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Abstract: Further measurements of delay time, in the transfer of modulation between microwave
beams, are reported even considering the angular dependence in the orientation of the F1 c.w.
launcher. The obtained results allow for a better interpretation of the observed phenomenology on
the basis of a more sophisticated analysis, which takes into account the presence of pole singularities
in field-amplitude evaluations according to the saddle point method. The model already presented in
one of our previous publications, consisting of a photon–photon scattering mechanism as concomitant
with a stochastic process, is then confirmed.
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1. Introduction

The present work, which can be considered as a continuation of what is given in [1], is
devoted to reporting further more accurate results, related to the delay time that occurs
in the modulation transfer between microwave beams. In particular, further information
about the origin of the modulation transfer event can be supplied by studying the angu-
lar dependence in the orientation of the launcher of the F1 c.w. beam. The origin of the
observed phenomenology [1] has been firstly recognized in Refs. [2,3] and explained by
assuming that the nature of the process is stochastic. Indeed, the model adopted in [2],
although still based on the competition of two waves, only one of which assumed mod-
ulated, while the other is c.w., hypothesized the stochastic nature of the process only as
collateral aspect. On the contrary, in [3], the possibilities offered by the stochastic character
were examined in two possible ways. One interpreted the delay-time as resulting from
zig-zag random paths experienced by the “particle”: a kind of motion that is equivalent
to the telegrapher’s equation [4,5]. The other way, already based on a more conventional
electromagnetic approach [6]—the same is also adopted in the present work—was depen-
dent on the stochastic nature for the presence of a dissipative parameter in Equation (3)
there reported; see below Equation 1 in the present paper. Then, as in Ref. [1], the model
was perfected with the combination of a photon-photon scattering mechanism. This latter
was made plausible by making use of considerations of relativistic nature, which lead to a
photon virtual mass sufficiently large to well support the hypothesized model.

This fact was even a consequence of the inversion of roles between “real time” and
“randomized time” [4,5], this latter becoming an observable quantity as usually occurs in
classically forbidden processes [1].

The present work is organized as follows. In Section 2, we briefly describe the exper-
imental setup. In Section 3, we present new experimental results of the delay time and
their preliminary interpretation. Section 4 is devoted to a more sophisticated analysis of
the experimental results, and the concluding remarks are given in Section 5.
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2. Experimental Method

Delay-time measurements, in the transfer of modulation between microwave beams,
have been performed using the experimental setup similar to the one in Ref. [1], apart from
the possibility of the orientation of the F1 launcher. It essentially consists of two crossing
microwave beams originated by the same generator at 9.3 GHz, one of which F1 in c.w., the
other F2 modulated by a square wave at ∼800 Hz; the receiver was placed in front of the F1
launcher at a variable distance ρ, and α is the tilting angle, see Figure 1.
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Figure 1. The experimental setup operating at 9.3 GHz. The typical geometry consisted of two
horn antennas as launchers for the F1 c.w. beam and the F2 modulated beam, traveling through a
composed pupil in order to reduce its width. The receiver horn antenna was placed at distance ρ from
the F1 launcher, where α represents its tilting angle. All the dimensions are expressed in centimeters.

3. Delay-Time Results: A Preliminary Interpretation

The measurements were performed over the rise or the fall time (of the order of
nanoseconds) of the square-wave modulation. The results relative to two determinations
vs. ρ ( with ρ comprised between 15 and 52 cm) are reported in Figure 2; they show a rather
regular oscillating behavior with a spatial periodicity of about 8 cm.

