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Abstract: Using weight functions and parameters, as well as applying real analytic techniques, we

derive a new Hardy-Hilbert-type integral inequality with the homogeneous kernel W

one multiple upper limit function and one derivative function of higher order. Certain equivalent

involving

statements of the optimal constant factor related to some parameters are considered. A few particular
inequalities and the case of reverses are also provided.
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1. Introduction
Assuming that p > 1, % + % =1,am,bn >0,

[e9)
0< Y ah <o

m=1
and -
0< Y bl <oo,
n=1
the following Hardy-Hilbert inequality with the optimal constant factor 77/ sin(;) has
been proven (cf. [1], Theorem 315):

1

nzlm:lm+n " n=1 ! '

sin(7t/p) =

S|

If f(x),8(y) =0, .
0< /0 f(x)dx < o0

and

0< / 8(y)dy < oo,
0
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then we still have the following integral analogue of (1) known as Hardy-Hilbert integral
inequality (cf. [1], Theorem 316):

/000 /ooo Wd"dy < m ( /Ooo f ”(x>dX> % ( /Ooo gq(y)dy) o

%) remains optimal. Inequalities (1) and (2) have

proven to be essential in various applications of mathematical analysis (cf. [2-13]).

In 2006, applying the Euler-Maclaurin summation formula, Krnic et al. [14] established
an extension of (1) with the kernel m (0 < A < 4). Making use of the result of [14],
in 2019, Adiyasuren et al. [15] considered an extension of (1), which involved two partial
sums, and subsequently, in 2020, Mo et al. [16] proved an extension of (2), which involved
two upper-limit functions. In 2016-2017, Hong et al. [17,18] presented several equivalent
statements of the extensions of (1) and (2) with the best possible constant factors and
multi-parameters. Some similar results were established in [19-27].

In the present paper, following the methods of [15,17], using weight functions and
parameters, as well as applying real analytic techniques, we prove a new Hardy-Hilbert-
type integral inequality with the kernel W involving one multiple upper limit function
and one derivative function of higher order. Equivalent statements of the best possible
constant factor related to the parameters are considered. Some particular inequalities and
the case of reverses are obtained. The lemmas and theorems provide an extensive account
of this type of inequalities.

where the identical constant factor 7t/ sin(

2. Some Lemmas
In what follows, we suppose thatp >0 (p # 1), - + % =1,mneN={12---},

A=A A
7 + ? and

1
P
A>—min{m,n}, —m <A <A,0< Ay < Am, Ay = %—0—%,7\2 =
the following

Assumption (I):

For Fy(x) := f(x), being a non-negative continuous function, except for finitely many
points in R} = (0, o0), satisfying

flx) = o(etx) (t > 0;x — 00),

X
Fi(x) := / Fe_1(x)dx (k=1,---,m),
0
¢ (y) is a non-negative continuous function, except for finite points in R |, satisfying
g(n)(]/) =o(e) (t> 0;y — o0),

) =sv),

¢~ (y) is a non-negative differentiable function in R with
g(j—l)(0+) =0 (j=1,---,n).
We also assume that

0< /OOO xp(l_xl_’”)_lF,ﬁ(x)dx < oo and 0 < /0O yq(l_XZ)_l(g(”)(y))qdy < 0.
0

Note: According to Assumption (I), since f(x) > 0, F;(x) is increasing and Fy(o0) = o0
or constant. If there exists a last constant kg < k such that Fi (co) =constant, then

lim Fix) S lim i (%)
x—o0 elX th—=ko x500  ptx
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otherwise, we still have

lim () _ lim £ _ o

x—oo etx tk x—yoo et

namely,
Fe(x) =o(e™) (t>0;x = 00) (k=1,---,m).

In the same way, we still can show that

R0V () = oe®) (£> 05y = 9) (=1, ,m).

