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Abstract: A novel concept of quaternionic fuzzy sets (QFSs) is presented in this paper. QFSs are a
generalization of traditional fuzzy sets and complex fuzzy sets based on quaternions. The novelty of
QFSs is that the range of the membership function is the set of quaternions with modulus less than or
equal to one, of which the real and quaternionic imaginary parts can be used for four different features.
A discussion is made on the intuitive interpretation of quaternion-valued membership grades and
the possible applications of QFSs. Several operations, including quaternionic fuzzy complement,
union, intersection, and aggregation of QFSs, are presented. Quaternionic fuzzy relations and
their composition are also investigated. QFS is designed to maintain the advantages of traditional
FS and CFS, while benefiting from the properties of quaternions. Cuts of QFSs and rotational
invariance of quaternionic fuzzy operations demonstrate the particularity of quaternion-valued
grades of membership.
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cuts; rotational invariance
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1. Introduction

In 1965, Zadeh [1] proposed the concept of fuzzy sets (FSs). In the past few decades,
following Zadeh’s pioneering work, various extensions of FSs have been given, enriching
the contents of fuzzy theories and fuzzy methods. These extensions include interval-
valued fuzzy sets [2], intuitionistic fuzzy sets (IFS) [3], Pythagorean fuzzy sets (PFS) [4],
Fermatean fuzzy sets (FFS) [5,6], q-rung orthopair fuzzy sets (q-ROFS) [7], (2,1)-fuzzy
sets [8], neutrosophic sets (NS) [9], hesitant fuzzy sets (HFS) [10], and complex fuzzy sets
(CFS) [11,12]. In these extension of FSs, IFS is obtained by adding a non-membership value.
PFS, q-ROFS, and (2,1)-FS have different restrictions on membership and non-membership
values. Further, NS is obtained by adding an indeterminacy value. Another method is based
on the algebraic extensions of number fields. The extension of crisp sets to FSs is mathemat-
ically analogous to the extension of integers Z to real numbers R. In much the same way,
Ramot et al’s [11,12] extension of FSs to complex fuzzy sets (CFSs) is mathematically analogous
to the extension of real numbers R to complex numbers C. CFSs have numerous applica-
tions in signal processing [13,14], time series prediction [6,15–17], decision making [18–22],
and complex fuzzy logic systems [23–25]. Note that the extension of fuzzy numbers to
Buckley’s [26] fuzzy complex numbers is also mathematically analogous to the extension
of real numbers R to complex numbers C.

Of course, the extensions of number fields do not end with complex numbers. As
early as in 1843, Hamilton [27] discovered the quaternions as a generalization of complex
numbers. Quaternion is an important mathematical tool in physics [28,29], quaternion
neural networks [30,31], and computer science [32–34].

Interestingly, some scholars attempted to use quaternions in the fuzzy theories and
applications. Ngan et al. [35] generalized and expanded the utility of complex intuitionistic
fuzzy sets using the space of quaternion numbers. Pan et al. [36] proposed a quaternion
model of a Pythagorean fuzzy set. These ideas are one step away from the innovative
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concept of quaternionic fuzzy sets (QFS). In this paper, as shown in Figure 1, we generalize
the FS and CFS to QFS, which is similar to the generalization of real and complex numbers
to quaternions. The QFS is characterized by a quaternion-valued membership function.
The main advantage of the new concept of QFS is its representation of four composite
features, which is more powerful than the representation of CFS.

Fuzzy sets Complex 
fuzzy sets

Quaternionic
fuzzy sets

Real numbers Complex 
numbers

Quaternion 
numbers

Figure 1. The relations among different concepts.

The motivation of this paper comes from the following two aspects:

1. As discussed above, the quaternion is an excellent mathematical tool in a number
of different areas. Interestingly, some scholars used quaternions to handle complex
intuitionistic fuzzy information and Pythagorean fuzzy information. Therefore, the
quaternion is a novel mathematical tool to handle uncertain information.

2. CFS provides a way to extend the FS theory based on number fields. Moreover, CFS
has been widely applied and is undergoing rapid progress, and it deserves further
pursuit. The field of quaternions is another fundamental number field that we cannot
ignore, so we continue to extend the CFS theory based on number fields.

Based on the aforementioned considerations, in this paper, as an extension of FS and
CFS theories, we first introduce the novel QFS that have not been studied in the literature.
Additionally, we introduce several fundamental operations. Comparatively, our proposed
QFS and its operations have the following advantages.

1. The new concept of QFS is more comprehensive than CFS because the latter is a special
case of the former. Both polar representation and Cartesian representation of QFS are
given.

2. The proposed negation, join, and meet operations of QFSs are also extensions of
Ramot et al’s complex fuzzy negation, join, and meet operations. De Morgan’s laws
of quaternionic fuzzy negation, union, and intersection are studied. This means that
these operations could be interconnected by an algebraic structure.

This article is structured as follows. In Section 2, we present some preliminary concepts
of quaternions. In Section 3, we introduce the QFS. In Section 4, we study the cuts of QFS.
In Section 5, we define several operations of QFS. In Section 6, we study the quaternionic
fuzzy relations. In Section 7, we study the rotational invariance of quaternionic fuzzy
operations. In Section 8, concluding remarks are offered.

2. Preliminaries
Quaternions

Quaternions were first proposed by Hamilton [27]. For an review of quaternions, we
refer the reader to Refs. [33,34].

