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Abstract: The main goal of this work is to develop a novel boundary element method (BEM) model
for analyzing ultrasonic wave propagation in three-temperature anisotropic viscoelastic porous media.
Due to the problems of the strong nonlinearity of ultrasonic wave propagation in three-temperature
porous media, the analytical or numerical solutions to the problems under consideration are always
challenging, necessitating the development of new computational techniques. As a result, we use a
new BEM model to solve such problems. A time-stepping procedure based on the linear multistep
method is obtained after solving the discretized boundary integral equation with the quadrature rule.
The calculation of a double integral is required to obtain fundamental solutions, but this increases the
total BEM computation time. Our proposed BEM technique is used to solve the current problem and
improve the formulation efficiency. The numerical results are graphed to demonstrate the effects of
viscosity and anisotropy on the nonlinear ultrasonic stress waves in three-temperature porous media.
The validity, accuracy, and efficiency of the proposed methodology are demonstrated by comparing
the obtained results to a corresponding solution obtained from the finite difference method (FDM).

Keywords: boundary element model; ultrasonic wave propagation; three-temperature; anisotropic
viscoelastic porous media

MSC: 35Qxx; 65Zxx

1. Introduction

In the numerical study of laser-driven implosion in inertial confinement fusion exper-
iments, two-dimensional three-temperature radiation diffusion equations coupled with
photon, electron, and ion temperatures are extensively utilized. The equations describe
the evolution of electron, ion, and photon radiation in diverse materials. As a result, they
exhibit a high degree of nonlinearity and are based on complex computational domains.
Meshes are used for discretization in traditional numerical methods, such as the finite
difference method and the finite element method.

In recent years, many engineering studies have drawn the attention of researchers to
investigate the mechanical behavior of thermoelastic materials [1–6] due to the positive
results obtained in applied science, engineering, and technological applications such as bi-
ology, biophysics, biomechanics, geotechnical engineering, reservoir geomechanics, mining
and petroleum engineering, geothermal engineering, thermal insulation, and lightweight
structural design. Some researchers have investigated the effects of the magnetic field [7],
initial stress [8], rotation, and gravity [9] on the generalized thermo-viscoelastic diffusion
medium. In addition, the effects of initial stress and temperature dependence on the
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thermo-microstretch elastic solid have been investigated with a dual-phase-lag model [10].
Xu et al. [11] studied the effects of viscoelastic dampers with high levels of energy dissi-
pation based on an acrylate rubber matrix. As analytical solutions to the current situation
are extremely difficult to achieve, numerical methods have emerged as the primary tool
for resolving these problems, such as in Pei et al. [12], Ooi et al. [13], Zhou et al. [14],
Ng et al. [15], Majchrzak and Turchan [16], Bottauscio et al. [17], Deng and Liu [18], and
Partridge and Wrobel [19]. The concept of treating biological tissue as a porous medium has
been deemed more acceptable for incorporating blood flow through arteries implanted in
the tissue. One of the computational strategies used to solve the bioheat transfer problems
of biological tissues [20–22] is the boundary element method (BEM) [23–31]. For physical
and technological problems, Laplace-domain fundamental solutions are generally easier to
achieve than time-domain fundamental solutions [32,33]. As a result, because it requires the
Laplace-domain fundamental solutions of the problem’s governing equations, the CQBEM
is highly useful for problems that did not have time-domain fundamental solutions. As a
result, CQBEM broadens the spectrum of engineering problems that can be tackled using
the traditional time-domain BEM.

The primary goal of this paper is to present a new boundary element model for explain-
ing thermomechanical interactions in three-temperature anisotropic viscoelastic porous
media. The uncoupled governing equations are solved independently: the bioheat equation
is solved first using the GBEM based on LRBFCM to obtain the temperature distribution,
and then the mechanical equation is solved using the CQBEM to obtain the displacements
and stresses. The resulting linear systems have been solved by a communication-avoiding
Arnoldi (CA-Arnoldi) preconditioner, which reduces the number of iterations and the total
CPU time. The numerical results demonstrate the validity, efficiency, and accuracy of the
proposed model.