We define the gamma function as follows:
T(a) := / et 1t (o > 0), 3)
0

satisfying T'(« + 1) = aT'(a) (« > 0), and define the following beta function (cf. [28]):

[eS) u—1
B(u,v) := /0 a i t)uﬂdt = 11:((2)_1;(;)) (u,v>0). 4)

According to (3), for A, x,y > 0, we still have the following formula related to the
gamma function:

1 1 ]
—(x+y)tA-1
(x +y)* F(/\)/() ¢ et ©)

Lemma 1. Fort > 0,m,n € N, we have the following expressions:
/oo e f(x)dx = " /oo e " Fy(x)dx, (6)
0 0
/Ow e Vg(y)dy = " /Ooo e g\ (y)dy. ?)

Proof. According to Assumption (I), fork =1,--- ,m, we get that e~ "*F(x) I6” = 0, then
integration by parts,

/oo e F_q(x)dx
0
= [ e R = e TRE@IE - [ Blxde

t/ _thk x)dx.

Substituting k = 1, ..., m in the above expression, by simpliﬁcation, we obtain (6).
According to Assumption (I), for j = 1,- - - ,n, we get that e~ ¢l~1 (y )I5” =0, and

| ety
0
| e agh- 1<y>—e )l — [ g0 (y)de

t / e Weli=1 (y)dy.

Substituting j =1, - - - , n in the above expression, we obtain (7).
This completes the proof of the lemma. [

Note: (6) (resp. (7)) is naturally the value for m = 0 (resp. n = 0).
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Lemma 2. For 0 < s1,s < s, define the following weight functions:

5—8p oo tSz*l

ws(sy,x) + =x /o mdt(x€R+), 8)
s—s1 o0 tsl—l

wisry) = =y [T oty € Ry, ©)

We have the following expressions:

ws(s2,x) = B(sy,s—s2)(x € Ry), (10)
ws(s1,y) = B(si,5s—s1)(y € Ry). (11)
Proof. Setting u = =, we derive
oo -1
— S—S)p (ux)sz
ws (82, x) x /0 Gt ) xdu
o ys2-lgy
= /O m—B(SLS—SZ)/

namely, (10) follows. In the same way, we obtain (11).
This completes the proof of the lemma. [

Lemma 3. Suppose that A > —m, —m < A1 < A,0 <Ay <A +m.
(i) For p > 1, we have the following extended Hardy-Hilbert integral inequality:

Diow = / / x—l—y)‘“” dxdy

< BP(Ag A+ m—A2)Bi (AL +m,A —Ay) (12)
1 1
® (=R —m)—1pP P[00 =1 o) () \a gy | -
A Fhwa] [ [Ty (5 )y

(ii) for 0 < p < 1, we have the reverse of (13).

Proof. (i) By Holder’s inequality (cf. [29]), we obtain

I o oo 1 y(/\Z_l)/p E
A /0 /0 (x +y)Am | x(atm=1)/q m(x)
x(A+m=1)/q
(n)
X[ o7 8 (y) |dxdy

1
) ) 1 y)\Z*l p I
{/0 [/0 (x ) D (p-T) dy] b m(x>dx}

o o) 1 A+m—1 " q
- {/0 [/0 (r+ y)A yéz—l)(q—l) d"] (5" )y } 13)

= [/{;w w;Hrm()xZ,x)xp(l_xl_m)_ll—ﬂ(x)dx]

IN

1

==

1

00 e " q
X[ /O Wt (A1 +m, )y 14271 (gl )(y))qdy} :

If (14) retains the form of equality, then, there exist constants A and B such that they
are not both zero, satisfying
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Apy—1 x)\1+m—1

b T (M) in R?
Fu(x) = By(Az—l)(q—l) (g"(y))T ae. in R7.

y
A o

Assuming that A # 0, for fixed a,e, y € R4, we have
(=A== 1ED () — [%/"“’XZ) ("W () Nx ") e in Ry

Sinceforanya:=A—A; —Ap €R, x~17%dx = oo, the above expression contradicts
0 P
the fact that

0< /0 x”(l_xl_m)_lF,Z(x)dx < oo.

