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Abstract: In this paper, we calculate premiums that are based on the Conditional Tail Expectation
(CTE) and asymmetric loss functions to account for the risk of both underestimation and overestima-
tion losses. After selecting an appropriate loss function, the premium is calculated as the quantity
minimizing an objective function related to the conditional tail expectation of the loss. The premium
satisfies desirable properties, i.e., it is a coherent risk measure, and it helps the practitioner to quantify
the global risk of the insurer. Finally, this methodology is applied to quantify the risks associated to
the total claims amount that are modelled via composite models and comparisons with the usual risk
measures, i.e., Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) are carried out.
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1. Introduction

In insurance and finance, risk measures are used to find appropriate provisions and
capital requirements to avoid insolvency. Since the risks are usually modelled as non-
negative and continuous random variables, measuring risk is equivalent to establishing
a correspondence between the space of random variables and R+. In general, a positive
real number (i.e., the premium) is the price paid periodically to the insurance company
by the insureds for covering their risk. In this paper, our interest lies in risk measures
that measure the upper tails of the distribution functions associated with the risk since the
more dangerous the risk is, the larger must be the risk measure. Finding appropriate risk
measures is also a crucial aspect in premium calculation. Among the different types of risk
measures, the coherent risk measures have been traditionally used in actuarial science since
they satisfy interesting properties, see for example [1–4]; among others. Within financial
economics, there are many ways to describe risk, and each method of measuring risk
will be able to cover specific features. A traditional way to describe a risk is in terms
of a coherent risk measure which is a function that considers translational invariance,
monotonicity, homogeneity and subadditivity. Most experienced investors and actuaries
have used a coherent risk measure in their usual practice. These risk measures that satisfy
these mathematical properties can be very useful for determining the amount of risk an
investment could incur. A premium is the payment that an insured makes for total or
partial cover against a risk. A premium principle is a procedure to assign a premium to
a risk, say X a positive real number. Formally speaking, it is a functionalH, that assigns
to any risk X, a positive real number H(X), the premium for taking the risk X (see [5]).
For that we assume a loss function L : R2 → R assigning to the pair (x, P) ∈ R2, the
loss sustained by the policyholder who is charged a premium P for taking the risk X,
and x is the realization of a risk X. Then H(X), is determined in such a way that the
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expected loss is minimised. In this paper, we are deriving premiums via an asymmetric
loss function. The use of asymmetric loss functions in actuarial statistics is, as far as we
know, limited to [6,7] who introduced the weighted balanced loss function proposed by
Zellner [8] (pp. 371–390) into the credibility theory setting, and the credibility estimators
with a general 0-1 loss function, respectively. The weighted balanced loss function is a
generalization of the weighted loss function [5] and has been applied in other scenarios
in [9,10]. For a theoretical study about asymmetric loss functions, it is advisable to read the
work of [11].

One of the most popular choices among the coherent risk measures is the Conditional
Tail Expectation (CTE) that coincides with the Tail Value-at-Risk (TVaR) for continuous
random variables (see [12,13]). This risk measure can be obtained as a distorted expec-
tation following the methodology of [14]. Here, following the work of [15], we derive a
methodology for charging a fair premium based on coherent risk measures and asymmetric
loss functions to account for the risk of both underestimation and overestimation losses.
Once the loss function is established, the risk measure technique is applied to calculate
the global risk of the insurer by solving a minimization problem. Then, the premium is
obtained as the amount minimising the risk of the insurer’s loss. Finally, this methodology
is applied to explain the risks associated to the total claims amount in the collective risk
model. We model the losses via composite models which have received a lot of attention
in the recent actuarial literature to describe insurance loss data when the claims faced by
insurers are a mixture of moderate and large claims (see [16–18], among others). Another
advantage of composite models is that for a good deal of the available models, there exist
analytical expressions for some important risk measures such as Value-at-Risk (VaR) and
TVaR (see [19]). As an application, we use the composite lognormal-Lomax (CLL) model to
calculate the premiums obtained by using this technique. Comparisons are made with the
premiums calculated applying the usual CTE or TVaR.

