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Abstract: Matrix representations for a class of Sturm-Liouville problems with eigenparameters
contained in the boundary and interface conditions were studied. Given any matrix eigenvalue
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1. Introduction

Recently, Sturm-Liouville problems (SLPs) with discontinuity inside intervals have
attracted significant attention from scholars due to their wide application in various fields.
For example, one application involves a string loaded with point masses [1-5]. Generally
speaking, the eigenparameter only appears in the equation, but in many actual phenomena,
it is necessary for the eigenparameter to appear in the boundary conditions, such as heat
conduction at the liquid-solid interface [6], and so on. Due to its physical significance, many
scholars have studied the problem of boundary conditions containing a spectral parame-
ter [7-14]. In recent decades, more researchers have studied eigenparameter-dependent
SLPs with discontinuity, including the asymptotic behavior of eigenvalues, the inverse
spectral theory, the finite spectrum, the oscillation of eigenfunctions, etc., see [9,10,15-19].

Regular SLPs have an infinite countable number of eigenvalues that are bounded
below and unbounded above. However, Atkinson, in his well-celebrated book [20], stated
that finite eigenvalues may exist under certain conditions. Kong and Zettl [18] solved this
problem by constructing a class of regular SLPs, which has exactly 9t eigenvalues for every
positive integer 91; they obtained the corresponding matrix representations in [19]. This
special problem is called Atkinson-type SLPs (ASLPs). Ao et al. generalized this problem
to various differential operators, for example, ASLPs with interface conditions, ASLPs with
eigenparameters contained in boundary conditions, higher-order differential operators,
etc. [21-26]. They discussed the existence of a finite spectrum and gave the corresponding
matrix representation. In particular, Ao et al. proved that ASLPs with interface conditions
have, at most, M + N + 2 eigenvalues and gave the corresponding matrix representation
in [23]. Moreover, the authors generalized the problem to eigenparameter-dependent
ASLPs [24].

In recent years, SLPs with interface conditions dependent on parameters have also
captured the attention of researchers, see [2-4] and references therein. In reference [2],
the author obtained the operator-theoretic formulation. The asymptotic properties of
eigenvalues were given for SLPs with interface conditions that were rationally dependent
on the parameters in [3]. In work by Mukhtarov et al. [4], Green’s function was provided
for eigenparameter-dependent SLPs with interface conditions.

In a recent paper, Ao et al. proved that SLPs with interface conditions dependent on
40/). the eigenparameter still have a finite spectrum [27]. Here, the following question arises:
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When the eigenparameter appears in both the boundary and interface conditions, does it
affect the number in the spectrum? In this paper, we will solve this problem. We study an
SLP in which an eigenparameter is contained in both the boundary and interface conditions,
regardless of whether it is self-adjoint or non-self-adjoint. We prove that the problem has, at
most, M + N + 5 eigenvalues, which is different from the results in [27], where the number
of eigenvalues is, at most, M + N + 4. Moreover, we provide an example to illustrate our
conclusion (as it turns out, it affects the number of eigenvalues). The basic method we used
in this paper is a factorization of the characteristic function.

The rest of this paper is organized as follows: Some preliminaries are given in Section 2.
In Section 3, we show that the number of eigenvalues of the considered problem is finite.
In Section 4, the corresponding matrix representation is given, and for a given specific type
of matrix eigenvalue problem, we construct a class of SLPs with the same boundary and
interface conditions, ensuring that they have the same eigenvalues.