A plausible interpretation of this behavior can be given invoking a model based on
the competition (interference) of two waves propagating along two directions forming an
angle δ between them. According to the analysis of Ref. [6], the resulting delay can be
expressed as

τϕ

T
= ± dϕ

d(kl)
= ± (E2/E1)

2 + (E2/E1) cos kl
1 + (E2/E1)2 + 2(E2/E1) cos kl

, (1)

where E1 and E2 are the amplitude relative to F1 and F2 beam, respectively. According to
the assumed stochastic nature of the process [2,3], the propagation constant kl is given by
2a(ρ− ρi)/v, where a is the dissipative parameter entering the telegrapher’s equation [4,5],
ρi is the initial value of ρ, and v the propagation velocity. By using R = (E1 + E2)/(E1− E2)



Axioms 2023, 12, 492 3 of 8

in Equation (1), we obtain the following expression, suitable for describing the experimental
data in Figure 2:

τ(ρ) = A

(
R−1
R+1

)2
+
(

R−1
R+1

)
cos[2a(ρ− ρi)/v]

1 +
(

R−1
R+1

)2
+ 2
(

R−1
R+1

)
cos[2a(ρ− ρi)/v]

e−ρ/ρ0 + C1,2 (2)

where A < 0, according to the negative determination in Equation (1), has to be consid-
ered as a fitting parameter, e−ρ/ρ0 accounts for the evident amplitude damping, and the
constant C1,2 for the data offset. The resulting curves obtained for parameter values such
as A = −11 ns, R = 3, ρi = 14 cm, ρ0 = 25 cm, C1 = 8 ns, C2 = 3 ns, and a/v = 0.3925, in
order to have a spatial period of ∼8 cm, are depicted in Figure 1 and represent a rough but
plausible description of the experimental data there reported.

Figure 2. Two determinations of delay-time, relative to the rise time (τ1) and the fall time (τ2) of
the square wave modulating the F2 beam, measured for α ' 0◦, as a function of the distance ρ.
The continuous lines were obtained using Equation (2) for parameter values as given in the text, the
open symbols (circle and square) refer to the first determination, while the filled ones to the second.

The resulting spatial period can be interpreted, as anticipated above, assuming a
competition (interference) of two waves forming an angle δ between their respective
directions of propagation. For a given δ value, the dephasing between them, under the
approximation of plane waves, will be given by N(1− cos δ)/ cos δ, and in order to reobtain
zero dephasing we need a number N of steps such that N(1− cos δ)/ cos δ ' 1. This
corresponds to a spatial period ∆ρ = Nλ/2, the factor 1/2 being due to the plausible
existence of standing wave behavior, so that the length of the steps to be considered is not
λ but rather λ/2 [7], see Table 1.

Table 1. The spatial period ρ, corresponding to different values of δ, is reported for λ = 3.226 cm.

δ(◦)
(1− cos δ)/ cos δ N(1− cos δ)/ cos δ ' 1 ∆ρ = Nλ/2 (cm)

N

42 0.346 3 4.84
38 0.269 4 6.45
34 0.206 5 8.07
32 0.179 6 9.68
25 0.103 10 16.13
20 0.064 16 25.81
15 0.035 30 48.35
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From the data reported in Table 1, we have that the observed spatial period, ∆ρ ' 8 cm
of Figure 2, corresponds to an angle δ ' 34◦ between the direction of these waves. A more
accurate and plausible interpretation will be given in Section 4.

In addition to the results reported in Figure 2, we have extended the delay-time
measurements to the case in which a tilting angle α of the F1 launcher was about ±20◦,
see Figures 3 and 4. The data there reported, even if comparable with those contained in
Figure 2 obtained with α ' 0◦, exhibit a less regular behavior with respect to that of Figure 2,
but the resulting spatial periodicity is certainly decidedly increased, up to 15–20 cm. This
latter value can be attributed to values of δ of 20–25◦, see Table 1. In Section 4, we will go
into detail regarding this latter aspect.

Figure 3. Same as Figure 2 for a tilting angle α ' 20◦, without fitting curve.

Figure 4. Same as Figure 3 for a tilting angle α ' −20◦.

4. Delay-Time Analysis

In this section, we will try to overcome the interpretation given in Section 3 for
the delay-time results, providing a more convincing one. First, we have to note, as re-
marked since Ref. [1], that we are not dealing with long-range propagation but rather with
a near-field situation.