The remainder of this paper is structured as follows. In Section 2 we provide a
procedure for calculating the optimal premium when the risk measure is the CTE and
an asymmetric loss function is considered. Some risk measures of composite models are
examined in Section 3. A specific example of composite model is provided in Section 4, the
CLL model. Numerical applications using a real dataset are studied in Section 5 and final
comments are given in Section 6.

2. Premium Calculation Minimizing the CTE under Asymmetric Loss

We now define the risk-adjusted optimal premium as the amounts P̂X,α and δ̂X,α
minimizing the conditional tail expectation of the loss function, i.e., CTE(L(x, P)). Note
that these quantities depend on the probability level α, with 0 < α < 1, and the risk X with
distribution function FX(·) and density function fX(·).

Firstly, to make the paper self-contained, we need to define the Value-at-Risk (VaR)
and the Conditional Tail Expectation (CTE) see for example Chapter 5 in [20].

Definition 1. Giving a probability level α ∈ (0, 1), the Value-at-Risk (VaR) is the lowest amount
δ ≥ 0, such that with probability α, the loss will not exceed δ, that is,

VaRα(P) = min{δ ∈ R+ : Pr(L(x, P) ≤ δ) ≥ α}.

Definition 2. The associated Conditional Tail Expectation (CTE) is the conditional expectation
above that quantity δ,

CTEα(P) =
1

1− α

∫

L(x,P)≥VaRα(P)
L(x, P) fX(x) dx.

Following Theorem 2 in [12], by using the convex and continuously differentiable
function with respect to the two variables
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V(P, δ) = δ +
1

1− α

∫ ∞

0
(L(x, P)− δ)+ fX(x)dx, (1)

and that the minimization of this function produces a pair (P̂X,α, δ̂X,α) such that P̂X,α
uniquely minimizes CTEα(P), and δ̂X,α, if unique, give the value VaRα(P̂X,α). In (1),
(L(x, P)− δ)+ = L(x, P)− δ if L(x, P) ≥ δ and(L(x, P)− δ)+ = 0 if L(x, P) ≤ δ.

Let us consider the following asymmetric loss (see [5])

L(x, P) = γ(x− P)+ + (1− γ)(x− P)−, (2)

for some γ, such that 0 ≤ γ ≤ 1. The loss function (2) gives rise to a premium which is the
γ-quantile of the risk X, i.e., the percentile premium principle. For the case γ = 1, L(x, P) =
(x− P)+, the maximal loss function is obtained (see for instance [7]). It is associated with
maximal loss sustained by the policyholder who takes the premium P and is faced with
the outcome x of some risk X. For the case γ = 0, L(x, P) = (x − P)− = (P− x)+. It is
associated with maximal loss sustained by the insurance company who offers the premium
P and is faced with the outcome x of some risk X.

By selecting this asymmetric loss, the loss is not only measured in monetary units but
also under appropriate values of the weight γ we can distinguish between the insurer’s
loss and and the loss of the insured. Another advantage of asymmetric loss functions is that
they apply a different penalty to different directions of the loss; in this case facilitating the
calculations in situations where the costs associated with the overestimation are different
from the costs linked to the underestimation. Moreover, as the claims distributions usually
used to describe the costs are positively skewed, by using this loss function, the associated
premiums for large values of γ guarantees that the premium associated to this loss function
will exceed the net premium.

Proposition 1. If L(x, P) = γ(x− P)+ + (1− γ)(x− P)− for some γ, such that 0 ≤ γ ≤ 1
then (P̂X,α, δ̂X,α) minimizes (1) if and only if they are solutions of the following set of equations

FX(P− δ) =
1− α

2(1− γ)
,

FX(P + δ) = 1− 1− α

2γ
.

Proof. Minimizing the function (1), is equivalent to minimize

V(P, δ) = δ +
1

1− α

(∫ ∞

P+δ
γ(x− P− δ) fX(x) dx

+
∫ P−δ

0
(1− γ)(P− x− δ) fX(x) dx

)
.