2. Preliminaries

In this work, we investigate the SL equation

@O f (1)) +pO)f(t) =uw(t)f(t), t€T=[c,n) U(,d], —0<c <d<eo (1)

with boundary conditions at the endpoints ¢ and d, as follows

G1f(c) +&a(af")(c) + 3 f(d) + Ealqf)(d) = pulE1f(c) + Galaf) (c) + Gaf (d) + Galaf ) (d)], 2)

T f(e) +n(qaf')(c) + wf(d) +(qf)(d) = plrf(c) + laf) () + Bf(d) +w(af)(d)], ®)
and interface conditions

f(n+0) = (erpt + 1) f(17 = 0) + (e2p + e3)(qf") (17 — 0), @

(qf) (1 +0) = (eapr +¢5)f (17— 0) + (eapt +¢3)(qf") (17 — 0), ®)

where f(7 4+ 0) and f (57 — 0) denote the right and left limits of f(t) at #, respectively. u € C
is a spectral parameter; ¢, 7j, ¢;, &, T/, ¢, € R (i =1,4), and

rank(§1 G2 G3 @4)_2, rank(?, © T T‘f)—Z,
1

¢ & & G TGy
! / ! ! (6)
rank (gl 62 63 §4> =2, rank(gl, é'% {:?,’ ‘}) =2
T T T3 T T T T3 T
We assume that the coefficients satisfy the following conditions
5 b0, w(0) € 110, R) 7)
q(t) 7 7 7 7

where L}(3, R) = {f: 3= R| [, |f()|dt < oo}.
We suppose that Rank[A,|B,] = 2 and det(T',) # 0, where

Ay = (51 —ugy G- wfé)/ B, = (Ca —uy Ga— Wfﬁ;), ®)

/ / / /
T —UT T — UT, T3 — UTy T4 — T,

e +ef eutel
L= (oh e o) ©)
e3ptey eqptey
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then (2)—(5) turn into

AuF(c) + ByF(d) =0, F(y+0)=T,F(y—0), F= (qJ},)

Equation (1) can be represented as

u' =sv
’ 10
{U’ = (p — pw)u. 10)
= f,
by using { ,
=af.
Definition 1. (Reference [18]) f(t) is called a trivial solution of (1) if f(t) = q(t)f'(t) =
teld.

Let ®(t, 1) = [0 (t, )] (k,1 =1,2) be the fundamental solution matrix of system (10),
satisfying (4) and (5) as follows

ot = it Ll -

with the initial condition ®;(c, u) = I.
Define A(p) := det[A, + B, ®>(d, u)]. Let

(b)) bia(p)
O = (it i),

where
b11(p) = (&3 — 1é3) (2 — p13) — (&2 — o) (3 — pw3),
bio(p) = (&1 — ué1) (w3 — pt3) — (83 — ués)(m — pmy),
b1 () = (84 — u8i) (12 — 1) — (G2 — uéy) (T — p1y),
boa(p) = (&1 — p&y)(ta — P‘T4) (Ca — 1454)(1'1 VTl)

By a direct calculation, we know
A(p) =det[Ay + By ®>(d, )]
(61 #y G- uéé) n (é‘a MGy G- VC&) (Qn (Zl, ) legd, ﬂg

B

HT T — Ut T—uty - uty) \oau(d u) oxn(dpu

)

=det(A,) +det(B,) — det(B,)
+[(83 = n83) (2 — nty) — (&2 — u&2) (1 — pw3)]onn (d, p)
+ (&1 — 1) (13— u1) — (83 — pés) (1 — un)]or2(d, 1)
+[(6a— V@f;)( — 1) — (G2 — u&a) (T — ury)loan (d, )
+[(G1 — u8) (1 — n1y) — (Ga — p&y) (1 — py)]o2a(d, )
+( (

&3 — 163)(ta — pry)oxn(d, won(d, u) + (8a — néy) (13 — pt3)ea1(d, p)oia(d, )
— (84— n8y) (13 — prz)ona(d, p)orn (d, 1) + (&3 — p&3) (1 — py)ea1(d, w)ora(d, i)
=det(Ay) + det(By) + bu1(p)e11(d, u) + b2 (p)012(d, 1) + ba1 (i) e21(d, p)

+ b2 (1) 022 (d, 1) + (83 — 1é3) (ta — p1y) — (84 — uéy) (3 — p13)]

