0 a = 1 and b = 2

a = 2 a = 3 a = 4 b = 2 b = 3 b = 4 c = 2 c = 3 c = 4

fν 0.087 0.067 0.050 0.099 0.113 0.121 0.172 0.192 0.208

gν 0.122 0.094 0.0703 0.138 0.157 0.169 0.241 0.269 0.292

hν 0.040 0.024 0.013 0.052 0.068 0.078 0.162 0.204 0.240

Example 1. For the value ν = 1/2, we may express the function Nν(z) in terms of the elementary
trigonometric functions as follows:

N1/2(z) =
4(b− a)z cos z +

[
a
(
3− 4z2)− 2b + 4c

]
sin z

2
√

2π
√

z
.

Consequently, we get

f1/2(z) =
[
4(a− b)z cos z +

(
4az2 − 3a + 2b− 4c

)
sin z

]2
(a− 2b− 4c)2z

,

g1/2(z) =
4(a− b)z cos z +

(
4az2 − 3a + 2b− 4c

)
sin z

a− 2b− 4c
,

and

h1/2(z) =
4(a− b)z cos

√
z + (4az− 3a + 2b− 4c)

√
z sin

√
z

a− 2b− 4c
.

An immediate consequence of the proof of Theorem 1 is the following sufficient
conditions for functions to be uniformly convex γ-spirallike. In fact, Tables 2–4 explain the
sufficient conditions for uniformly convex γ-spirallikeness by giving the minimum value of
the ν with respect to the given equations in Corollary 1. Also, Figures 1–3 represent image
domains of the unit disk in view of Corollary 1.

Corollary 1. (Sufficient condition.) Let γ ∈
(
−π

2 , π
2
)

and ν ≥ max{0, ν0}. Then, the following
statements hold:

(a) Let ν 6= 0. The function fν is uniformly convex γ-spirallike if

cos γ

2
+

N′′ν (1)
N′ν(1)

+

(
1
ν
− 1
)

N′ν(1)
Nν(1)

> 0.

(b) The function gν is uniformly convex γ-spirallike if

cos γ

2
− ν +

N′′ν (1) + (2− ν)N′ν(1)
N′ν(1) + (1− ν)Nν(1)

> 0.

(c) The function hν is uniformly convex γ-spirallike if

N′′ν (1)
N′ν(1)

+
N′ν(1)
Nν(1)

> 1− cos γ.

In particular, γ = 0 provides sufficient conditions for functions to be uniformly convex.
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Table 2. Minimum value of ν for uniformly convex γ-spirallike of fν in Corollary 1.

b = 3 and c = 0 a = 1 and c = 0 a = 1 and b = 2

a = 2 a = 3 a = 4 b = 2 b = 3 b = 4 c = 2 c = 3 c = 4

γ = π/3 0.8921 3.6136 1.0762 0.8229 0.7432 0.6999 0.4802 0.3938 0.3395

γ = π/4 0.8910 3.2130 1.0770 0.8211 0.7408 0.6973 0.4748 0.3883 0.3342

γ = 0 0.8895 2.8790 1.0779 0.8188 0.7376 0.6937 0.4674 0.3806 0.3268

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

Figure 1. Image domains of the unit disk under f1 with a = 2, b = 3, and c = 0 for γ = π/3, and f0.5

with a = 1, b = 2, and c = 2 for γ = π/4 using Table 2.

Remark 1. In light of Spacek [1], here we see that f1 ∈ CSπ/3
p (0) for a = 2, b = 3, and c = 0,

and f0.5 ∈ CSπ/4
p (0) for a = 1, b = 2, and c = 2, but that these are not univalent in D, as shown

in Figure 1.

Table 3. Minimum value of ν for uniformly convex γ-spirallike of gν in Corollary 1.

b = 3 and c = 0 a = 1 and c = 0 a = 1 and b = 2

a = 2 a = 3 a = 4 b = 2 b = 3 b = 4 c = 2 c = 3 c = 4

γ = π/3 8.6224 8.6936 8.7315 8.5568 8.4404 8.3404 8.5008 8.4730 8.4455

γ = π/4 6.7337 6.8160 6.8604 6.6591 6.5297 6.4220 6.5785 6.5387 6.4993

γ = 0 5.3610 5.4540 5.5048 5.2783 5.1385 5.0258 5.1675 5.1128 5.0586

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2. Image domains of the unit disk under the function g9 with a = 2, b = 3, and c = 0 for
γ = π/3, and the function g7 with a = 1, b = 2, and c = 2 for γ = π/4 using Table 3.