Now ∫ ∞

P+δ
γ(x− P− δ) fX(x) dx = γ

∫ ∞

P+δ
F̄X(x) dx,

and ∫ P−δ

0
(1− γ)(P− x− δ) fX(x) dx = (1− γ)

∫ P−δ

0
FX(x) dx.

where F̄X(·) = 1− FX(·) is the survival function. Thus, we have

V(P, δ) = δ +
1

1− α

[
(1− γ)

∫ P−δ

0
FX(x) dx + γ

∫ ∞

P+δ
F̄X(x) dx

]
.
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Then, taking partial derivatives with respect to P and δ, we have

∂V
∂P

=
1

1− α
[(1− γ)FX(P− δ)− γF̄X(P + δ)] = 0,

∂V
∂δ

= 1− 1
1− α

[(1− γ)FX(P− δ) + γF̄X(P + δ)] = 0,

from which we obtain

FX(P− δ) =
1− α

2(1− γ)
and FX(P + δ) = 1− 1− α

2γ
.

Hence the result.

Remark 1. If it is possible to calculate the quantile function of the random variable X, i.e., F−1
X (·),

then we have

P̂X,α =
1
2

[
F−1

X

(
1− α

2(1− γ)

)
+ F−1

X

(
1− 1− α

2γ

)]
, (3)

δ̂X,α =
1
2

[
F−1

X

(
1− 1− α

2γ

)
− F−1

X

(
1− α

2(1− γ)

)]
. (4)

Remark 2. Observe that when α → 0, P̂X,α approaches to the γ-quantile and when α → 1,
P̂X,α → ∞.

Unfortunately, it is not guaranteed that P̂X,α, and δ̂X,α given in (3) and (4) verify the
non-negative loading property. However by taking a sufficiently large value of α, the
optimal premium will eventually become larger than the net premium.

Following [20], some properties of the functional (risk measure) P̂X,α are shown below
in the next Proposition.

Proposition 2. Let us assume that X is a continuous and non-negative random variable such that
E(X) < ∞ and F−1

X (·) exist, then the functional P̂X,α satisfies the following properties:

(i) Translativity: any increase in the liability by a deterministic amount c should result
in the same increase in the capital. If the risk increases by a fixed amount c, then
the premium also increases by that amount, i.e., P̂X+c,α = P̂X,α + c for all random
variables and each constant c.

(ii) Monotonicity: if X ≤st Y then P̂X,α ≤ P̂Y,α, assuming that F−1
X (·) and F−1

Y (·) exist,
where ≤st is the usual stochastic order.

(iii) Subadditivity: this reflects the idea that risk can be reduced by diversification, i.e.,
P̂X+Y,α ≤ P̂X,α + P̂Y,α.

(iv) Positive homogeneity or scale invariance: independence with respect to the monetary
units used, i.e., P̂cX,α = cP̂X,α for all random variables and any constant c. As
FcX(x) = FX(x/c), then using Proposition 1, (P̂cX,α, δα) is the optimal solution of
the equations

FcX(P− δ) =
1− α

2(1− γ)
,

FcX(P + δ) = 1− 1− α

2γ
.

(v) No-rip off: if X ≤ c, then P̂α ≤ c. PXΘ,α ≤ min{x|F̄Θ,α(x) = 0}, for all random variables.
It is useless to keep more capital than the maximal loss value. If the random variable
is unbounded then the premium is infinite.
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(vi) Constancy (or no unjustified loading): if X ≡ c, then P̂X,α = c. To deal with a loss of c,
the insurer only needs to have a capital of the same amount at its disposal.

Proof. We proceed as follows:

(i) As FX+c(x) = FX(x− c), then using Proposition 1, (P̂X+c,α, δα) is the optimal solution
of the equations

FX+c(P− δ) =
1− α

2(1− γ)
,

FX+c(P + δ) = 1− 1− α

2γ
.

(ii) If X ≤st Y, then F̄X(x) ≤ F̄Y(x) for all x ∈ R+ and therefore F−1
X (u) ≤ F−1

Y (u) for all
u ∈ (0, 1). Thus P̂X,α ≤ P̂Y,α.

(iii) It is direct.

(iv) This property is satisfied since the CTE is a coherent risk measure. To be named
coherent, a risk measure must be positive homogeneous, translative, and subadditive
(see [20]).

(v) The result follows since

P̂X,α =
1
2

[
F−1

X

(
1− α

2(1− γ)

)
+ F−1

X

(
1− 1− α

2γ

)]
≤ 2c

2
= c.