[011(d, 1)022(d, 1) — 012(d, )01 (d, ) — 1],



Axioms 2023, 12,479

4 of 14

since det(Py(d, 1)) = det(P1(d, ) = 1,50 011(d, ) 022(d, ) — 012(d, )21 (d, 1) =1 =0,

we have

A(p) =det(Ay) + det(By) + b1 (p) o1 (d, 1) + bia(p)oi2(d, 1)

12
Tt (1) (6 1) + b2 () oza(d, ). (12

Proposition 1. A(y) =0 <= is an eigenvalue of (1)—(5).

Proof. We suppose A(y) = 0, then the equation [A; + B, ®>(d, 1)|C = 0 has non-zero
solutions. We solve the initial value problem

F= <P —Oﬂw S)F’ h= (P?)On I Ee=C

then we have F(d) = ®,(d,u)F(c) and [A, + B,P2(d, u)]F(c) = 0, we can obtain
AyF(c) + ByF(d) = 0, s0 p is an eigenvalue.

On the contrary, if ¢ is an eigenvalue and f is an eigenfunction, then F = (P?) satis-

fies F(d) = ®,(d, u)F(c); thus, [A, + B, ®Py(d, u)]F(c) = 0. If F(c) = 0, then it is a trivial so-
lution. This contradicts f being an eigenfunction, so we have det[A; + B, ®,(d, )] =0. O

3. The Finite Spectrum Problem of (1)—(5)

Problems (1)—(5) have finite eigenvalues in this section. In the sequel, we always
suppose that (7) holds, and there is a partition of J

c=c¢<a<p< <com<y<d<dy <---<dpny1=4d, (13)

for M, N € Z, such that

q(lt) =0,t € uimal[cﬁ,czm] U [coom, 1) U (17, d1] U [dzl,dz,ﬂ] 14)
p(t) = w(t) = 0,t € U eaisn, caiva) U [d2;+1,d2;+2]
C2i+2 2j+2
- q(t)dt#—o i=09;,—1; /2J+1 q—)dt#OJ 0,M—1;
/CZ‘+1 ()dt#Ot—OQﬁ—l/ w(t)dt #0,j = T,0% (15)
2

dq
/}7 w(t)dt # 0, /22m w(t)dt # 0.

Definition 2. (Reference [1]) If an SL Equation (1) satisfies (13)—(15), then Equation (1) is called
an Atkinson type.

Definition 3. (Reference [1]) If there exists an Equation (1) of the Atkinson type, then (1)—(5) is
called an Atkinson type.
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Definition 4. Let (13)—(15) hold. We define the following notations.
Ly i—12.m
S = —dt, i=1,2,...,9;
' €2i—1 q(t)
C2i+1 C2i+1 _—
pi = / p(t)dt, w;:= / w(t)dt, 1=0m—1;
o €2i
U n
pon = / p(t)dt, woy = / w(t)dt;
ot Comt
IR (16)
§) = / 7dtl )= 1/21 rm/
daj—1 q(t)
~ dp ~ d2j+1
po = / p(t)dt, pj:= / p(H)dt, j=1,9%
Ul dy;
d d
W = / 1w(f)dt, Wy = / o w(t)dt, j=1,M
1 do;
Next, we give two fundamental solution matrices of system (10).
Lemma 1. ®(t, u) defined as (11), we have
1 0
Dy (c1,p) = ,
1( 1 .u) (FO — uwp 1)
1+ (po — pwp)s1 s1 >
Dq(c3, 1) = ,
1(es 1) ( om(es ) 1+ (pr—pawr)sy
where 021(c3, 1) = (po — pwo) + (p1 — pws) + (po — pwo) (p1 — pws)s1.
In general, for 1 < i < 9t — 1, we have
@, (0 )—( 1 Si ><I>(c~ )
1\C2i41, M pi—uw; 1+ (pi — pwi)s; 1\C2i-1, 1),
particularly,
q>(—0)—< 1 s >d>(c )
1=V u pon — Hwan 1+ (pan — Hwon )Son 1(Caom—1, H)-
Proof. From (14), we know that u is constant on U?J;al [c2i, C2i11] U [coom, 17) by q(lt) =0

and v is constant on U?ﬁa Yeait1, c2ig2] by p(t) = w(t) = 0. Thus, we can obtain the result
by using the iterative method. [