2. Formulation of the Problem

In the Cartesian system (x, y, z), we consider a region

Ω =

{
0 < x < α,, 0 < y < β,0 < z < γ,

}
with a boundary Γ occupied by an anisotropic

viscoelastic porous media, as shown in Figure 1.

1 

 

 

Figure 1. Computational domain of the current problem.

According to Biot’s model [34] and Darcy’s law [35], the thermo-poroelastic governing
equations can be expressed as:(

∇Tσ
)T

+ F = ρ
..
u + φρ f

( ..
u f −

..
u
)

(1)

.
ζ +∇Tq = 0 (2)

σ =
(

Cajlg(τ) χ tr ε− Ap
)

I−B θ (3)
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ε =
1
2
(∇uT + (∇uT)

T
) (4)

ζ = A tr ε +
φ2

R
p (5)

q = −K
(
∇ p + ρ f

..
u +

ρe + φρ f

φ

( ..
u f −

..
u
))

(6)

On the basis of Bonnet [36], the governing equations can be written as follows [37]:

B̂x̃ûg(x̃) = 0 for x̃ ∈ Ω
ûg(x) = ĝD for x ∈ ΓD
t̂g
(x) = ĝN for x ∈ ΓN

 (7)

in which the operator B̂x̃ and the tractions t̂g are defined as:

B̂x̃ =

Be
x̃ + s2

(
ρ− βρ f

)
I (α− β)∇x̃ −B∇x̃

s(α− β)∇T
x̃ − β

sρ f
∆x̃ +

sφ2

R 0

,

t̂g
(x) =

[
Te

x −αnx 0
sβnT

x
β

sρ f
nT

x∇x 0

]û(x)
p̂(x)
θ(x)

, β =
φ2sKρ f

φ2+sK(ρe+φρ f )

(8)

According to Fahmy [30], the thermomechanical interactions can be found by treating
the soft tissue as a thermo-poroelastic medium and implementing the BEM for solving the
governing Equations (1) and (7).

The three-temperature radiative diffusion equations are as follows:

Cve
∂θe(r, τ)

∂τ
− 1

ρ
∇[Ke ∇θe(r, τ)] = −Wei (θe − θi)−Wer (θe − θr) (9a)

Cvi
∂θi(r, τ)

∂τ
− 1

ρ
∇[Ki ∇θi(r, τ)] = Wei (θe − θi) (9b)

Cvr
∂θr(r, τ)

∂τ
− 1

ρ
∇[Kr ∇θr(r, τ)] = Wer (θe − θr) (9c)

in which

Cvα =


Cvα = Ce α = e
Cvα = Ci α = i
Cvα = CrT3

r α = r
and Kα =


Ae T5/2

e α = e
Ai T5/2

i α = i
Ar T3+B

r α = r

where e, i, and r denote the electron, ion, and phonon, respectively.

3. Boundary Element Implementation for the Temperature Field

The two-dimensional (2D) three-temperature (3T) radiation diffusion
Equations (9a)–(9c) can be written as:

∇[Kα ∇θα(r, τ)] +W(r, τ) = cαρδ1
∂θα(r, τ)

∂τ
+ Q(r, τ) (10)

in which
Q(r, τ) =

1− R
x0

e(−
ra
r0
)J(τ), J(τ) =

J0 τ

τ2
1

e−
τ
τ1 , a = 1, 2, 3.
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where

W(r, τ) =


−ρ Wei (θe − θi) –ρ Wer (θe − θr), α = e, δ1 = 1

ρ Wei (θe − θi), α = i, δ1 = 1
ρ Wer (θe − θr), α = r, δ1 = T3

p

The total energy per unit mass is as follows:

P = Pe + Pi + Pr, Pe = ceθe, Pi = ciθi, Pr =
1
4

crθ4
r (11)

The conditions under consideration can be summarized as follows:

θα(x, y, 0) = θ0
α(x, y) = g1(x, τ) (12)