(vi) The result is easily verified since

P̂c,α =
1
2

[
F−1

c

(
1− α

2(1− γ)

)
+ F−1

c

(
1− 1− α

2γ

)]
= c.

Hence, we have the result.

3. Analytical Expressions of the Premium for Composite Models

In this Section, we will assume, without loss of generality, that the risk X can be
identified as a non-negative continuous random variable (loss). On numerous occasions,
insurance companies face the challenge of finding suitable models to describe loss data that
contain claims that cause huge losses. In practice, it is usual to use the Pareto distribution,
which usually fits the tail of the empirical distribution well in these cases. Other models that
may be more flexible are the lognormal distribution or the Weibull distribution. However,
in these latter cases, the fit of the tail of the empirical distribution of the data may not
be adequate. In recent years it has been common to introduce models that combine both
proposals, a lognormal distribution up to a certain threshold and a Pareto distribution at
the tail of the distribution. These models, called composites, have had an explosion of
research since the initial work of [21].

On the other hand, composite models allow explaining data with heavy tails and the
unimodal character that empirical data usually present. There are several different ways
to define a composite model. For instance [18], improved the model proposed by [21]
incorporating unrestricted mixing weights and assuming continuity and differentiability
conditions at the threshold. In the following, it will be assumed that risk X is distributed
according to a composite model with probability density function (pdf) given by

fX(x) =
{

r f ∗1 (x), 0 < x ≤ θ,
(1− r) f ∗2 (x), θ < x < ∞,

(5)



Axioms 2023, 12, 496 6 of 13

where 0 ≤ r ≤ 1 and the functions,

f ∗1 (x) =
f1(x)
F1(θ)

,

f ∗2 (x) =
f2(x)

1− F2(θ)

are adequate truncations of the pdf’s f1(x) and f2(x) up to and thereafter of an unknown
threshold value θ, with F1(θ) and F2(θ) denote the cumulative distribution function (cdf)
of f1(x) and f2(x) at θ respectively. Then (5) can be seen as a convex sum of two densities
and hence it is expressed as a mixture model. It means that when the mixing weight r is
close to 1, the pdf of X is mostly characterized by the density f ∗1 (·) and θ tends to ∞. On
the other hand, if r is close to 0, the density of X is described by the second spliced model
and the threshold θ is very small.

After imposing the continuity condition at the threshold, that is, fX(θ
−) = fX(θ

+),
we have

r =
f2(θ) F1(θ)

f2(θ) F1(θ) + f1(θ) (1− F2(θ)
. (6)

Moreover, differentiability condition at θ was also imposed in order to make (5)
smooth and to decrease the number of parameters. Analytical expressions of the pdf and
cdf, unrestricted mixing weight and quantile function for lognormal-Lomax and Weibull-
Lomax distribution can be found at [18,22], respectively. Also, composite models have
been defined via a mode-matching technique, see [23]. This methodology guarantees the
continuity and differentiability conditions mentioned earlier and it also allows the use of any
density whose mode can be expressed in closed-form, what facilitates the implementation
of the model. The main idea behind this procedure consists of using as first component of
the continuous composite model, adequate truncation of a chosen distribution (say f ∗1 (x))
up to the mode, and the second part of the distribution uses adequate truncation of a
second distribution (say f ∗2 (x)). More details about this methodology can be found in [24].

Let X be a non-negative random variable with pdf fX(x) defined by

fX(x) =





r
f1(x)
F1(θ)

, 0 < x ≤ θ,

(1− r)
f2(x)

1− F2(θ)
, θ < x < ∞

(7)

with 0 ≤ r ≤ 1, then the cdf FX(x) is easily derived from (7) and is given by

FX(x) =





r
F1(x)
F1(θ)

, 0 < x ≤ θ,

r + (1− r)
F2(x)− F2(θ)

1− F2(θ)
, θ < x < ∞.

(8)

In the following we assume that E(X) < ∞. From Definition 1, the VaR at level α, with
0 < α < 1 of a random variable X with cdf FX(x) is given by

πα
X = inf{x ∈ R, FX(x) ≥ α}.