Using similar methods in Lemma 1, we have

Lemma 2. For each u € C, we denote

Ot 1) = [pu(t, W]k 1=1,2) (17)

a fundamental solution matrix of the system (10) with interface conditions (4) and (5), and satisfy
the initial condition ® (1 + 0, u) = I. Then we have

1 0
®(dlr ]1) = (ﬁo _ ]/lw(] 1> .
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Generally, for1 <;j <N,

1 5

- - v~ |O(dyi_q, 1).
— p; 1+UH—W%M) (21, 1)

®(d2j+1/ ‘M) = (ﬁ]

Lemma 3. Let O(t, i) and O(t, ) be defined in (11) and (17), respectively. Then we have
P2 (d, ) = O(d, )Ty @1 (7 =0, 1), t € (1,d],
where Ty, is defined in (9).

Proof. From the two fundamental solutions, ©(t, 1) and ®(t, u) of system (10), and the
given initial value, we can obtain

O(t, 1) = Do (t, )@y (7 + 0, 1),
from (4) and (5), we have
Qo (17 +0,u) =TpP1(7 — O, ).
Particularly, let t = d, we obtain
Dy(d, p) = O(d, )T ®1(17 — O, ).
O

In light of Lemmas 1-3, we can obtain the following theorem, and problems (1)—(5)
have finite eigenvalues:

Theorem 1. Let (14)-(16) hold, H () is defined as above. Assume e, # 0; thus,

Conditions The number of eigenvalues
If &b — &1y #0; M+MN+5
o0 — e, =0,

Wy (Talh + EoTy — CaTy — Toly) M+ N+ 4

(€t} E4) — otk — Ehed) £ 0,
84— 0t =851 — 6m = 81 — &4
=18y + 81 — T — 0l =0;
31T — C3T + woo (842 — $2T4) M+ N+3
—wo (6213 + 813 — 83Ty — $3T2)
—0n (8T + 8T -8ty —§1) #0;
84— 0t =851 — 6 = 81 — 44T
=6 —u =81 — 8T = 1l + &1 — n —
=0T+ 0B 06T~ B0 =01 +8n - Oy - u =0 M+ N +2
& +8n -G -4
—Wn (811 — 84T1) — wo(G312 — $213) # 0
If8n - 0u=00-018=301 01 =040 —0hu
=011 — 03T = 83Ty — CoT3 = 813 — 84Ty
=1l + 0Ty — 4T — 0l = 0B+ 01— 6T — 8T M+ N +1
=Gn+an -Gy -u=n+80 -1 -1 =0
6113 — 63T # 0;

If none of the conditions in the table above are met, then (1)—(5) have 1 eigenvalues for
1e{1,2,--- , MM+ N} or the system can be degenerate.
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Proof. Firstly, by Lemma 3, we know that ®,(d, u) = ©(d, u)T',®1 (17 — 0, it); next, we can
obtain the structure of ®,(d, i) by a direct calculation.
If ey # 0, we can obtain the structure of ®,(d, i), as follows:

011(d, 1) =YY [(eapt + ¢3) (pon — pwam ) (Po — uo) + (et + 1) (Po — uto) + eap + ¢
N —1 N—1
+(eapt + ¢4) (pon — pwam) | < [T (pi — pws) [T (F5 — us) + a1 (),

i= j=1

o

012(d, 1) =YY [(e2pt + ¢3) (pom — stm)(ﬁo - WJO) (e1pt + 1) (Po — po) + eapt + 5
n-1