Let us assume that the radiated field from the launcher F1 can be expressed as that of a
rectangular aperture having the dimensions of the mouth of the horn launcher, as schemati-
cally depicted in Figure 5. For simplicity, let us also assume the aperture dimensions as
very large even along η (d� λ), that is, we assume the behavior to be independent on this
coordinate; ξ, η, and ζ being the references axes with their origin O located in the center of
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the aperture. Under these assumptions, the field in the semi-space ξ > 0 can be expressed,
in the scalar approximation, as a superposition of the plane waves in the form [8]

F(ξ, ζ) = e−iωt
∫ +π/2

−π/2
A(z) exp[ik(ξ cos z + ζ sin z)]dz, (3)

where z is the angle (in the ζ, ξ plane) of the normal of the elementary wave with the ξ axis,
k = 2π/λ is the wave number, and ω = 2πν is the angular frequency.









O
d

z

Figure 5. Schematic representation of the mouth of the F1 horn launcher as an aperture in the Σ plane
with the adopted coordinate axes.

In order to reproduce the field distribution in the Σ-plane of the aperture, we have to
extend the limits of the integration of z in the complex plane by putting z = x + iy and
ξ = ρ cos α, ζ = ρ sin α, ρ and α being the polar coordinates of the observation point, again
in the ζ, ξ plane.

In consideration of this fact, and by substituting, the integral in Equation (3) becomes∫
C

A(z) exp[ik(ρ cos(z− α))]dz, (4)

where the integration path C is represented in Figure 6. For ρ � λ, we can evaluate
the integral (4) in the saddle-point approximation. In this way, the original integration
path C0 is deformed in the steepest-descent path C, given by one branch of the equation
cos(x− α) cosh y = 1, which crosses the real axis at z = α with an angle equal to −π/4,
see Figure 6.

In deforming the integration path, we have to consider the pole contribution if the
amplitude A(z) contains singularities in the region of the path-deformation.

Let us suppose that there are two poles at the complex points β± = ±(βr − iβi).
Depending on the α value, one or both poles can be captured by the deformed path. In the
examples of Figure 6, with βr ' 30◦ and βi ' 10◦, we have that, for α = 20◦, only the pole
at β− is captured; analogously, for α = −20◦, only the pole at β+ is captured; whereas, for
α = 0◦, both poles at β± are captured.
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(a) (b)

(c)
Figure 6. The original integration path C0 is deformed into the steepest-descent path C taking into
account the presence of pole singularities. In (a), case α ' 0◦, both the poles at β± are captured, and
each one contributed as in (5). In (b), the case of α ' +20◦, only the pole at β− is captured, while the
one at β+ is not, but it contributes by Equation (7). In (c), case α ' −20◦, the pole at β+ is captured
and β− contributes by Equation (7). In the shaded areas, we have superluminal behavior.
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When one pole is captured, the integral (4) can be expressed as

A(α)

(
λ

ρ

)1/2
exp[i(kρ− π/4)] + 2πi res[A(z→ β)] exp[ikρ cos(β− α)], (5)

where the first term represents the normal (saddle-point) contribution: a cylindrical wave
according to this unidimensional model; while the second one, due to the pole, represents
a complex wave. Depending on the values of ρ and α, this second contribution can even
prevail, in the near field, over the first one, especially when, according to the bidimensional
model, the normal contribution becomes A(α)(λ/ρ) exp[i(kρ− π/2)]. This latter properly
represents a spherical wave that attenuated like λ/ρ and not like (λ/ρ)1/2 as in (5) for the
cylindrical wave [9].

By putting res[A(z→ β)] = Ā(β) and recalling that β = βr − iβi, the contribution of
the pole becomes:

2πiĀ(β) exp[ikρ cos(βr − α) cosh βi − kρ sin(βr − α) sinh βi]. (6)

This represents a wave propagating in the βr direction, with a velocity along a path
with an angle α (phase-path velocity) given by vpp = c/(cos(βr − α) cosh βi) where c
is the light velocity in a vacuum, and that, depending on β and α, can be greater than
c (superluminal behavior). Its amplitude attenuates with increasing α and ρ, while for
βr → α and βi → 0, its contribution may be the dominant one in (5).