Let H be the set of quaternions. A quaternion q ∈ H is expressed as

q = q0 + q1i + q2 j + q3k, (1)
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where qr ∈ R (r = 0, 1, 2, 3) and i, j, and k are quaternion units, which obey

i2 = j2 = k2 = ijk = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. (2)

The real and quaternionic imaginary parts of q are Re(q) = q0 and
Qim(q) = q1i + q2 j + q3k, respectively.

For a quaternion h, its “quaternion conjugate” h̄ is

q = q0 − q1i− q2 j− q3k, (3)

and its modulus is |q| =
√

qq =
√

q2
0 + q2

1 + q2
2 + q2

3.
A polar representation of q is

q = |q|eiθejψejω, (4)

where (θ, ψ, ω) ∈ [−π, π) × [−π/2, π/2) × [−π/4, π/4] represent the three
quaternionic phases.

For any two quaternions p = p0 + p1i + p2 j + p3k and q = q0 + q1i + q2 j + q3k, their
addition is

p + q = (p0 + q0) + (p1 + q1)i + (p2 + q2)j + (p3 + q3)k, (5)

their product is

pq = (p0q0 − p1q1 − p2q2 − p3q3)

+ (p0q1 + p1q0 + p2q3 − p3q2)i

+ (p0q2 + p2q0 − p1q3 + p3q1)j (6)

+ (p0q3 + p3q0 + p1q2 − p2q1)k.

Obviously, the product is noncommutative, i.e., pq 6= qp. However, we have
|pq| = |p||q|.

Their dot product is

p • q = p0q0 + p1q1 + p2q2 + p3q3. (7)

Obviously, the dot product is commutative.

3. Introducing Quaternionic Fuzzy Sets

In this section, we give a formal definition of QFS and present two intuitive interpreta-
tions of quaternion-valued membership functions.

3.1. Definition of the Quaternionic Fuzzy Set

Definition 1. Let U be a universe of discourse and Q be the set of quaternions whose modulus is
less than or equal to 1, i.e.,

Q = {q ∈ H
∣∣|q| ≤ 1}, (8)

a quaternionic fuzzy set A defined on U is a mapping: U → Q, which can be represented as the set
of ordered pairs:

A = {< x, ρA(x) > |x ∈ U} (9)

where quaternion-valued membership function ρA(x) is of the form

aA(x) + iA(x)i + jA(x)j + kA(x)k (10)
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where all aA(x), iA(x), jA(x), kA(x) are real-valued, and
√(

aA(x)
)2

+
(
iA(x)

)2
+
(

jA(x)
)2

+
(
kA(x)

)2 ≤ 1. (11)

The real and quaternionic imaginary parts of ρA(x) are Re
(
ρA(x)

)
= aA(x) and Qim

(
ρA(x)

)

= iA(x)i + jA(x)j + kA(x)k, respectively.
Note that ρA(x) also could be of the form

rA(x)eiθA(x)ejψA(x)ekωA(x) (12)

where the amplitude term is rA(x) ∈ [0, 1] and three quaternionic phase terms are
(θA(x), ψA(x), ωA(x)) ∈ [−π, π)× [−π/2, π/2)× [−π/4, π/4].

Quaternionic fuzzy sets are generalizations of ordinary FSs and CFSs. If two quater-
nionic phase terms ψA(x) and ωA(x) are zero, then A is a CFS. If all three quaternionic
phase terms are zero, then A is a conventional FS. Similarly, if two quaternionic imaginary
parts jA(x) and kA(x) are zero, then A is a CFS. If all three quaternionic imaginary parts
are zero and aA(x) is limited in [0, 1], then A is a conventional FS.

Remark 1. Mathematically, a quaternionic fuzzy set is equivalent to the fuzzy set with the
co-domain of

S =
{
(a, b, c, d) ∈ R4∣∣a2 + b2 + c2 + d2 ≤ 1

}
, (13)

which is a unit four-dimensional sphere.

Remark 2. Ngan et al. [35] defined the complex intuitionistic fuzzy set using quaternions
q0 + q1i + q2 j + q3k, which satisfies the following conditions:

q0, q1, q2, q3 ∈ [0, 1], (14)

q0 + q1 ≤ 1, (15)

q2 + q3 ≤ 1, (16)

q0 + q2 ≤ 1, (17)

q1 + q3 ≤ 1, (18)

and q0, q1, q2, q3 ∈ [0, 1] are the degrees of real membership, imaginary membership, real non-
membership, and imaginary non-membership, respectively. Kyritsis [37] gave the idea of a quater-
nion fuzzy subset, but its co-domain is H ∪ {∞}. Moura et al. [38] introduced the concept of
fuzzy quaternion numbers, which is a mapping from the set of quaternions to [0, 1]. In the study of
quaternion-valued fuzzy cellular neural networks [39,40], they used quaternions H, not its subset
Q = {q ∈ H

∣∣|q| ≤ 1}. It is essential that they [39,40] did not give the idea of quaternion-valued
grades of membership. This is entirely different from the QFS including quaternion-valued grades of
membership. These works are indeed concerned with quaternions and fuzzy sets, but in a completely
different manner than our study in this work.

3.2. Interpretation of the Quaternionic Fuzzy Set

From a mathematical viewpoint, QFS is natural. However, similar to complex fuzzy
sets in [11], obtaining intuition of QFS is not a simple task. Both complex numbers and
quaternions are not particularly intuitive.