Kα
∂θα

∂n

∣∣∣∣
Γ1

= 0, α = e, i, θp
∣∣
Γ1

= g2(x, τ) (13)

Kα
∂θα

∂n

∣∣∣∣
Γ2

= 0, α = e, i, r (14)

Using the fundamental solution to the following differential equation:

D∇2θα +
∂θ∗α
∂n

= −δ(r− pi)δ(τ − r), D =
Kα

ρc
(15)

The dual-reciprocity boundary integral equation corresponding to (10) can be ex-
pressed, as in Fahmy [17], as follows:

θα =
D
Kα

∫ τ

O

∫
S
[θαq∗ − θ∗αq]dS dτ +

D
Kα

∫ τ

O

∫
R

bθ∗αdR dτ +
∫

R
θi

αθ∗α

∣∣∣
τ=0

dR (16)

which can be expressed as follows:

Cθα =
∫

S
[θαq∗ − θ∗αq] dS−

∫
R

Kα

D
∂θ∗α
∂τ

θα dR (17)

We assume that the temperature derivative in (17) is approximated as:

∂θα

∂τ
∼=

N

∑
j=1

f j(r)jaj(τ) (18)

Now, we consider:
∇2θ̂

j
α = f j (19)

Thus, from Equation (17), we obtain:

C θ =
∫

S
[θαq∗ − θ∗αq] dS +

N

∑
j=1

aj(τ)D−1
(

Cθ̂
j
α −

∫
S

[
θ

j
αq∗ − q̂jθ∗α

]
dS
)

(20)

where

q̂j = −Kα
∂θ̂

j
α

∂n
(21)

and

aj(τ) =
N

∑
i=1

f−1
ji

∂θ(ri, τ)

∂τ
(22)

where f−1
ji are defined as:

{F}ji = f j(ri) (23)
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By using Equations (20) and (22), we obtain:

C
.
θα + H θα = G Q (24)

where
C = −

[
H θ̂α − G Q̂

]
F−1D−1 (25)

with {
θ̂
}

ij = θ̂ j(xi) (26)

{
Q̂
}

ij = q̂j(xi) (27)

Now, we introduce the following functions:

θα = (1− θ) θm
α + θ θm+1

α (28)

q = (1− θ)qm + θ qm+1 (29)

where 0 ≤ θ = τ−τm

∆τm ≤ 1, ∆τm = τm+1 − τm.
By differentiating (28), we obtain:

.
θα =

dθα

dθ
dθ
dτ

=
θm+1

α − θm
α

∆τm (30)

Substitution of Equations (31)–(33) into Equation (27), yields:(
C

∆τm + θH
)

θm+1
α − θGQm+1 =

(
C

∆τm − (1− θ)H
)

θm
α + (1− θ)GQm (31)

which can be written as:
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푎 (휏) = 푓
휕휃(푟 , 휏)

휕휏
 (22)

where 푓  are defined as: 

{퐹} = 푓 (푟 ) (23)

By using Equations (20) and (22), we obtain: 

퐶 휃̇ + 퐻 휃 = 퐺 푄 (24)

where 

퐶 = − 퐻 휃  − 퐺 푄 퐹 퐷  (25)

with 

휃 = 휃 (푥 ) (26)

푄 = 푞 (푥 ) (27)

Now, we introduce the following functions: 

휃 = (1 − 훉) 휃 + 훉 휃  (28)

푞 = (1 − 훉)푞 + 훉 푞  (29)

where 0 ≤ 훉 =
∆

 ≤ 1, ∆휏 = 휏 − 휏 . 
By differentiating (28), we obtain: 

휃̇ =
푑휃
푑훉

푑훉
푑휏

=
휃 − 휃

∆휏
 (30)

Substitution of Equations (31)–(33) into Equation (27), yields: 

퐶
∆휏

+ 훉퐻 휃 − 훉퐺푄 =
퐶

∆휏
− (1 − 훉)퐻 휃 + (1 − 훉)퐺푄  (31)

which can be wri en as: 

핒Χ = 핓 (32)

To solve the resulting linear algebraic systems, the symmetric successive over-relax-
ation (SSOR) method without matrix inversion [38] is efficiently implemented. 