However, even if the pole is not captured by the steepest-descent path C, we still have
a contribution that, according to Ref. [10], can be expressed, apart from the saddle-point
contribution, as

I(Ω) ' eiΩ
[
±i2
√

πe−Ωb2
Q(∓ib

√
Ω)
]
, (7)

where Ω = kρ, b = {i[1− cos(β− α)]}1/2, Imb ≷ 0, and Q(y) =
∫ ∞

y e−x2
dx is the error

function complement.
On the basis of the above considerations Equations (5)–(7), we can better explain the

results reported in Figures 2–4. When the tilting angle of the launcher F1 is nearly zero
(α ' 0, in the case of Figure 2), the more probable situation of the integration path is the
one represented in Figure 6a. In this case in order to reproduce the spatial periodicity
∆ρ ' 8 cm of Figure 2, both poles at ±β are captured, with values of ±βr nearly coincident
with δ ' 34◦. The two involved waves are those of Equation (5), the periodicity of the
amplitude is the one in (6), given by cos(βr − α) cosh βi, with βr − α ' δ and cosh βi ' 1.
This, in turn, causes the periodicity in τ(ρ), Equation (2), analogously to what is shown in
the case of Ref. [6].

In the cases of tilting angles α ' ±20◦ (Figures 3 and 4), the situation is different,
as shown in Figure 6b,c. There, we have that only one pole, β− for α ' 20◦, is captured
while β+ is not, but it is located near the saddle-point, so that its contribution, according
to Equation (7), may be the prevalent one causing a periodicity, determined by b2 in
Equation (7), that is, by β+

r − α ' 34◦ − 20◦ = 14◦, a value that, according to Table 1,
would produce a periodicity exaggerated to a size of '37 cm, while the value resulting
from Figures 3 and 4, as previously noted, is about 15–20 cm.

However, we have to remark that the contribution due to the captured pole β−,
although presumably of minor importance due to the distance from the saddle-point with
β−r + α = 54◦, would produce a periodicity of less than 4 cm. This latter was not evidenced
in the experiments (Figures 3 and 4), but it is reasonable to assume it may influence the
observation. For α = −20◦, the situation is similar to the role of the inverted poles.

5. Concluding Remarks

On the basis of the results reported above, along with their interpretation, it can be
safely concluded that the observed behavior, i.e., the angular dependence of the time
delay, confirms the assumptions made about the theoretical modeling adopted. As for



Axioms 2023, 12, 492 8 of 8

the resulting values of βr = ±34◦, we note that they are comparable with those obtained
in single beam experiments, see f.i. Figure 7 contained in Ref. [8] where βr resulted to
be ±27◦.

As for the origin of the transfer of modulation between the two beams, the hypothesis
made in Ref. [1] is still tenable, once demonstrated that the cross-talking between F1 and
F2 launchers is indeed negligible. In fact, the ratio S/SR of the intensities, relative to the
signal S and to the residuals SR, turned out to be of the order of 102, a value that makes the
SR contribution, even if still present, of secondary importance [11].

In particular, as recalled in the Introduction, the modulation transfer has been hypoth-
esized as due to a photon–photon scattering mechanism occurring in the presence of a
stochastic process. Arguments in favor of this assumption have been given in [1] on the
basis of relativistic considerations [12], see also references [13–17] for related topics.

Author Contributions: Conceptualization, I.C. and A.R.; Methodology, I.C. and A.R.; Investigation,
I.C. and A.R.; Writing—original draft, I.C. and A.R.; Writing—review & editing, I.C. and A.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ranfagni, A.; Cacciari, I. Modulation Transfer between Microwave Beams: A Hypothesized Case of a Classically-Forbidden

Stochastic Process. Axioms 2022, 11, 416. [CrossRef]
2. Cacciari, I.; Mugnai, D.; Ranfagni, A.; Petrucci, A. Cross-modulation between microwave beams interpreted as a stochastic

process. Int. J. Mod. Phys. B 2021, 35, 2150037. [CrossRef]
3. Cacciari, I.; Mugnai, D.; Ranfagni, A. Delay time in the tansfer of modulation between between microwave beams. Eng. Rep.