The central issue is the meaning of phase term in membership function. Traditional
membership functions may interfere with other membership functions. This interfer-
ence is dependent on their phase terms. In practice, the amplitude term and phase
term of CFSs are used to describe two different features. For example, Ma et al. [16]
introduced a complex fuzzy product–sum aggregation operator in which the amplitude
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term is used to represent the periodicity in the data. Dai [20] used the amplitude term
to represent the direction of an object. Different from the interpretations noted above,
Ramot et al. [11] gave an interesting interpretation from the idea of quantum mechanics that
uses complex-valued functions to describe the state of object. Note that
Nguyen et al. [41] also considered the complex-valued “truth values” from the idea of
quantum mechanics. Following this way, quaternionic quantum mechanics, as a generation
of standard complex quantum mechanics, use quaternion-valued functions to describe the
state of object. An analogy to this aspect of quaternionic quantum mechanics offers an
interpretation: the interference between traditional membership functions may rely on the
quaternionic phase terms.

From another point of view, QFSs are composed of a real part and a quaternionic
imaginary part. In this case, the central issue is how to deal with the quaternionic imaginary
part. An answer may be obtained from the application of quaternions in color image
processing [42–44]. RGB images have the red, green, and blue components. Then, the
image pixel may be converted to a quaternion pixel by placing the these three components
into the three imaginary parts of the quaternion, leaving the real part zero [44]. An analogy
to the use of quaternions offers an interpretation. That is, the interpretation of a quaternionic
fuzzy proposition is a quaternion of truth value. For example, in a proposition of the form
“x is too white ” in which too white means that all the red, green, and blue components are
very high. Thus, we can use the form “x · · · A · · · B · · · C · · · ” for a proposition, then iA(x),
jA(x), and kA(x) can be assigned to the terms A, B, and C, respectively.

4. Cuts of Quaternionic Fuzzy Sets
4.1. Method 1

In general, order relations such as “p is greater than q” are undefined for quaternions
p and q. Based on the modulus of a quaternion, the ordering of Q is given by p ≤ q if
|p| ≤ |q|.

Theorem 1. The order ≤ of Q given by the modulus of a quaternion is a pre-order, but not a partial
order.

Proof. We first prove that ≤ satisfies the reflexivity and transitivity conditions, i.e.,

(1) reflexivity: p ≤ p;
(2) transitivity: p ≤ q and q ≤ o⇒ p ≤ o.

Clearly, |p| = |p| for any p ∈ Q. If p ≤ q and q ≤ o, then we have |p| ≤ |q| and
|q| ≤ |o| by the definition of ≤, then |p| ≤ |o|.Thus we obtain p ≤ o.

Second, we prove that ≤ does not satisfy the antisymmetry condition, i.e.,

(3) antisymmetry: p ≤ q and q ≤ p⇒ p = q.

Consider quaternions i and j, it is easy to check that |i| = |j| = 1, but i 6= j.

Let U be a universe of discourse, A = {< x, ρA(x) > |x ∈ U} be a quaternionic fuzzy
set on U, a q-cut of A, for q ∈ Q, is defined by

Aq =
{

x ∈ U
∣∣|ρA(x)| ≥ |q|

}
. (19)

Moreover, a variant of a q-cut is the strong q-cut defined as

A>q =
{

x ∈ U
∣∣|ρA(x)| > |q|

}
. (20)

The support of A, denoted by supp(A), is defined as A>0, i.e.,

supp(A) =
{

x ∈ U
∣∣|ρA(x)| > 0

}
. (21)
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In other words, the q-cut of A is the crisp set Aq that contains all the elements of U in
which the moduli of quaternion-valued membership degrees are greater than or equal to
the modulus of q.

Example 1. Let U = {x1, x2, x3, x4}; consider the following quaternionic fuzzy set:

A =
0.3i + 0.4j

x1
+

0.6j
x2

+
0.6i− 0.8j

x3
+

i
x4

, (22)

then

Aq =




{x1, x2, x3, x4}, if 0 ≤ |q| ≤ 0.5,
{x2, x3, x4}, if 0.5 < |q| ≤ 0.6,
{x3, x4}, if 0.6 < |q| ≤ 1.

(23)

Figure 2 illustrates the quaternionic fuzzy set A and their q-cuts.
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The following theorem can be easily proved.

Theorem 2. Let A = {< x, ρA(x) > |x ∈ U} be a quaternionic fuzzy set on U, for any p, q ∈ Q,
if |p| ≤ |q|, then Aq ⊆ Ap.

Properties of cuts of quaternionic fuzzy sets are related to the order on Q. Unfortu-
nately, ≤ is not a partial order on Q. In other words, (Q,≤) is not a lattice, i.e., there exists
p, q ∈ Q such that p ∨ q does not exist. Further, this leads to a special case that there exists
two quaternionic fuzzy sets A and B such that A 6= B but Aq = Bq for any q ∈ Q. See this
in the following example.

Example 2. Let U = {x1, x2, x3, x4}, consider the quaternionic fuzzy set A in Example 1 and the
following quaternionic fuzzy set:

B =
0.4j + 0.3k

x1
+

0.6k
x2

+
0.6i + 0.8j

x3
+

k
x4

, (24)
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then

Bq =




{x1, x2, x3, x4}, if 0 ≤ |q| ≤ 0.5,
{x2, x3, x4}, if 0.5 < |q| ≤ 0.6,
{x3, x4}, if 0.6 < |q| ≤ 1.

(25)

It is easy to check that A 6= B and Aq = Bq for any q ∈ Q.