+(eapt + ¢4) (pon — pwan)] x H —pwi) | [ (B — u;) + d12(p),
=1

021(d, 1) =YY [(eapt + ¢3) (pom — pwam ) (Po — po) + (et + 1) (Po — uo) + eap + ¢

N —1 N
+(eqpt + ¢4) (pon — pwan)] x H) (pi — pwy) H(ﬁj — W;) + 021(p),
1= )=

022(d, 1) =YY [(eapt + ¢3) (pom — prwam ) (Po — po) + (e1pt + ¢1) (Po — uo) + +eapt + ¢
m— 1 0

(eapt + ¢y) (pom — pwan)] X — pw;) [ (75 — p;) + 622(w),
1:1 =1

where Y = [17%;s;, Y = [T%,8, () = o(YY) when min {s;,5 : i = L,0,j =
1L,MN} — oo,k 1=1,2.

So if e # 0, it follows that the degrees of 011(d, 1), 012(d, i), 021(d, ) and 022 (d, ) in
pare M+ 9N +2, M+ 9T+ 1, M+ N+ 3, and M + N + 2, respectively. According to (12)
and Proposition 1, if ;5 — &,7; # 0in b1 (), we can obtain the highest degree of u
in A(p) is M + N+ 5; hence, A(p) has M + 9 + 5 roots. Moreover, other cases can be
obtained by using similar methods.

O

Remark 1. In Theorem 1, if e = 0, but e’z # 0, we can obtain the same conclusions. In fact,
the highest degree of p in A(p) is 9 + N+ 4. Thus, it has M+ N+4, M+N+3, M+ N+2,
M+ N+ 1, M + N eigenvalues, respectively.

Example 1. We study a specific SLP:

—@Of () +p0)f(t) = po(t)f(5), t€T=(-1,0U(0,2).
AuF(—1) + B,F(2) =0,
F(0+) —T,F(0-) =0,

where
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We choose Mt = N =1, and q(t), p(t), w(t) are piece-wise constant functions:

o, (-1,-%) 3, (~1,-2) 3, (—1,-2)
3 (53 0 (-3-3) 0, (=3-3)
_ ) o (=30 _ )6 (=30 _ )3 (=30
q(t) - oo, (0, %) p(t) - 2, (0/ %) ’ w(t> - 2, (0, %)
Lo 0, (1) 0, (31)
o, (1,2) 1, (1,2) 1, (1,2

From the conditions, we know ey = 2 # 0. By a direct calculation, we have
A(p) = 6p7 —53u® +142p° — 71p* — 1664° + 1424% + 171
Then the number of eigenvalues of this problem is 7.
w1~ —1.0291, pup =~ —0.1071, puz =0, py ~ 1.4317 + 0.10837,

us ~ 14317 — 0.1083i, pg ~ 3.1662, 117 ~ 3.9400.

Figure 1 shows the trace of A(p). For clarity, we use a logarithmic scale for the vertical axis. We
label trajectories above the horizontal axis in red and trajectories below the horizontal axis in blue.
The alternating red and blue pattern represents the zero of the A(u). By doing so, we can observe
that the function has five real roots, meeting our desired outcome.

T 1T

1000

PRt ETT Rt MR AT MRATT MR

S
ULLLU AL B RIL B

-1000,

>
(LU LLE I L (L L LR UL

C_

1 1 1

7

Figure 1. Characteristic function in Example 1.

4. Matrix Presentations of (1)-(5)

In this section, we discuss the matrix representations of problems (1)—(5) with finite spectra.

Definition 5. If the eigenvalues of SLPs of the Atkinson type coincide with matrix eigenvalue
problems, then we call them equivalent.