2021, 3, e12392.
4. Kac, M. A Stochastic Model Related to the Telegrapher’s Equation. Rocky Mountain J. Math. 1974, 4, 497–509. [CrossRef]
5. DeWitt-Morette, C.; Foong, S.K. Path-integral solutions of wave equations with dissipation. Phys. Rev. Lett. 1989, 62, 2001–2004.

[CrossRef] [PubMed]
6. Mugnai, D.; Ranfagni, A. Microwave propagation of surface waves. Opt. Commun. 2014, 313, 22–26. [CrossRef]
7. Terman, T.E. Electronic and Radio Engineering; McGraw-Hill: New York, NY, USA, 1955; Chapter 4.
8. Ranfagni, A.; Fabeni, P.; Pazzi, G.P.; Mugnai, D. Anomalous pulse delay in microwave propagation: A plausible connection to the

tunneling time. Phys. Rev. E 1993, 48, 1453–1460. [CrossRef] [PubMed]
9. Ranfagni, A.; Agresti, A.; Cacciari, I. Angular dependence in anomalous microwave propagation: A bidimensional treatment. J.

Appl. Phys. 2014, 115, 104902. [CrossRef]
10. Felsen, L.B.; Marcovitz, N. Radiation and Scattering of Waves; Prentice Hall: Englewood Cliffs, NJ, USA, 1973; Chapter 4.
11. Cacciari, I.; Ranfagni, A. On the origin of the transfer of modulation between microwave beams. Mod. Phys. Lett. B 2022,

36, 2250096. [CrossRef]
12. Toraldo di Francia, G. L’indagine del Mondo Fisico; Giulio Einaudi: Torino, Italy, 1976; p. 338.
13. Radice, M. One-dimensionale telegraphic process with noninstantaneous stochastic resetting. Phys. Rev. E 2021, 104, 044126.

[CrossRef] [PubMed]
14. Giona, M.; Cairoli, A.; Klages, R. Extended Poisson-Kac theory: A unifying framework for stochastic processes with finite

propagation velocity. Phys. Rev. X 2022, 2, 021004. [CrossRef]
15. Luo J.; Tu, L.C.; Hu, Z.K.; Luan, E.J. New Experimental Limit on the Photon Rest Mass with a Rotating Torsion Balance. Phys. Rev.

Lett. 2003, 90, 081801. [CrossRef] [PubMed]
16. Jacobson, T.; Schulman, L.S. Quantum stochastics: The passage from a relativistic to a non-relativistic path integral. J. Phys. A

1984, 17, 375–383. [CrossRef]
17. Feynman, E.R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965; Chapter 7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/axioms11080416
http://dx.doi.org/10.1142/S0217979221500375
http://dx.doi.org/10.1216/RMJ-1974-4-3-497
http://dx.doi.org/10.1103/PhysRevLett.62.2201
http://www.ncbi.nlm.nih.gov/pubmed/10039884
http://dx.doi.org/10.1016/j.optcom.2013.09.052
http://dx.doi.org/10.1103/PhysRevE.48.1453
http://www.ncbi.nlm.nih.gov/pubmed/9960734
http://dx.doi.org/10.1063/1.4868089
http://dx.doi.org/10.1142/S0217984922500968
http://dx.doi.org/10.1103/PhysRevE.104.044126
http://www.ncbi.nlm.nih.gov/pubmed/34781456
http://dx.doi.org/10.1103/PhysRevX.12.021004
http://dx.doi.org/10.1103/PhysRevLett.90.081801
http://www.ncbi.nlm.nih.gov/pubmed/12633416
http://dx.doi.org/10.1088/0305-4470/17/2/023

	Introduction
	Experimental Method
	Delay-Time Results: A Preliminary Interpretation
	Delay-Time Analysis
	Concluding Remarks
	References