4.2. Method 2

As noted in Remark 1, a quaternionic fuzzy set is mathematically equivalent to the
fuzzy set with the co-domain of S =

{
(a, b, c, d) ∈ R4

∣∣a2 + b2 + c2 + d2 ≤ 1
}

.
Naturally, we have the following order � of Q, for any two quaternions

q = q0 + q1i + q2 j + q3k, p = p0 + p1i + p2 j + p3k ∈ Q, we say q � p if

q0 ≤ p0, q1 ≤ p1, q2 ≤ p2, and q3 ≤ p3.

Theorem 3. The order ≤ of Q is a partial order.

Let U be a universe of discourse, A = {< x, ρA(x) > |x ∈ U} be a quaternionic fuzzy
set on U, a q-cut of A, for q ∈ Q, is defined by

Aq =
{

x ∈ U
∣∣ρA(x) � q

}
. (26)

Moreover, a variant of a q-cut is the strong q-cut defined as

A�q =
{

x ∈ U
∣∣ρA(x) � q

}
. (27)

In this method, for any q = q0 + q1i + q2 j + q3k, q-cut of A means that for any x ∈ U
with membership grade ρA(x) = aA(x) + iA(x)i + jA(x)j + kA(x)k, we have aA(x) ≥ q0,
iA(x) ≥ q1, jA(x) ≥ q2, and kA(x) ≥ q3.

The following theorem can be easily proved.

Theorem 4. Let A = {< x, ρA(x) > |x ∈ U} be a quaternionic fuzzy set on U, for any p, q ∈ Q,
if p � q, then Aq ⊆ Ap.

Example 3. Consider the quaternionic fuzzy set A in Example 1 in which A also could be
represented as

A =
0 + 0.3i + 0.4j + 0k

x1
+

0 + 0i + 0.6j + 0k
x2

+
0 + 0.6i− 0.8j + 0k

x3
+

0 + i + 0j + 0k
x4

. (28)

For convenience, let p = 0+ 0.3i+ 0.4j+ 0k, s = 0+ 0i+ 0.6j+ 0k, t = 0+ 0.6i− 0.8j+ 0k
and v = 0 + i + 0j + 0k. Clearly, we only have the relation v � t among p, s, t, v.

Then we have

Bq =





{x1, x2, x3, x4}, if q � p, q � s, q � t,
{x1, x3, x4}, if q � p, q � s, q � t,
{x2, x3, x4}, if q � p, q � s, q � t,
{x1, x2, x4}, if q � p, q � s, q � t, q � v,
{x1, x2}, if q � p, q � s, q � t, q � v,
{x1}, if q � p, q � s, q � t, q � v,
{x2}, if q � p, q � s, q � t, q � v,
{x3, x4}, if q � p, q � s, q � t,
{x4}, if q = t.

(29)
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For example, Bq = {x1, x2, x3, x4} for q � p, q � s and q � t, i.e., q = a + bi + cj + dk ∈
Q with

a ≤ 0, b ≤ 0, c ≤ −0.8, d ≤ 0.

Figure 3 illustrates the quaternionic fuzzy set A and their q-cuts in the i–j plane.
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We say (Q,�) has a bottom element ⊥ ∈ Q if ⊥ � q for all q ∈ Q. Unfortunately,
(Q,�) does not have a bottom element. For example, there does not exist a q ∈ Q such that
both q � −i and q � −j hold.

Further, this leads to a special case that there exists a quaternionic fuzzy set A such
that there does not exist q ∈ Q such that Aq includes all elements of A. See this in the
following example.

Example 4. Let U = {x1, x2}. Consider the following quaternionic fuzzy set:

B =
−i
x1

+
−k
x2

, (30)

If Bq = {x1, x2} for some q = a + bi + cj + dk ∈ Q, then −i ≥ q and −k ≥ q, i.e.,
a ≤ 0, b ≤ −1, c ≤ 0, d ≤ 0 and a ≤ 0, b ≤ 0, c ≤ −1, d ≤ 0. However, if b ≤ −1 and c ≤ −1,
then a2 + b2 + c2 + d2 ≥ b2 + c2 ≥ 2. Thus q = a + bi + cj + dk /∈ Q. This is a contradiction.

5. Set Theoretic Operation of the Quaternionic Fuzzy Set

In this section, the operations of quaternionic fuzzy complement, quaternionic fuzzy
union, and quaternionic fuzzy intersection are defined. Then, De Morgan’s laws of quater-
nionic fuzzy union and intersection are discussed. Next, quaternionic fuzzy aggregation is
introduced. Finally, rotational invariance is proposed.

A quaternionic grade of membership ρA(x) is restricted to the subset of quaternions
Q, i.e., |ρA(x)| is limited to [0, 1]. For convenience, we only consider the quaternionic fuzzy
operation over Q.
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5.1. Quaternionic Fuzzy Complement

Definition 2. A function ¬ : Q→ Q is called a quaternionic fuzzy complement if it satisfies the
following two conditions: ∀q, p ∈ Q

(1) Amplitude boundary conditions:

q = 0⇒ |¬q| = 1, |q| = 1⇒ ¬q = 0;

(2) Amplitude monotonicity:
|q| ≤ |p| ⇒ |¬p| ≤ |¬q|.

In addition, in some cases, ¬ should satisfy also the following conditions:

(3) Continuity: ¬ is a continuous function;
(4) Amplitude involutivity:

|¬(¬q)| = |q|.
This definition is a generation of crisp, traditional, and Ramot et al’s complex fuzzy

complement.
Some examples are as follows: Let q = |q|eiθejψekω, define

¬1q = (1− |q|)eiθejψekω, (31)

¬2q = (1− |q|)e−iθe−jψe−kω. (32)

Two functions satify the above four conditions.