4. Boundary Element Implementation for the Poroelastic Fields 
The representation formula for problem (7) is as follows: 

퐮 (퐱) = 푉푡̂ (퐱) − 퐾퐮 (퐱) for 퐱 ∈ 휴 (33)

where the integral operators are: 

푉퐭̂ (퐱) = 퐔 (퐲 − 퐱)푡̂ (퐲)
.

푑푠퐲 (34)

퐾퐮 (퐱) = 푇퐲퐔
.

(퐲 − 퐱)퐮 (퐲) 푑푠퐲 (35)

X =
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To solve the resulting linear algebraic systems, the symmetric successive over-relaxation
(SSOR) method without matrix inversion [38] is efficiently implemented.

4. Boundary Element Implementation for the Poroelastic Fields

The representation formula for problem (7) is as follows:

^
u

g(~
x
)
= (V̂t̂g)Ω

(~
x
)
− (K̂

^
u

g
)Ω

(~
x
)

for
~
x ∈ Ω (33)

where the integral operators are:

(V̂
^
t

g
)Ω

(~
x
)
=

.∫
Γ

^
U

T(
y− ~

x
)

t̂g(y)dsy (34)

(K̂
^
u

g
)Ω

(~
x
)
=

.∫
Γ

(T̂y
^
U)

T(
y− ~

x
)^

u
g
(y) dsy (35)

In the Laplace domain, the fundamental solution and associated traction are denoted
as [9]:

^
U(r) =

 ^
U

s

(r)
^
U

f

(r) 0

(
^
P

s

)
T

(r) P̂ f (r) 0

, T̂y =

[
Te

y sαny 0
−βnT

y
β

sρ f nT
y∇ 0

]
with r := |y− x| (36)
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The fundamental solution can be expressed as [35]:

^
U

s

(r) =
1

4πr
(
ρ− βρ f

)[R1

(
k2

4 − k2
2
)(

k2
1 − k2

2
) e−k1r −R2

(
k2

4 − k2
1
)(

k2
1 − k2

2
) e−k2r +

(
Ik2

3 −R3

)
e−k3r

]
(37)

where

Rj =
3∇yr∇T

y r− I
r2 + k j

3∇yr∇T
y r− I

r
+ k2

j∇yr∇T
y r (38)

Equation (37) can be expressed as:

^
U

s

(r) =
1

4πµr(λ + 2µ)

[
(λ + µ)∇yr∇T

y r + I(λ + 3µ)
]
+ O

(
r0
)

(39)

The fundamental solution can be expressed as:

^
U

s

(r) =
^
U

s

s(r) +
^
U

s

r(r)

= 1
µ

[
I∆y − λ+µ

λ+2µ∇y∇T
y

]
∆y

^
x(r)

− 1
µ

[((
k2

1 + k2
2
)
∆y − k2

1k2
2
)

I −
(

k2
1 + k2

2 − k2
4 −

k2
1k2

2
k2

3

)
∇y∇T

y

]
^
x(r)

(40)

in which

^
x(r) = 1

4πr

[
e−k1r

(k2
2−k2

1)(k2
3−k2

1)
+ e−k2r

(k2
2−k2

1)(k2
2−k2

3)
+ e−k3r

(k2
1−k2

3)(k2
2−k2

3)

]
= − 1

(k2
1−k2

2)(k2
1−k2

3)(k2
3−k2

2)
+ O

(
r2) (41)

Furthermore, the remaining components of the fundamental solution might be stated as:

^
U

f

(r) =
ρ f (α− β)∇yr

4πrβ(λ + 2µ)
(
k2

1 − k2
2
)[(k1 +

1
r

)
e−k1r −

(
k2 +

1
r

)
e−k2r

]
= O

(
r0
)

(42)

^
P

s

(r) =

^
U

f

(r)
s

= O
(

r0
)

(43)