The VaR is simply obtained by using the quantile function for composite models
(see [24]),

πα
X =





F−1
1

(α

r
F1(θ)

)
0 < α ≤ r,

F−1
2

(
α− r
1− r

(1− F2(θ)) + F2(θ)

)
, r < α < 1

(9)

with 0 < α < 1 and F(·) is given in (8).
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The VaR is a risk measure that is not coherent because of the lack of subadditivity. For
the risk X, the CTE or TVaR (see [25]) is given by

CTEα(X) =
1

1− α

∫ 1

α
πu

X du,

which is a coherent risk measure. If X is continuous, Pr(X ≤ πα
X) = α, and then the TVaR

is the CTE, EX(X|X > πα
X). Then , we have that the CTE of X can be expressed as follows

(see [19]),

EX(X|X > πα
X) =

F1(θ)

F1(θ)− rF1(π
α
X)

{
rE(X1)

F(1)
1 (θ)− F(1)

1 (πα
X)

F1(θ)

+(1− r)E(X2)
1− F(1)

2 (θ)

1− F2(θ)

}
,

if 0 < πα
X ≤ θ and

EX(X|X > πα
X) = E(X2)

1− F(1)
2 (πα

X)

1− F2(π
α
X)

, (10)

if θ < πα
X < ∞, where F(1)

i (z) is the cdf of the ith incomplete moment evaluated at z with
i = 1, 2.

As it is simple to verify that 1−α
2(1−γ)

and 1− 1−α
2γ cannot be simultaneously lower than

the value of the mixing weight r given in (6), then we have that the analytical expres-
sions for the risk-adjusted optimal premiums under the general composite are given by
the expressions:

P̂α =
1
2

[
F−1

1

(
1− α

2r(1− γ)
F1(θ)

)
+ F−1

2

((
1− 1− α

2γ(1− r)

)
(1− F2(θ)) + F2(θ)

)]
,

δ̂α =
1
2

[
F−1

2

((
1− 1− α

2γ(1− r)

)
(1− F2(θ)) + F2(θ)

)
− F−1

1

(
1− α

2r(1− γ)
F1(θ)

)]
,

if 0 < 1−α
2(1−γ)

≤ r, and

P̂α =
1
2

[
F−1

1

((
1
r
− 1− α

2γr

)
F1(θ)

)

+F−1
2

((
1− α− 2r(1− γ)

2(1− γ)(1− r)

)
(1− F2(θ)) + F2(θ)

)]
,

δ̂α =
1
2

[
F−1

2

((
1− α− 2r(1− γ)

2(1− γ)(1− r)

)
(1− F2(θ)) + F2(θ)

)

−F−1
1

((
1
r
− 1− α

2γr

)
F1(θ)

)]
,

if 0 < 1− 1−α
2γ ≤ r.

Note that to simplify the notation of the premiums, we have omitted the risk X from
P̂X,α and δ̂X,α.

4. A Specific Model

We are applying the results derived in the previous section to the composite lognormal-
Pareto models introduced in [18]. We have chosen this model due to the fact that there exist
an analytical expression for the quantile functions of each spliced component and also for
its simplicity and good estimation. For that reason let us consider
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f1(x) =
1√

2 π x σ
exp

[
−1

2

(
ln x− µ

σ

)2
]

, x > 0

be the pdf of a two-parameter lognormal distribution, where µ ∈ R, σ > 0, and f2(x) is the
pdf of the Type II Pareto or Lomax distribution given by

f2(x) =
ξ (λ + θ)ξ

(λ + x)ξ+1 , x > θ,

where the parameters are θ > 0, ξ > 0, and λ > −θ. We have considered this shifted or
translated version of the Pareto Type II or Lomax distribution to incorporate the threshold
as a location parameter. The work of [21] considers the classical Pareto distribution, which
is a particular case of this shifted version of the Lomax distribution when λ = 0.

The pdf of this composite model is given by

fX(x) =





r
f1(x)
Φ(A) , 0 < x ≤ θ,

(1− r) f2(x), θ < x < ∞,
(11)

where

A =
ln θ − µ

σ
=

(
ξ θ − λ

λ + θ

)
σ, 0 ≤ r ≤ 1 (12)

and Φ(·) denotes the cdf of the standard normal distribution. After imposing the continuity
and differentiability requirements at θ a smooth four-parameter density is obtained. In this
case, r is now provided by

r =

√
2 π ξ θ σ Φ(A) exp

(
1
2
A2
)

√
2 π ξ θ σ Φ(A) exp

(
1
2
A2
)
+ λ + θ

.