Therefore, by (10) and (11), setting s = A +m (> 0),s1 = Ay +m (€ (0,A +m)),
s = Ay (€ (0,A +m)), in view of (14), we have (13).

(ii) Similarly, according to the reverse Holder inequality, we obtain the reverse of (13).

This completes the proof of the lemma. [

3. Main Results

Theorem 1. Suppose that A > —min{m,n}, —m < Ay < A,0 <Ay <A+ m.
(i) For p > 1, we have the following Hardy-Hilbert-type integral inequality involving one multiple
upper limit function and one derivative function of higher order:

© e f(x)g(y)
/ / (x +y)rn dxdy
A+ m)

1
()\-i- ) ()\2,)\+Tl’l Az) ‘1(/\1+m,)\*)\1)

1

®  p(1=Ry—m)— LEP (x 9(1-22) =1 ( () (V4 | T 14
<[ ][ wray|' ay
(ii) For 0 < p < 1, we obtain the reverse of (14).

In particular, for A1 + Ay = A (0 < A1, Ay < A), we reduce (14) to the following:

e f(x)8(y) T(A 4 m)
/ / dedy< WB(/\l-l-m,)\z)

i 1
" gp(-Ai-m-1pp P A=A =1 o (m) ()Ya gy | |
X {/o X 1 Fm(x)dx} [/0 y 2)=1(g() (y)) dy} ) (15)

where the constant factor r(& o )) B(A1 + m, Ay) is the best possible.

Proof. (i) In view of (6), (7) and Fubini’s theorem (cf. [30]), we obtain

I = A+n / / f(x)g(y {/ t)\+nle(x+y)tdt] dxdy
= m/ t/\+n 1 (/Ooo g_xl‘f(x)dx) <‘/Ooog(y)e_ytdy> dt
1 *® s [e9)
= m/0 pAtn—=1 (tm/o e—xtFm(x)dx) (t—n/o g(n) (y)e—ytdy> at  (16)
1 (o] [« 00
B /\7+n/ / Fu(x)g™ (y) [/0 t“mle(xw)tdt} dxdy

_ T(A+m) / / (x)g™ (y) dxdyzr()\+m)[”m.
(A +n) x+y)‘+’” (A +n)

Then, according to (13), we obtain (14).
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(ii) According to (17) and the reverse of (13), we derive the reverse of (14).
For A1 + Ay = A (0 < A1, Ay < A) in (14), we deduce (15).
For any 0 < ¢ < min{pAq,gA;}, we set the following functions:

~ 0,0<x <1,
R(x) = f(x):= { M5 s

Fe(x) = /Ox(/otk_1 o Otzf(fl)dtl coedb_q)dl (k=1,---,m),

and then fm(x) =00<x<1,

~ X b1 [5) /\17§71
Falo) = ([ [FoM i e dt )ty
el € -1/ A—S+m—1 m—1
= [T ==+ " =01 (x"77))
i=0 p
mt € M—S+m—1
< [J1- » +i)] T (x>1),
i=0

where O; (x™~1) (x > 1) is a positive polynomial of (m — 1)-degree. We also set

0,0<y<1,
() = n—1 e
W I (o= )y Ly > 1
i=
,\(1) -1 . & Y th—1-1 5] N(Yl)
00 = TT0a+i=5) ([ [Tt -ty 1)ty
0 q"Jo “Jo 0
(l - 1/' /n>/
andg(y) =0(0<y<1),
n—1 v by t e
gy = [TOa+j=5) [ [T i ety
=0 g1 N 1

= YT ooy <y (y > ),

where O,(y" 1) (y > 1) is a positive polynomial of n — 1-degree.