P̂ f (r) =
sρ f

4πrβ
(
k2

1 − k2
2
) [(k2

1 − k2
4

)
e−k1r −

(
k2

2 − k2
4

)
e−k2r

]
=

sρ f

4πrβ
+ O

(
r0
)

(44)

Now, we apply the following limiting
~
x ∈ Ω→ x ∈ Γ to (34) to obtain:

lim
~
x∈Ω→x∈Γ

(
V̂

^
t

g)
Ω

(~
x
)
=

(
V̂

^
x

g)
(x) :=

.∫
Γ

^
U

T

(y− x)
^
t

g
(y)dsy (45)

In addition, we apply the following limiting method to (35) to obtain [39]:

lim
x̃∈Ω→x∈Γ

(
K̂

^
u

g)
Ω

(~
x
)
= [−I(x) + C(x)]

^
u

g
(x) +

(
K̂

^
u

g)
(x) (46)

in which

C(x) = lim
ε→0

.∫
y∈Ω:|y−x|=ε

(
T̂y

^
U
)T

(y− x)dsy (47)
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and (
K̂

^
u

g)
(x) = lim

ε→0

.∫
|y−x|≥ε

(
T̂y

^
U
)T

(y− x)
^
u

g
(y)dsy (48)

By using Equations (45)–(48), the boundary integral equation in Laplace domain can
be expressed as:

C(x)
^
u

g
(x) =

(
V̂

^
t

g)
(x)−

(
K̂

^
u

g)
(x) (49)

The poro-elastodynamic boundary integral equation can be expressed using the in-
verse Laplace transformation as:

C(x)ug(x, t) = (V ∗ tg)(x, t)− (Kug)(x, t) (50)

The fundamental solution is as follows [37]:

(
T̂y

^
U
)T

=


 T̂e

y sαny

−βnT
y

β

sρ
f
0

nT
y∇y




^
U

s ^
U

f

(
^
P

s)T

P̂ f




T

=


^
T

s ^
T

f(
^
Q

s
)T

Q̂ f


T

(51)

The Stokes theorem states that the differentiable vector field a(y), (y ∈ Γ) can be
represented as:

.∫
Γ

(
∇y × a, ny

)
dsy = −

,∫
∂Γ

(a, v)dγy = −
,∫

φ

(a, v)dγy = 0 (52)

where .∫
Γ

(
ny ×∇y, a

)
dsy = 0 (53)

We can use (53) to obtain the following formula:

.∫
Γ

(
My a

)
dsy = 0, My =

(
∇y∇T

y

)T
−∇y∇T

y , a = vu (54)

According to [40], we obtain

.∫
Γ

(
My v

)
udsy = −

,∫
Γ

v
(

My u
)
dsy (55)

.∫
Γ

(
My v

)Tudsy =

.∫
Γ

vT(My u
)
dsy (56)

By using (40) and (51), we obtain:(
^
T

s)T

=

(
Te

y

(
^
U

s

sing +
^
U

s

reg

))T

+ sαP̂snT
y =

(
Te

y
^
U

s

sing

)T

+ O
(

r0
)

(57)

According to [37], we obtain:(
^
T

s)T

= (λ + 2µ)ny∇T
y

^
U

s

sing − µ

(
ny ×

(
∇y ×

^
U

s

sing

))
+ 2µMy

^
U

s

sing + o
(

r0
)

(58)
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which can be expressed using (40) as:(
^
T

s)T

= My∆2
yX̂ + I

(
nT∇y

)
∆2

yX̂ + 2µ

(
My

^
U

s

sing

)T

+ o
(

r0
)

(59)

Using (35) and (59), we obtain:

(
k̂

^
u
)s

Ω

(~
x
)
=
∫ .