Note that for the case λ = 0, this model nests the composite lognormal-Pareto model.
Figure 1 shows two plots of the pdf given in (11) for different values of the pa-

rameters. Observe that the value of the parameter ξ is not necessary since we have used
expression (12) to simplify the model by imposing the continuity and
differentiability conditions.
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Figure 1 shows two plots of the pdf given in (11) for different values of the parameters. 217
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The VaR is easily derived using (9), and its analytical expression is given by

πα
X =





exp
{

µ + σΦ−1
(α

r
Φ(A)

)}
0 < α ≤ r,

(λ + θ)

(
1− α

1− r

)− 1
ξ

− λ, r < α < 1,

where Φ−1(·) is the inverse of the cdf of the standard normal distribution, 0 < α < 1 and
A is given by expression (12). Now, from (10), the CTE is provided by

EX(X|X > πα
X) =

Φ(A)
Φ(A)− rΦ(B)

{
r exp

(
µ +

σ2

2

)
Φ(C)−Φ(D)

Φ(A)

+(1− r)
λ + θ ξ

ξ − 1

}
, if 0 < πα

X ≤ θ,

and

EX(X|X > πα
X) =

λ + ξ πα
X

ξ − 1
, if θ < πα

X < ∞,

where

B =
ln πα

X − µ

σ
,

C =
ln θ − (µ + σ2)

σ
,

D =
ln πα

X − (µ + σ2)

σ

and once again A is provided by expression (12).
Again as 1−α

2(1−γ)
and 1− 1−α

2γ cannot be simultaneously lower than the value of the
mixing weight r, then we have that the analytical expressions for the risk-adjusted optimal
premiums under the CLL model are given by the expressions:

P̂α =
1
2

{
exp

[
µ + σΦ−1

(
1− α

2(1− γ)r
Φ(A)

)]
+ (λ + θ)

(
1− α

2γ(1− r)

)− 1
ξ

− λ

}
, (13)

δ̂α =
1
2

{
(λ + θ)

(
1− α

2γ(1− r)

)− 1
ξ

− λ− exp
[

µ + σΦ−1
(

1− α

2(1− γ)r
Φ(A)

)]}
, (14)

if 0 < 1−α
2(1−γ)

≤ r, and

P̂α =
1
2

{
exp

[
µ + σΦ−1

(
2γ− (1− α)

2rγ
Φ(A)

)]

+(λ + θ)

(
1− 2γ + α

2(1− γ)(1− r)

)− 1
ξ

− λ

}
, (15)

δ̂α =
1
2

{
(λ + θ)

(
1− 2γ + α

2(1− γ)(1− r)

)− 1
ξ

− λ

− exp
[

µ + σΦ−1
(

2γ− (1− α)

2rγ
Φ(A)

)]}
, (16)

if 0 < 1− 1−α
2γ ≤ r.
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5. Numerical Application