We observe that F(x) (k= 0,--- ,m)and g (y) (I = 0, - - - ,n) all satisfy Assumption (I)
on F, g(l ),

If there exists a positive constant

L'(A+m)
< - 7
M < T(A + 1) B(A1+m,Ap)
such that (15) is valid when we replace rr(())\\i?)) B(Aq 4 m, Ap) with M, then, in particular,
since
~ o0 ~ N q
] = {]Q xp(lAlm)lF%(x))dx} [ TR (y))dy
m—1 n—1
< ([T +i= S e j=5) [ x e ax
i=0 j=0
1 m—1 1 n—1
= JHIM+i=2 [[(Ae+]-7),
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we have

I = /ow/o (£(+)y)( y) —dxdy

N n—
< H/\1+1_7 -1
=0

—_

n—
)Lz +] - =
j=0 q

In view of Fubini’s theorem (cf. [30]), it follows that

Agtn— n—1
O A —£—1
/l/ ' x+y>A+2"(y )dy]xlp e

where
00 00 /\2+1’l*£71
Y 1 A+m—£—1
Iy = / —dy|x Podx
0 1 [ 1 (xHy)rr y]

0 A+n—£—1

Y | u !
= /1 X € l/;{ Wldu‘|dx

0 1 )\2+?l -1 /\2+n -1
_ —e—1
= /1 X l/}c 7(1+u))\+”du dx + - / 71+u)/\+"d
1 1 A+n—£-1 0 Ap+n—£—1
—e—1 u q 1 / u q
- 7 [ R . S
/0 (/}L * x) (1 + u)A+n u+ e )1 (1 + u)/\+n u
Ap+n—=£—-1

7 d 00 u/\z-‘ri’l—%—ld
M)/H—n u+/1 (1+u)/\+n ui,

s mdy} M5

B oo ) Oz(yl’l—l) x/\l_%_l
N /1 {/1 (x+y)(Az/2)+ndy (x+y)/\1+()x2/2)dx

1) 0 Oz(ynfl) x)n*%fl
/1 {/1 y(A2/2)+n dy M +(A2/2) dx
{ee] A e 00
= /1 xf%fifldx {/1 O(y_)?—l)dy} <M; < .

According to the above results, it follows that
1
A

= sI<M1:[/'\1+z—— 1:[)\24—]—6
i=0 j=0

I
o | =
1
S—
2
==
+

o
AN

flrg)
I

IN

)L2+l’l /\2+n -1

)A+n +/ (1+u )A+nd —eh

Letting ¢ — 07 in the above inequality, in view of the continuity of the beta function,
we obtain

m—1 _
(}\1,/\2+n)<M[H A +1)]7 H)\er]
i=0 j=0
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—_
—_

m— n—
%B(Aﬁ—m A2) = B(Ay, A+ n) [T +0)[[JAa+)] "t <M
i=0 =0

=

—.

and then
I'(A+m)

I'(A+n)
is the best possible constant factor of (15).
This completes the proof of the theorem. [

M = B(Aq 4 m, Ap)

Remark 1. For Ay = 252 + 20, %) = 24 4+ 22 it follows that A+ Ay = A. We find

0< 7\1 < % + % = A, then 0< )\2 =A— )\1 < A. According to Holder’s inequality (cf. [29]), it
follows that

At+m—Ay + A +m 1
q

~ ~ oy P
0 < B(A ,A :/ _
(A1 +m, 22) 0 (1 + u)rtm

A+m—Ay—1 Aq+m—1
/ 1 + u /\+m (u ! ) (u I )du 17)
A+m Ap— 1 oY) u/\1+m 1 %
= {/ (14 u)rm ] {0 1+uA+mdu]
1
B B

1
7 (A2, A +m—A2)B7 (A +m,A—Ap) <

du

Theorem 2. For p > 1, if the constant factor

T'(A+m)
I'(A+n)

in (14) is the best possible, then for 0 < Ay, Ay < A, we have Ay + Ay = A.