For (1)—(5), we rebuild the matrix eigenvalue problems, which have the following form

BT = uFT,
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whose eigenvalues coincide with the corresponding SLPs of the Atkinson type. Assume

(16) holds, we have
Coi -1
qi=(/2 s) =120,
€2i—1

da; -1
f%=(/ s) =12,
doj—1

In accordance with (14)~(15), we know gq;, w;, §j, @; € R\ {0}. In addition, by (14) and (15),
for each solution (1, v) of system (10), on the sub-intervals where s = 0, we know that  is constant;
regarding the sub-intervals where p = w = 0, we know that v is constant.

(18)

Let
Ui, te [C2i1C2i+l]/i:0/-~-1m_1/
) uop, tE [com, 1),
u(t) = ig, te(n,di],

U(t) _ { 0y, te [C2i162i+1]/i = 0/' . '/m_ 1/
U;, te€ [dzj,d2j+1],j =1,...,;

and
vo = v(co) = v(c), On41 = v(dam11) = v(d),vam41 =v(7 —0),00 =0v(y+0).  (20)

Lemma 4. ([23]) Suppose that Equation (1) is of the Atkinson type. Then for each solution (u,v)
of (10), we have

qi(ui —ui—q) =ov;, i=12,---,M, (21)
Viy1 — 0 = ui(pi —pwi), i=01,---,9M, (22)
3;(0 — 1) =05, j=12,--,M, (23)
Oj+1 — 05 = & (p; — p@;), §=0,1,--- 9. (24)

On the contrary, for any solution, u; (i = 0,9M),v; (i = 0,M+1),4; (j = 0,M), and
75 (j = 0,M+1) of systems (21)—(24), there exists a unique solution (u,v) of system (10),
such that (19) and (20) holds.

Theorem 2. Suppose i, T, ¢i, }, T/, ¢, € R (i = 1,4) satisfy (6)—(9) and ¢ # 0. Define an
(M +N+5) x (M + N+ 5) matrix Q as follows:

¢ 1 ¢3 G4
1 g —¢

-7 12 —q2

—qm—-1 9m-1+49m —gGm

—qom gm -1
- =5 1
e ¢ .1 —h

—Jn-1 do1+dm —dn
—dm gm —1
T B T4
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Let B = diag (0, po, p1, P2, - - -, P, 0, Po, P1, P2, - - -, Por—1, P, 0) and
G & & G
wWo
w1
Won—1
Won
W = eq 2
—e3 —eg W
w1
W1
W
T 0T T
Then SLPs (1)—(5) are equivalent to matrix eigenvalue problems
(Q+P)U = p20U, (25)

where U = (vg, ug, Uy, - -+ , Ugn, Vsm 11, Ho, 1, + -+, o, z?mH)T. Furthermore, (19) shows the
relationship between the eigenfunction u(x) of problems (1)—(5) and eigenvector U of (25), in terms
of sharing the same eigenvalues.

Proof. Between the solutions of the following system:

q1(u1 — ug) — vo = uo(po — pwo), (26)

Fiv1(Uipr —ui) — qi(wi —ui—1) = wi(pi —pw;), i=12,...,M-1, (27)

Omt1 — Gone (Mo — tam—1) = ugn (Pon — Hwon), (28)

g1(#iy — i) — Bo = dlo(Po — Hto), (29)

D1 (Tipn = ) = (8 — #1) = & (p — pwy), j=12,..., 01, (30)
Ont1 — qo(dm — dm-1) = i (P — pOx). 31)

and those of (21)—(24), a one-to-one correspondence exists by the assumption.

Now, we suppose u; (i = 0,M1) and v; (i = 0,991 + 1) are solutions of systems (21) and
(22). Then (26)-(28) follow from (21) to (22). Similarly, (29)—(31) follow from (23) to (24) by
assuming that i7; (j = 0,91) and 3; (j = 0,91) are solutions of systems (23) and (24).

In other words, let u; (i = 0,9) be a solution of (26)—(28); thus, vy and vgy 1 can
be calculated by (26) and (28). Assume that v; (i = 1,9) is defined in (21). Then, using
(26), and utilizing induction on (27), (22) holds. Moreover, (23) and (24) can be similarly
obtained.