Γ

[(
My∆2

yX̂
)^

u +
(

I
(

nT∇y

)
∆2

yX̂
)^

u + 2µ

(
My

^
U

s

sing

)T
^
u + O

(
r0
)^

u

]
dsy (60)

Based on [39], we obtain:(
K̂

^
u
)s

Ω

(~
x
)
=

.∫
Γ

[
−∆2

yX̂
(

My
^
u
)
+
(

I
(

nT∇y

)
∆2

y x̂
)^

u + 2µÛs
s

(
My

^
u
)
+ O

(
r0
)^

u
]

dsy (61)

The second term of the integral (61) can be expressed as:

(
nT∇y

)
∆2

y x̂(r) =
nT∇yr

4πr2 + O
(

r0
)

(62)

where

Cs(x) = I(x) c (x) with c(x) =
φ(x)
4π

(63)

Based on [37], the following limit may be rewritten as:

lim
Ω3x̃→x∈Γ

(
K̂

^
u
)s

Ω

(~
x
)
= −I(x)[−1 + c(x)]

^
u(x) +

(
K̂

^
u
)s

(x) (64)

By augmenting Ûs
s to Ûs and employing (56) we can write (61) as:(

K̂
^
u
)s

Ω

(~
x
)
=

.∫
Γ

−∆2
y

^
x
(

My
^
u
)
+

(
I
(

nT∇y

)
∆2

y
^
x
)

^
u + 2µÛs

(
My

^
u
)
+ O

(
r0
)^

udsy (65)

By dividing the time interval [0, T], we obtain the following integral:

( f ∗ g)(τ) =
t∫

0

f (τ − t)g(t)dt for τ ∈ [0, T] (66)

in which

( f ∗ g)(τn) ≈
n

∑
k=0

ω∆τ
n−k

(
f̂
)

g(τk) (67)

According to the Lubich formula [41,42], the integration weights ωn can be determined
as:

ω∆τ
n

(
f̂
)

∆
1

2πi

∫
|z|=R

f̂
(

γ(z)
∆τ

)
z−(n+1)dz (68)

Using z = Re−iϕ, the integral in Equation (68) may be approximated as:

ω∆τ
n

(
f̂
)
≈ R−1

L + 1

L

∑
`=o

f̂ (s`)ζ `n with ζ = e
2πi
L+1 and s` =

γ
(

Rζ−`
)

∆τ
(69)
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By plugging Equation (69) into Equation (67), we obtain:

( f ∗ g)(τn) ≈
N

∑
k=0

R−(n−k)

N + 1

N

∑
`=0

f̂ (s`)ζ`(n−k)g(τk) ≈
R−n

N + 1

N

∑
`=0

f̂ (s`)ĝ(s`)ζ`n (70)

with

ĝ(s`) =
N

∑
k=0

Rkg(τk)ζ
−`k. (71)

Based on [39], we obtain:

C(x)ug(x, τ) = (v ∗ tg)(x, τ)− (k ∗ ug)(x, τ) (72)

which can be expressed in Laplace domain as follows:

C(x)
^
u

g
(x, s`) =

(
v̂

^
t

g)
(x, s`)−

(
k̂

^
u

g)
(x, s`), (73)

The discretization of the boundary Γ = ∂Ω into Ne boundary elements τe leads to:

Γ ≈ Γh =
Ne∪

e=1
τe (74)

Now, we use i continuous functions ϕα
i [k] and ג discontinuous functions ψ

β
j [k] to

define the following subspaces:

Sh[k](ΓN, h) := span{ϕα
i [k]}

i
i=1, α ≥ 1 (75)

Sh[k](ΓD, h) := span
{

ψ
β
j [k]

ג{
j=1

, β ≥ 0 (76)

By using (75) and (76), the unknown datum can be approximated as follows:

^
u

g
[k](x) ≈ ^

u
g

h[k](x) =
I

∑
i=1

^
u

g

h,i[k]ϕ
α
i [k](x) ∈ Sh[k](ΓN,h), (77)

^
t

g
[k](x) ≈

^
t

g

h[k](x) =
J

∑
j=1

^
t

g

h,j[k]ψ
β
j [k](x) ∈ Sh[k](ΓD,h), (78)

Thus, we obtain:

[
V̂DD
V̂ND

−K̂DN
−
(
C + K̂NN

)]
`

^
t

g

D,h
^
u

g

N,h


`

=

[
−V̂DN
−V̂NN

(
C + K̂DD

)
K̂ND

]
`

[
ĝg

N,h
ĝg

D,h

]
`

` = 0 . . . N (79)

where
ŜNN := V̂NDV̂−1

DDK̂DN −
(
C + K̂NN

)
(80)

5. Numerical Results and Discussion

In the context of analyzing the BEM model results for solving ultrasonic wave propa-
gation problems in three-temperature anisotropic viscoelastic porous media, as shown in
Figure 2, the BEM discretization was carried out with 42 boundary elements and 68 inter-
nal points.
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Figure 2. BEM model of the current problem.