Example 5. Let q = 0.6e−iπ/3ejπ/4ekπ/8 ∈ Q, then

¬1q = 0.4e−iπ/3ejπ/4ekπ/8, (33)

¬2q = 0.4eiπ/3e−jπ/4e−kπ/8. (34)

Using the standard fuzzy complement, i.e., f (x) = 1− x, ∀x ∈ [0, 1], we obtained two
functions,

q = q0 + q1i + q2 j + q3k⇒ f1(q) = 1− q; (35)

q = q0 + q1i + q2 j + q3k⇒ f2(q) = (1− q0) + (1− q1)i + (1− q2)j + (1− q3)k. (36)

Unfortunately, both functions are not closed over Q.

5.2. Quaternionic Fuzzy Union

Definition 3. A function ∪ : Q×Q→ Q is called a quaternionic fuzzy union if it satisfies the
following four conditions: ∀q, p, o, s ∈ Q

(1) Boundary condition:
p ∪ 0 = p;

(2) Amplitude monotonicity:
|q| ≤ |p| ⇒ |p ∪ o| ≤ |q ∪ o|;

(3) Commutativity:
p ∪ q = q ∪ p;

(4) Associativity:
p ∪ (q ∪ o) = (p ∪ q) ∪ o.

In addition, in some cases, ∪ should satisfy also the following conditions:

(5) Continuity: ∪ is a continuous function;
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(6) Amplitude superidempotency:
|p ∪ p| ≥ |p|;

(7) Amplitude strict monotonicity:

|q| ≤ |p|, |o| ≤ |s| ⇒ |q ∪ o| ≤ |p ∪ s|.

Two examples are as follows: Let q = |q|eiθq ejψq ekωq and p = |p|eiθp ejψp ekωp , then

q ∪1 p = (|q| ? |p|)ei(θq∨θp)ej(ψq∨ψp)ek(ωq∨ωp), (37)

q ∪2 p = (|q| ? |p|)ei(θq+̈θp)ej(ψq+̈ψp)ek(ωq+̈ωp) (38)

where ? represents a t-conorm, and

i(θq+̈θp) =





i(θq + θp + π), if θq + θp ≤ −π,
i(θq + θp), if − π ≤ θq + θp < π,
i(θq + θp − π), if θq + θp ≥ π.

(39)

j(θq+̈θp) =





i(θq + θp + π/2), if θq + θp ≤ −π/2,
i(θq + θp), if − π/2 ≤ θq + θp < π/2,
i(θq + θp − π/2), if θq + θp ≥ π/2.

(40)

k(θq+̈θp) =





i(θq + θp + π/4), if θq + θp ≤ −π/4,
i(θq + θp), if − π/4 ≤ θq + θp < π/4,
i(θq + θp − π/4), if θq + θp ≥ π/4.

(41)

Both ∪1 and ∪2 satify the above four conditions.

Example 6. Let q = 0.6e−iπ/3ejπ/4ekπ/8, p = 0.5eiπ/2ejπ/8e−kπ/8 ∈ Q and ? = ∨, then

q ∪1 p = (0.6∨ 0.5)ei(−π/3)∨(π/2)ej(π/4)∨(π/8)ek(−π/8)∨(π/8)

= 0.6eiπ/2ejπ/4ekπ/8, (42)

q ∪2 p = (0.6∨ 0.5)ei(−π/3+̈π/2)ej(π/4+̈π/8)ek(−π/8+̈π/8)

= 0.6eiπ/6ej3π/8ek0. (43)

5.3. Quaternionic Fuzzy Intersection

Definition 4. A function ∩ : Q×Q→ Q is called a quaternionic fuzzy intersection if it satisfies
the following four conditions: ∀q, p, o, s ∈ Q

(1) amplitude boundary condition:

|q| = 1⇒ |p ∩ q| = |p|;

(2) amplitude monotonicity:
|q| ≤ |p| ⇒ |p ∩ o| ≤ |q ∩ o|;

(3) commutativity:
p ∩ q = q ∩ p;

(4) associativity:
p ∩ (q ∩ o) = (p ∩ q) ∩ o.

In addition, in some cases, ∩ should satisfy also the following conditions:

(5) continuity: ∩ is a continuous function;
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(6) amplitude superidempotency:
|p ∩ p| ≤ |p|;

(7) amplitude strict monotonicity:

|q| ≤ |p|, |o| ≤ |s| ⇒ |q ∩ o| ≤ |p ∩ s|.

Two examples are as follows: Let q = |q|eiθq ejψq ekωq and p = |p|eiθp ejψp ekωp

q ∩1 p = (|q| ∗ |p|)ei(θq∧θp)ej(ψq∧ψp)ek(ωq∧ωp), (44)

q ∩2 p = (|q| ∗ |p|)ei(θq+̈θp)ej(ψq+̈ψp)ek(ωq+̈ωp) (45)

where ∗ represents a t-norm. Both ∩1 and ∩2 satify the above four conditions.