Axioms 2023, 12, 468 9 of 11

Table 4. Minimum value of ν for uniformly convex γ-spirallike of hν in Corollary 1.

b = 3 and c = 0 a = 1 and c = 0 a = 1 and b = 2

a = 2 a = 3 a = 4 b = 2 b = 3 b = 4 c = 2 c = 3 c = 4

γ = π/3 1.0778 1.2061 1.2908 0.9895 0.8818 0.8210 0.5378 0.3990 0.3134

γ = π/4 1.0709 1.2003 1.2856 0.9818 0.8732 0.8119 0.5177 0.3741 0.2863

γ = 0 1.0614 1.1923 1.2786 0.9713 0.8614 0.7996 0.4890 0.3377 0.2463
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Figure 3. Image domains of the unit disk under function h3.5 with a = 2, b = 3, and c = 0 for
γ = π/3, and function h1 with a = 1, b = 2, and c = 2 for γ = π/4 using Table 4.

Remark 2. In Tables 2–4, the entries with the choice γ = 0 generate ample examples of uniformly
convex functions via the special function Nν(z) = az2 J′′ν (z) + bzJ′ν(z) + cJν(z), studied by
Mercer [18].

In Theorem 1, letting γ = 0, we obtain the radius of uniform convexity for the functions
fν(z), gν(z), and hν(z) as defined by (3), (4), and (5), respectively.

Corollary 2. (Radius of uniform convexity). Let ν ≥ max{0, ν0}. The following statements hold:

(a) If ν 6= 0, then the radius of uniform convexity of the function fν is the smallest positive root of
the equation

rN′′ν (r)
N′ν(r)

+

(
1
ν
− 1
)

rN′ν(r)
Nν(r)

=
1
2

.

(b) The radius of uniform convexity of the function gν is the smallest positive root of the equation

r2N′′ν (r) + (2− ν)rN′ν(r)
rN′ν(r) + (1− ν)Nν(r)

= ν− 1
2

.

(c) Then the radius of uniform convexity of the function hν is the smallest positive root of the
equation √

rN′′ν (
√

r)
N′ν(
√

r)
+

√
rN′ν(

√
r)

Nν(
√

r)
= 0.

Now, from Theorem 1, we deduce that:

Example 2. Let ν = 1/2, a = 1, b = 2, c = 0, and γ = π/3, see Figure 4. The following
statements are true.



Axioms 2023, 12, 468 10 of 11

(a) The radius of uniformly convex π
3−spirallikeness of the function f1/2 is the smallest positive

root of the equation

1+48t4+(−1+2t2−192t4+32t6) cos 2t+2t(−1−16t2+80t4) sin 2t
(−4t cos t+sin t+4t2 sin t)(2t(−1+4t2) cos t+(−1+20t2) sin t) + 1

4 = 0.

(b) The radius of uniformly convex π
3−spirallikeness of the function g1/2 is the smallest positive

root of the equation
t(20t cos t + (15− 4t2) sin t)
(−3 + 4t2) cos t + 12t sin t

+
1
4
= 0.

(c) The radius of uniformly convex π
3−spirallikeness of the function h1/2 is the smallest positive

root of the equation

(1 + 24t)
√

t cos
√

t + (−1 + (23− 4t)t) sin
√

t
2(−7 + 4t)

√
t cos

√
t + 2(1 + 16t) sin

√
t

+
1
4
= 0.
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Figure 4. Image domains of g1/2 for |z| < 0.1386 and h1/2 for |z| < 0.0524, respectively, with
a = 1, b = 2, and c = 0 for γ = π/3.

4. Conclusions

For the three different kinds of normalizations, namely (3), (4), and (5) of the function
Nν(z) = az2 J′′ν (z) + bzJ′ν(z) + cJν(z), where Jν(z) is the Bessel function of the first kind of
order ν, we obtained the sharp radius of uniformly γ-spirallikeness. As a byproduct, we
obtained the conditions on parameters for the normalized forms to be uniform γ-spirallike
functions. Thus, we created a category of examples of uniform γ-spirallike functions from
special functions.
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13. Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and Differential Subordination Results for Starlikeness Associated

with Limaçon Class. J. Funct. Spaces 2022. [CrossRef]
14. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on

Complex Analysis, Tianjin, China, 19–23 June 1992; Conf Proc Lecture Notes Anal I; Int Press: Cambridge, MA, USA, 1992;
pp. 157–169.

15. Gangania, K.; Kumar, S.S. S∗(ψ) and C(ψ)-radii for some special functions. Iran. J. Sci. Technol. Trans. A Sci. 2022, 46, 95966.
16. Gangania, K.; K; Kumar, S.S. Certain Radii problems for S∗(ψ) and Special functions. arXiv 2023, arXiv:2007.07816v2.
17. Oliver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge Univ. Press:

Cambridge, UK, 2010.
18. Mercer, A.C. The zeros of az2 J′′ν (z) + bzJ′ν(z) + cJν(z) as functions of order. Internat. J. Math. Math. Sci. 1992, 15, 319–322.

[CrossRef]
19. Ismail, M.E.H.; Muldoon, M.E. Bounds for the small real and purely imaginary zeros of Bessel and related functions. Meth. Appl.

Anal. 1995, 2, 1–21. [CrossRef]
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