To demonstrate the numerical results obtained by the proposed technique, the follow-
ing physical parameters were used:

The elasticity tensor:

Cablg =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66


C11 =

E2v2
0−EE0

(1+v)(2Ev2
0+E0(v−1))

, C12 = − E2v2
0+EE0v

(1+v)(2Ev2
0+E0(v−1))

C13 = − EE0v
2Ev2

0+E0(v−1)
, C33 = − E2

0(v−1)
2Ev2

0+E0(v−1)

C44 = µ0, C66 = 1
2 (C11 − C12)

(81)

For the anisotropic viscoelastic porous media, we considered the following physical
parameters [43,44]

v = 0.95, v0 = 0.49, µ0 = 20.98 GPa, E = 22 kPa, E0 = 447 kPa (82)

and therefore
k1 = 1243 kPa, k2 = 442 kPa (83)

and

ρs = 1600 kg/m3, ρ f = 1113 kg/m3, p = 25 MPa, φ = 0.15 and
Q
R

= 0.65 (84)

Figures 3–5 show the distributions of the nonlinear thermal stress σ11, σ12, and σ22
waves along the x1-axis for the electron, ion, and phonon and the total 3T with and without
viscosity effect. Figure 3 shows the distribution of the nonlinear thermal stress σ11 waves
for the electron (θ = θe), ion (θ = θi), phonon (θ = θr), and total 3T (θ = θe + θi + θr)
with and without the effect of viscosity. Figure 4 shows the distribution of the nonlinear
thermal stress σ12 waves for the electron (θ = θe), ion (θ = θi), phonon (θ = θr), and total
(θ = θe + θi + θr) with and without the effect of viscosity. Figure 5 shows the distribution
of the nonlinear thermal stress σ22 waves for the electron (θ = θe), ion (θ = θi), phonon
(θ = θr), and the total (θ = θe + θi + θr) with and without the effect of viscosity.
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Figures 6–8 show the distributions of the nonlinear thermal stress σ11, σ12, and σ22
waves along the x1-axis for the electron, ion, phonon, and the total 3T for isotropic and
anisotropic viscoelastic porous structures. Figure 6 shows the distribution of the non-
linear thermal stress σ11 waves for the electron (θ = θe), ion (θ = θi), phonon (θ = θr),
and total (θ = θe + θi + θr) for isotropic and anisotropic viscoelastic porous structures.
Figure 7 shows the distribution of the nonlinear thermal stress σ12 waves for the electron
(θ = θe), ion (θ = θi), phonon (θ = θr), and total (θ = θe + θi + θr) for isotropic and
anisotropic viscoelastic porous structures. Figure 8 shows the distribution of the nonlinear
thermal stress σ22 waves for the electron (θ = θe), ion (θ = θi), phonon (θ = θr), and total
(θ = θe + θi + θr) for isotropic and anisotropic viscoelastic porous structures.

The validity of the outcomes of the suggested technique was not supported by any
published works. On the other hand, some works in the literature can be seen as special
cases of the considered general work.