Example 7. Let q = 0.6e−iπ/3ejπ/4ekπ/8, p = 0.5eiπ/2ejπ/8e−kπ/8 ∈ Q and ? = ∧, then

q ∩1 p = (0.6∧ 0.5)ei(−π/3)∧(π/2)ej(π/4)∧(π/8)ek(−π/8)∧(π/8)

= 0.5e−iπ/3ejπ/8e−kπ/8. (46)

q ∩2 p = (0.6∧ 0.5)ei(−π/3+̈π/2)ej(π/4+̈π/8)ek(−π/8+̈π/8)

= 0.5eiπ/6ej3π/8ek0. (47)

Now we consider two famous operations in quaternion theory: quaternionic dot
product and quaternionic product.

Lemma 1. Let p, q ∈ Q, then p • q ∈ [−1, 1] and pq ∈ Q.

Proof. Let p = p0 + p1i+ p2 j+ p3k and q = q0 + q1i+ q2 j+ q3k with
√

p2
0 + p2

1 + p2
2 + p2

3 ≤
1 and

√
q2

0 + q2
1 + q2

2 + q2
3 ≤ 1. We know pn, qn, (n = {0, 1, 2, 3}) are real numbers. By the

Cauchy–Schwarz inequality, we have

(p0q0 + p1q1 + p2q2 + p3q3)
2 ≤ (p2

0 + p2
1 + p2

2 + p2
3)(q

2
0 + q2

1 + q2
2 + q2

3) ≤ 1. (48)

Thus p • q ∈ [−1, 1]; pq ∈ Q because of |pq| = |p||q| ≤ 1.

Quaternionic dot product is closed over Q. However, it does not satisfy condition (1)
above.

Quaternionic product is also closed over Q. It satisfies above conditions (1), (2), (4)–(7).
In order to bring the quaternionic product into our study, we introduce the concept of
quaternionic fuzzy non-commutative intersection.

Definition 5. A function ∩ : Q × Q → Q is called a quaternionic fuzzy non-commutative
intersection if it satisfies above conditions (1), (2), and (4) in Definition 4.

Obviously, we have the following result.

Theorem 5. Quaternionic product over Q is a quaternionic fuzzy non-commutative intersection.

5.4. De Morgan’s Laws of Quaternionic Fuzzy Union and Intersection

Theorem 6. If t-norm ∗ and t-conorm ? are dual, i.e., ∀a, b ∈ [0, 1]

a ∗ b = 1− (1− a) ? (1− b), (49)

a ? b = 1− (1− a) ∗ (1− b), (50)
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then the quaternionic fuzzy union and intersection, respectively defined in Equations (42) and (46),
satisfy ∀p, q ∈ Q

¬2(p ∪1 q) = (¬3 p) ∩1 (¬2q), (51)

¬2(p ∩1 q) = (¬3 p) ∪1 (¬2q). (52)

Proof. Let q = |q|eiθq ejψq ekωq , p = |p|eiθp ejψp ekωp . Recall the definition ¬2, we have

¬2(p ∪1 q) = ¬
(
|q| ∗ |p|ei(θq∧θp)ej(ψq∧ψp)ek(ωq∧ωp)

)

= (1− |q| ∗ |p|)e−i(θq∧θp)e−j(ψq∧ψp)e−k(ωq∧ωp)

= (1− |q|) ? (1− |p|)e(−iθq)∨(−iθp)e(−jψq)∨(−jψp)e−(−kωq)∨(−kωp)

= (¬2 p) ∩1 (¬2q),

and

¬2(p ∩1 q) = ¬
(
|q| ? |p|ei(θq∨θp)ej(ψq∨ψp)ek(ωq∨ωp)

)

= (1− |q| ? |p|)e−i(θq∨θp)e−j(ψq∨ψp)e−k(ωq∨ωp)

= (1− |q|) ∗ (1− |p|)e(−iθq)∧(−iθp)e(−jψq)∧(−jψp)e−(−kωq)∧(−kωp)

= (¬2 p) ∪1 (¬2q).

Note that Equations (40) and (41) do not hold for ¬1.

5.5. Quaternionic Fuzzy Aggregation

Quaternionic fuzzy aggregation is specified by a function f : Qn → Q. Here we define
the quaternionic fuzzy weighted arithmetic (QFWA) aggregation operator as

QFWA(q1, q2, · · · , qn) =
n

∑
l=1

(
wlql

)
(53)

where wl ∈ Q for all l, and = ∑n
l=1 |wl | = 1.

Note: The purpose of quaternionic weights is to make the definition as general as
possible. In ordinary circumstances, weights are real-valued, i.e., wl ∈ [0, 1] with =

∑n
l=1 wl = 1. In the following, we only consider the real-valued weights.

We show that QFWA aggregation operator is closed over Q.

Theorem 7. If q1, q2, · · · , qn ∈ Q, then QFWA(q1, q2, · · · , qn) ∈ Q for any real-valued weights,
i.e., wl ∈ [0, 1] with = ∑n

l=1 wl = 1.

Proof. For any real-valued weights wl ∈ [0, 1] with = ∑n
l=1 wl = 1, since |ql | ≤ 1 for all l,

we have

|QFWA(q1, q2, · · · , qn)| = |w1q1 + w2q2 + · · ·+ wnqn|
≤ |w1q1|+ |w2q2|+ · · ·+ |wnqn|
= w1|q1|+ w2|q2|+ · · ·+ wn|qn|
≤ w1 + w2 + · · ·+ wn

= 1.

Thus QFWA(q1, q2, · · · , qn) ∈ Q.
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If wl = 1/n for all l, then the QFWA aggregation operator is the arithmetic average
of quaternions q1, q2, · · · , qn, denoted by quaternionic fuzzy arithmetic average (QFAA)
operator, i.e.,

QFAA(q1, q2, · · · , qn) =
n

∑
l=1

ql
n

. (54)

Obviously, the QFWA aggregation operator is a generalization of the complex fuzzy
weighted arithmetic aggregation operator in [12,45].