Hence, according to Theorem 2, any solution of (10) is uniquely determined by solu-
tions of (26)—(31). Note the first row of matrix (25)

a0 + &1ug + Gzt + CaOmgr = p(Eo00 + Chuo + E3iim + SyBmy1), (32)
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and the last row of matrix (25)

~ ~ ! / ! ~ !~
vy + Tyg + Talim + Tadm 1 = H(Ty00 + T g + T + Tydss1), (33)

substituting

up = u(c) = f(c), i = u(d) = f(d),v0 = v(c) = (qf')(c), B1 = 0(d) = (af')(),

into (32) and (33), we obtain (2) and (3). From (4) to (5), we obtain

o = (e1pt + ¢} ) uon + (eopt + ¢5)von i1, Bo = (eap + e5)ugm + (eapt + ¢4)Von 11, (34)

and let U = (vg, ug, u1,- -+ , Uy, Usmry1, Bo, 1, - -+, o, z7m+1)T. Then the equivalence fol-

lows from (26) to (34).

O

The following result shows that the SLP of the Atkinson type is equivalent to the SLP
with piecewise constant coefficients in the sense that they have similar eigenvalues.

Theorem 3. Suppose that (1) is of the Atkinson type and g; (i = 1, M), ; G =1,MN), pi, wi (i =
0,9M), p;, @; (i = 0,MN) are defined in (16) and (18). Denote piecewise constant functions {, p, @

on J by

L]i(Czi - CZi—l);

o0

7

o0

7

Pi
C2i41—C2i”

Pon
n—Ccoom”’

0,

C2i41—C2i”

Won
n—com’

0,

Wy
dojp1—daj”
o
dy—1’
0,

t € [caim1,02i)i=1,.

t € U [cai—a, c2i1] U [coom, 17),
Gi(doy — doj—1), t € [dy—1,dy),i=1,...,M,
te UR, [dyy, dajia] U (17, da;

te [Czi,CZiJrﬂ,i =0,...

t € [coom, 1),

t € U [eaic1, cail,

t € [doj, doja],i=1,...

t e (U,dl],
te U?Ll[deflrde]r‘

t e [CZi,C21+1],i =0,...

te [CZE)J?/ 17)/

t € UM [eaim1, c2il,

te [de/d2j+l]/j - 1/- ..

te (U!dl]/
t e U;)ll [dzjfl, de]}

.0,

(35)
7 m - 1/

(36)
7 m/
7 m - 1/

(37)
’ m/

Suppose that (2)—(5) hold. Then the eigenvalues of SLPs (1)—(5) coincide with the eigenvalues

of the SLP

with (2)—(5).

—@Of (1) +p(0)f(t) = pw(t)f(t), t €T (38)

Proof. Itis observed that SLPs (1)-(5) and (29), (2)-(5) determine the same

g, i=1,2,...,9m,

Pi, Wi,izo,l,...,m,'

G, i=12,...,M p,,i=0,1,..97
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Thus, they are equivalent to the same matrix eigenvalue problem, based on Theorem 2.
The results follow. [

In light of Theorem 3, we know that for a fixed set of Equations (2)-(5) on a given
interval, there exists a family of SLPs of the Atkinson type, which have the same eigenvalues
as SLPs (38), (2)—(5). We refer to this family as the equivalent family of SLPs (38), (2)—(5).

Next, we will illustrate that matrix eigenvalue problems in the following form:

AT = uFT (39)
have representations as Atkinson-type SLPs.