Now we use the classic Danish fire insurance dataset. The dataset contains 2492 fire
insurance losses in millions of Danish kroner (DKr) from the years 1980 to 1990 inclusive,
adjusted to reflect 1985 values. This dataset may be found in the “SMPracticals” add-on
package for R, available from the CRAN website http://cran.r-project.org/ (accessed on 14
May 2023). Estimates obtained by maximum likelihood estimation and standard errors (in
brackets) were reported in [24]. These values are µ̂ = 0.1035 (0.0196), σ̂ = 0.1823 (0.0112),
λ̂ = 0.3648 (0.1234) and θ̂ = 1.1444 (0.0289). Also the value of the mixing weight is
r = 0.2382. We have also fitted the lognormal and Lomax distributions to this dataset for
comparison purposes. For the former model, the estimates are µ̂ = 0.6719 and σ̂ = 0.7323
whereas for the latter distribution, these values are ξ̂ = 5.1694 and λ̂ = 11.9003. Below
in Figure 2, we have drawn the QQ plots of the three models. From the QQ plots shown
below, it can be seen that the sample quantiles are larger than the model quantiles for
the lognormal and Lomax distribution, thus both models underestimates the empirical
quantiles. The lognormal distribution provides a better fit than the Lomax distribution
in the lower and middle parts of the empirical distribution. The latter model improves
the behaviour of the lognormal one in the middle-to-large part of the sample distribution.
By combining the two models under the composite methodology, the resulting model
improves the fit to data not only in the middle and top parts of the distribution but also in
the upper tail.
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Now we use the expressions (13) and (14) or (15) and (16) to calculate the risk-adjusted
optimal premiums, say P̂α and δ̂α. In addition, we have also calculated the VaR and CTE for
different security levels for the CLL model. By using the estimates given above, all these
risk measures have been computed for security levels α := 0.90, 0.925, 0.95, 0.975, 0.99. In
Table 1 below are exhibited the numerical values of the optimal numerical values of P̂α, δ̂α

and CTEα(P̂α) for different values of security level α and γ. The net premium calculated
for the CLL model is 3.1450. Observe that for the values of α and γ chosen, the premiums
obtained P̂α are greater than the net premium. Note also that the optimal values of the
conditional expectation of the losses CTEα(P̂α) above the amount δ were computed by
plugging the optimal values of P̂α and δ̂α into the objective function (1). The values of
this risk measure exceed those ones of the premium P̂α for each combination of α and γ.
Nevertheless, it is observable that their values are lower than the premiums calculated
applying the usual CTE or TVaR, i.e., CTEα(X) for each security level α.

Table 1. Optimal values of P̂α, δ̂α and CTEα(P̂α) for different risk levels α and γ. Empirical VaR and
TVaR and VaR and TVaR of X are also given for comparison purposes.

Risk Level α

Risk Measure 0.90 0.925 0.95 0.975 0.99

Empirical VaR 5.080 5.989 8.454 14.395 24.970
TVaR 14.271 17.172 22.222 33.450 55.587

Model πα
X 5.165 6.281 8.248 13.052 23.741

CTEα(X) 14.971 18.068 23.524 36.848 66.492

γ = 0.6 P̂α 3.333 3.951 5.043 7.723 13.707
δ̂α 2.515 3.152 4.270 6.988 13.015
CTEα(P̂α) 3.478 4.290 5.718 9.198 16.927

γ = 0.8 P̂α 3.938 4.684 6.001 9.229 16.428
δ̂α 3.165 3.928 5.267 8.527 15.765
CTEα(P̂α) 7.210 8.759 11.485 18.136 32.922

γ = 0.9 P̂α 4.211 5.017 6.440 9.923 17.688
δ̂α 3.476 4.297 5.738 9.251 17.051
CTEα(P̂α) 9.150 11.092 14.510 22.851 41.398

6. Conclusions

In this work, following the methodology used in [15], we have derived a two-step
procedure to calculate the risk premium using an asymmetric loss function. Unlike in that
work, where the absolute error loss function to calculate the risk measures VaR and CTE was
considered, we use the percentile principle given in the article of [5] to allow for different
weights in the calculation of the premium. The choice of the loss function associated
with the percentile premium principle is advisable since the premiums can be simply
calculated and easily understood. In this sense, the use of an asymmetric loss function
enable the practioner to explain overestimations and underestimations of a risk associated
to a continuous and non-negative random variable representing the total claims amount.

The premiums are calculated as the quantities minimizing an objective function related
to the conditional tail expectation of the loss. We have shown that the premiums calculated
under this methodology satisfy important properties. Next, this methodology was applied
to compute the premiums of composite models. The composite models have been recently
used in actuarial statistics to derive loss distributions by combining two continuous models
up to and after a threshold estimated from the sample data after imposing continuity and
differentiability conditions. The numerical application showed that the premium values were
lower than those using the usual conditional tail expectation principle for a specific composite
model based on the lognormal and Lomax distribution. To the best of our knowledge, this
methodology of premium calculation has never been used in risk theory. Finally, it is worth
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investigating if this methodology can be applied to calculating risk measures of the loss
associated with a given premium.
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