Figures 9–11 show the distributions of the nonlinear thermal stress σ11, σ12, and σ22
waves along the x1-axis for the electron, ion, phonon, and the total 3T using the finite
difference method (FDM) [44] and the current BEM. Figure 9 shows the distribution of
the nonlinear thermal stress σ11 waves for the electron (θ = θe), ion (θ = θi), phonon
(θ = θr), and the total (θ = θe + θi + θr) for the FDM and the BEM. Figure 10 shows the
distribution of the nonlinear thermal stress σ12 waves for the electron (θ = θe), ion (θ = θi),
phonon (θ = θr), and the total (θ = θe + θi + θr) for the FDM and BEM. Figure 11 shows
the distribution of the nonlinear thermal stress σ22 waves for the electron (θ = θe), ion
(θ = θi), phonon (θ = θr), and the total (θ = θe + θi + θr) for FDM and BEM. These figures
clearly show that the BEM and FDM are in excellent agreement, supporting the validity
and precision of our proposed BEM approach.
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Table 1 shows a comparison of required computer resources for the current BEM results
and the FDM results of Hu et al. [45] for the modeling of ultrasonic wave propagation
problems in three-temperature anisotropic viscoelastic porous media.

Table 1. A comparison of the required computer resources for the modeling of ultrasonic wave
propagation problems in three-temperature anisotropic viscoelastic porous media.

BEM FDM

Number of nodes 66 40,000

Number of elements 36 16,000

CPU time (min) 2 160

Memory (MByte) 1 140

Disk space (MByte) 0 200

Accuracy of results (%) 1 2.0

6. Conclusions

The main goal of this article is to develop a novel boundary element model for describ-
ing ultrasonic thermomechanical interactions in three-temperature anisotropic viscoelastic
porous media. Analytical or numerical solutions are always difficult due to the strong
nonlinearity of ultrasonic wave propagation problems in three-temperature porous media,
necessitating the development of new computational techniques. As a result, we employ a
new BEM model to address such problems. The considered BEM model has low RAM and
CPU usage due to its advantages, such as dealing with more complex shapes of porous
media and not requiring the discretization of the internal domain. As a result, the consid-
ered BEM is a powerful and adaptable tool for modeling ultrasonic wave propagation in
three-temperature anisotropic viscoelastic porous media. To obtain fundamental solutions,
a double integral must be calculated, but this increases the total BEM computation time.
To solve the current problem and improve the formulation efficiency, we propose a BEM
technique. The numerical results are graphed to show the effects of viscosity and anisotropy
on nonlinear ultrasonic stress waves in porous media at three temperatures. The proposed
methodology’s validity, accuracy, and efficiency were demonstrated by comparing the
obtained results to the corresponding solution obtained using the finite difference method
(FDM). The findings of this paper contribute to the development of mathematical models
that can be applied in biology, bioengineering and medicine.
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Nomenclature

∗ Convolution with respect to time
Γ Boundary
ΓD Dirichlet boundary
ΓN Neumann boundary
δij Kronecker delta (i, j = 1, 2)
ε Linear strain tensor
θ Temperature field
µ0 Shear moduli
χ Viscoelastic constant
ζ Fluid volume variation
ρ = ρe(1− φ) + φρ f Bulk density
ρe Elastic density
ρ f Fluid density
σ Total stress tensor
τ Time
τ1 Laser pulse time characteristic
φ = V f

V Porosity
Ω Region
A = φ(1 + Q/R) Biot’s coefficient
B Stress-temperature coefficients
Be

x̃ Linear elastostatics operator
c Specific heat
Cajlg Constant elastic moduli
Ei Young’s moduli
F Body forces
Gij Shear moduli
ĝD Dirichlet datum
ĝN Neumann datum
J Non-Gaussian temporal profile
J0 Total energy intensity
kij Thermal conductivity tensor
Kα Heat conductive coefficients
k Poroelastic freedom degrees
n Outward unit normal vector
p Fluid pressure
pi Singular points
q Specific flux of the fluid
R = |y− x| Euclidean distance
Q Heat source intensity
R Irradiated surface absorptivity
^
t

g
Generalized tractions

Tr Trace of a matrix
^
U

s

r(r) Regular displacement
^
U

s

s(r) Singular displacement
u Displacement
u f Fluid displacement
ν Poisson’s ratio
Wei& Wep Energy exchanging coefficients
Wei = ρAeiθ

−2/3
e

Wep = ρAepθ−1/2
e

x, y Space coordinates
x Source point
y Considered point
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