Theorem 4. Let n > 7, ¢;, ¢} (i = 1,2,3,4) in (4) and (5) satisfy det(T',) # O (where T, is
defined in (9)), assume ey # 0. Assume that A is an n X n matrix as follows:

11412 A,n—1 1n
1 axax
a23 33 Aa34
A, m+1%m+1,m+1 Gm+1,m+2
Am+1,m+2 Am+2,m+2  —1
Am4-3,m+2 Am+-3,m+3 1 ,
Am+-4,m+2 Am+4,m+3 Im+4,m+4 Am+4,m~+5
Am+-4,m+5 Am4-5,m+5 Am+-5,m-+6
Apn—2n-3 An-—2n-2 An—-2n—1
Apn—2n-1 anfl,nfl_l
anl An2 Apn—1 Ann,
where ajj11 # 0 (G = 23,...,n—=2),2 <m < n-5 a5 € R(1 <4i,j < n,
21 = Ami3mia = 1, Amt2m+3 = Ap—1, = —1. Let F be an n x n matrix of the following form:
fun fiz fin—1 fin
f22
f33
fm+1,m+l
fm+2,m+2
fm+3,m+2fm+3,m+3 7
fm+4,m+2fm+4,m+3fm+4,m+4
fmtsm+s
fn72,n72
fnfl,nfl
\fnl fn2 fn,n—l fn'rl

where fi; #0, fi; € R (j=2,3,...,n—1),and

rank( a4 11 aln> _2 rank< f fz fina fln) _2

apl  an2 an,n—l Ann fnl fn2 fn,n—l fnn

a a aqp— a a a Ay p— a
rank( 11 12 1,n—-1 1n> =2, rank( nl n2 nn—1 n'rl) =9,

fir fiz fiue1 fun far fu2 fun—1 fun



Axioms 2023, 12,479

13 of 14

Then (39) represents an Atkinson-type SLP in the form of (1)—~(5). Furthermore, SLPs (38),
(2)—(5) have unique representations when a fixed partition (13) of J is given, using the notations in
(16) and (18). All SL representations of (39) are given by the corresponding equivalent families of
SLPs (38), (2)~(5).

Proof. Let M =m, N =n—m—5,T = [c,n) U (y,d], —o0 < ¢ < d < oo. Firstly, one
defines the parameters in (2) and (3), let

Go=uan, &1 =41, §3=0a1,-1, C1= a1y
=14y, T =4an2, T =A4pn-1, T4 = nn;
G=fu, & =ro G=afin-1, 8= fiu
T =for, U =/fo, B=fan-1, = fans

and
! /o /o I .
—¢ = Am3,m+2, —€ = Am43,m+3, €3 = Amtd,m+2, €4 = Amtd,m+3;

e1 = fut3m+2, €2 = fu43m+3, —3 = fmiamt+2, —¢4 = fitdam+3-

For a given partition of J by (13), one can define piecewise constant functions g, p
and @ on the interval J that satisfies (7), (14) and (15), as follows:

8

7 = —ait1it2, =1, 7y = —am+j+3m+i+as =1

Wi = fiyzir2, 1=09M, D= fopyjrameira, =09

N

and )
po=4ax—q1, Pi=ait2i+2— i —qi+1, i=1M=1,

pon = Asm+2,9m+2 — g
Po = am+am+4 — 1, Pj = Amtj+aom+i+a — G — i+, J=10N-1,
Pn = Aom4-ot+4m491+4 — -
Next, we define 7,  and @ by (35)—(37), respectively. Such piecewise constant functions,
g, p, and @ on interval J, satisfying (7) and (14) and (15), are found; Equation (38) is of the
Atkinson type, and (16) and (18) satisfy with g, p, and w replaced by 4, p, and @, respectively.

Obviously, Equation (39) is of the same form as Equation (25). Therefore, the problem (39)
is equivalent to the SLPs (1)—~(5) by Theorem 2. The last part is yielded by Theorem 3. [

Remark 2. If §{ = 1/ = ¢; = 0 (i = 1,4) in (2)~(5), then the problem under consideration
degenerates to the case discussed in [22].

Ife; =0 (i =1,4)in (4) and (5), then the problem under consideration degenerates to the
case discussed in [26].
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