6. Quaternionic Fuzzy Relations

In this section, we introduce the concepts of quaternionic fuzzy relations.

Definition 6. Let U and V be two universes of discourse. A quaternionic fuzzy relation Q(U, V) is
a quaternionic fuzzy subset of the product space U×V; Q(U, V) is characterized by the quaternion-
valued membership function µQ(u, v), where u ∈ U and v ∈ V.

Then we define the compositions of quaternionic fuzzy relations as follows.

Definition 7. Let Q(U, V) and S(V, W) be two quaternionic fuzzy relations over U × V and
V ×W, respectively. Their composition is Q ◦ S(U, W) whose membership function is

µQ◦S(u, w) =
⋃

v∈V

(
µQ(u, v) ∩ µQ(v, w)

)
(55)

where ∪ and ∩ are quaternionic fuzzy union and intersection, respectively.
Let U and V be two universes of discourse. A quaternionic fuzzy relation Q(U, V) is a

quaternionic fuzzy subset of the product space U ×V; Q(U, V) is characterized by the quaternion-
valued membership function µQ(u, v), where u ∈ U and v ∈ V.

Example 8. Let Q and S be two quaternionic fuzzy relations defined as

Q =




0.4ei0.1e−j0.2e−k0.3 0.8ei0.5e−j0.8e−k0.8

0.4e−i0.5e−j0.5e−k0.5 0.7e−i0.1e−j0.5e−k0.4

0.9ei0.5ej0.6ek0.6 0.7ei0.5e−j0.1ek0.2


,

S =

[
0.3ei0e−j0.6e−k0.5 0.6ei0.5e−j0.5e−k0.5

0.1ei0.5ej0.4ek0.3 0.7ei0.5e−j0.5ek0.5

]
.

Let ∗ = ∨ and ? = ∧, by using ∪1 and ∩1, then

Q ◦ S =




0.3ei0.5e−j0.6e−k0.5 0.7ei0.5e−j0.5e−k0.5

0.3e−i0.1e−j0.5e−k0.4 0.7e−i0.1e−j0.5e−k0.4

0.3ei0.5e−j0.1ek0.2 0.7ei0.5e−j0.5ek0.2




7. Rotational Invariance

In the case of complex fuzzy logic, rotational invariance of complex fuzzy operations
is studied in [23,46]. For a complex number c ∈ C, eiθc is referred to as the rotated vector
of c. We consider c as a two-dimensional vector, and then we just rotate this vector about
the origin counterclockwise by θ radians and obtain eiθc.

Now we consider a quaternion p ∈ H; let q ∈ H and |q| = 1, then |p · q| = |q · p| = |p|.
Because p · q 6= q · p, so p · q and q · p maybe are two different rotated vectors of p. We write
p · q as the right-rotated vector of p and q · p as the left-rotated vector of p.

In this section, we investigate the rotational invariance of quaternionic fuzzy operations.
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Definition 8. Let f : Qn → Q be an n-order function; f is right-rotationally invariant if

f
(

p1 · q, p2 · q, · · · , pn · q
)
= f (p1, p2, · · · , pn) · q, (56)

for any p1, p2, · · · , pn ∈ Q and q ∈ Q with |q| = 1.

Definition 9. Let f : Qn → Q be an n-order function; f is left-rotationally invariant if

f
(
q · p1, q · p2, · · · , q · pn

)
= q · f (p1, p2, · · · , pn), (57)

for any p1, p2, · · · , pn ∈ Q and q ∈ Q with |q| = 1.

Right-rotational invariance and left-rotational invariance are two different concepts
since pq 6= qp for some p, q ∈ Q. Right-rotational invariance and left-rotational invari-
ance are equivalent when we limit the values p1, p2, · · · , pn and q to complex numbers C.
Clearly, right-rotational invariance and left-rotational invariance are generalizations of
Dick’s rotational invariance [23] in the case of complex fuzzy logic.

Theorem 8. If f : Q → Q is defined as f (p) = −p, then it is both right- and
left-rotationally invariant.

Proof. For any quaternion |q| = 1, we have f (pq) = −pq = (−p)q = f (p)q and f (qp) =
−qp = (−q)p = f (q)p.

Theorem 9. ¬1 is both right-rotationally invariant and left-rotationally invariant.

Proof. For any quaternion p = |p|eiθejψekω, let q = eiθ′ ejψ′ ekω′ because |q| = 1, then
pq = |p|eiθejψekωeiθ′ ejψ′ ekω′ . Therefore, we have ¬1(pq) = (1− |p|)eiθejψekωeiθ′ ejψ′ ekω′ =(
(1− |p|)eiθejψekωeiθ′)ejψ′ ekω′ = ¬1(p)q. Similarly, we have ¬1(qp) = q¬1(p).

Theorem 10. ¬2 is neither right-rotationally invariant nor left-rotationally invariant.

Proof. Consider p = 0.6e−iπ/2, ¬2 p = (1− 0.6)e−i(−π/2) = 0.4eiπ/2. Let q = e−iπ/4 then
¬2(pq) = 0.4ei(−π/2−π/4) = 0.4e−i3π/4, but¬2(p)q = 0.4eiπ/2e−iπ/4 = 0.4ei(π/4) 6= ¬2(pq).
Similarly, we have q¬2(p) 6= ¬2(qp).

Theorem 11. The quaternionic dot product is neither right-rotationally invariant nor
left-rotationally invariant.

Proof. Consider p1 = 0.5i and p2 = 0.5i. By definition, their dot product is −0.25. Now,
let q = i, consider their right-rotated values p1q = −0.5 and p1q = −0.5, their dot
product is (p1q) • (p2q) = 0.25, but (p1 • p2)q = −0.25. Similarly, we have (qp1) • (qp2) 6=
q(p1 · p2).

Theorem 12. The quaternionic product is neither right-rotationally invariant nor
left-rotationally invariant.

Proof. Consider i and j. By definition, their product is k. Now, consider their right-rotated
values ij = k and jj = −1, their product is −k, but kj = −i 6= −k. Similarly, consider their
left-rotated values ji = −k and jj = −1, their product is k, but jk = i 6= k.

Theorem 13. ∪1, ∪2, ∩1, and ∩2 are neither right-rotationally invariant nor
left-rotationally invariant.
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Proof. Here, we just give the proof of that ∩1 is not right-rotationally invariant. Consider
complex numbers aeiθ1 and beiθ2 .

aeiθ1 eiθ3 ∩1 beiθ2 eiθ3 = (a ∧ b)ei(θ1+̈θ3+̈θ2+̈θ3) 6= (a ∧ b)ei(θ1+̈θ2+̈θ3) = (aeiθ1 ∩1 beiθ2)eiθ3 .

Other cases can be proved in a similar way.

Theorem 14. The QFWA aggregation operator is both right- and left-rotationally invariant.

Proof. For any p1, p2, · · · , pn ∈ Q and q ∈ Q with |q| = 1, we have

QFWA(p1 · q, p2 · q, · · · , pn · q) = w1 p1 · q + w2 p2 · q + · · ·+ wn pn · q
=

(
w1 p1 + w2 p2 + · · ·+ wn pn

)
· q

= QFWA(q1, q2, · · · , qn) · q.

Thus, the QFWA aggregation operator is right-rotationally invariant.
For any real-valued weights wl ∈ [0, 1], we have wlq = qwl . Then

QFWA(q · p1, q · p2, · · · , q · pn) = w1q · p1 + w2q · p2 + · · ·+ wnq · p1

= qw1 · p1 + qw2 · p2 + · · ·+ qwn·1
= q ·

(
w1 p1 + w2 p2 + · · ·+ wn pn

)

= q ·QFWA(q1, q2, · · · , qn).

Thus, the QFWA aggregation operator is left-rotationally invariant.

Let p = (p1, p2, · · · , pn) be a quaternionic vector; pq = (p1 · q, p2 · q, · · · , pn · q) is the
right-rotated vector of p and qp = (q · p1, q · p2, · · · , q · pn) is the left-rotated vector of p.
Rotational invariance in the above theorem states that the aggregated result QFWA(pq)
is the right-rotated vector of the aggregated result QFWA(p), and QFWA(qp) is the left-
rotated vector of the aggregated result QFWA(p).

The rotational invariance of quaternionic fuzzy operations are summarized as in
Table 1. As can be seen, ¬1 could be a both right- and left-rotationally invariant complement;
f (p) = −p is both right- and left-rotationally invariant, but on the other hand, is not a
quaternionic fuzzy complement of Definition 2. Quaternionic product, quaternionic dot
product, and ∪1,∪2,∩1,∩2 are neither right-rotationally invariant nor left-rotationally
invariant. We need a more comprehensive concept of rotational invariance for quaternionic
fuzzy operations. Interestingly, the QFWA aggregation operator is a both right- and left-
rotationally invariant operator.

Table 1. Rotational invariance of quaternionic fuzzy operations

Right-Rotationally Invariant Left-Rotationally Invariant

− √ √
Quaternionic product × ×
Quaternionic dot product × ×
¬1

√ √
¬2 × ×
∪1,∪2,∩1,∩2 × ×
QFWA

√ √
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8. Concluding Remarks

A new concept of QFS was introduced in this paper. QFS allows quaternion-valued
membership grade with four representative parameters. We gave a discussion of the intu-
itive interpretation of quaternion-valued membership grade. Several quaternionic fuzzy
operations, including complement, union, intersection, and aggregation, were presented.
Rotational invariance of these quaternionic fuzzy operations was also studied.

QFS is a promising novel concept. Obviously, many theoretical studies and application
development are possible topics for future consideration. We present our views on theories
and potential applications.

(1) Geometric properties of complex fuzzy operations are often studied and analyzed by
scholars, such as continuity [47] and preserving orthogonality [14]. These properties
are important for both complex fuzzy operations and quaternionic fuzzy operations.
Moreover, we should consider some special properties only for quaternionic fuzzy
operations but not for complex fuzzy operations.

(2) We should consider the quaternionic fuzzy logic for logical reasoning based on QFS.
Obviously, a more detailed discussion of the axiomatization of quaternionic fuzzy
logic is necessary.

(3) CFS is often used to construct complex-valued neuro-fuzzy systems to solve practical
problems [48]. Recently, quaternion-valued neural networks have received an increas-
ing amount of interest [30]. It will be meaningful to construct quaternion-valued
neuro-fuzzy systems to solve practical problems.

(4) Quaternions are a powerful tool for describing the orientation of an object in 3D space;
as a result, they are highly efficient and well-suited for solving rotation and orientation
problems in the areas of computer graphics, robotics, and animation [33,34]. These
areas are also potential applications of QFSs.
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