1 1
B? (A, A+m —Ap)Bi (A +m,A— Ay)

Proof. According to (15) (for A; = A,(i = 1,2)), since

T'(A+m)

1 1
T(A+n) BP()\z,)\—FWl—/\z)B‘?()\l +m,A—Aq)

is the best possible constant factor in (14), we have

T(A4m) 1 -
F(A+m)_ ~ ~
>~ mB(Al +m,)\2) (E R+),

namely
B(A1 + 1, A2) = BP (Ag, A + 1 — A2) BT (Ag 411, A — A1),

It follows that (18) retains the form of equality.

We observe that (18) retains the form of equality if and only if there exist constants
A and B such that they are not both zero and Au?*"~*2~1 = ByM+m=1 ge in R (cf. [29]).
Assuming that A # 0, it follows that urr2"M =B/Aage. inRy, namely, A — Ay — A1 =0.
Hence, we have A1 + Ay = A.

This completes the proof of the theorem. [J
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Theorem 3. The following statements ((i), (ii), (iii) and (iv)) are equivalent:

(i) Both
B7 (Ag, A+ m + —A2)BT (Ag +m, A — Ay)
and
B(A_/\2 TR R +A2>
p q q P
are independent of p, q;

1 1 _ .

(i) BF (Mg, A+ m— A)BE (A +m, A — Ay) = B2 1 20 oy, Aha g oy,
(iii) For 0 < Ay, Ay < A, we have A + Ay = A;

(iv) The constant factor

T'(A+m) _1 1
is the best possible in (14).

Proof. (i) = (ii). In view of the continuity of the beta function, we derive

1
BP (Ag, A+ — A2)Bi (A + m, A — A1)
— lim lim B?(Ay A+ m— A2)BT (A +m, A — Ay)

B(/\—/\z Mo A=N /\2)

+—+m, +

p q q p
— lim lim B(A_A2+/\l+m,A_)Ll+/\2)
poo g1+ q q p

= B()\l +m,A— )\1).

Hence, we have

BY (Ag, A+ 11— A2)BT (A + m, A — Ay)
AAy A A A
= B( 2+ 2 +m, 1+2>.
P4 9 p

(ii) = (iii). In view of
BF (Ag, A+ 1 — A2)B (Aq + m, A — Ay) = B(A1, Aa),
(17) retains the form of equality. In view of the proof of Theorem 2, we have
A Ay = A

(iii) = (iv). A1+ Ay = A (0 < A, Ay < A), then according to Theorem 1, the

constant factor
(A +m)

I'(A+n)
in (14) is the best possible.
(iv) = (i). According to Theorem 2, we have A1 + A = A; then,

1 1
B? (A, A+m —Ap)Bi (A +m,A— Ay)

1 1
Bﬁ(/\z,/\ﬂLﬂ’l*)Lz)Bﬁ()q+m,/\*/\1) = B(A1+m,/\2),
A—A A A—A A
B< 2+?1+m, ; 1+;> = B(A+m,A),
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both of which are independent of p, g.
Hence, statements (i), (ii), (iii) and (iv) are equivalent.
This completes the proof of the theorem. [

For n = m, we have:

Corollary 1. For p > 1, we have the following Hardy—Hilbert-type integral inequality involving
one multiple upper limit function and one derivative function of m-order:

© e _f(x)&y)
/0 /0 (x+y)A+dedy
< BF(AyA+m—Ay)B

1
PR —m)—1pp PLT  a(=A) =1, (m) q
[ btz | [0 g )ty

N

(A1 +m,A—Ay) (18)

<=

Moreover, for 0 < A1, Ay < A, the constant factor
B (Ag, A+ 1 — Ag) BT (Ay + 11, A — Ay)
in (19) is the best possible if and only if A1 + Ay = A. For
M+A=A (0< A, A <A),

we reduce (19) to the following;:
© e f(x)gy)
B(A
/o /o (r )i X4y < BlAr +m, A2)

1 1
® p(1=A—m)—1pp PL T a0=A2) =1 o (m) (ya |
X UO x ! Fm(x)dx} [/0 yIo T (g (y))dy |, (19)

where the constant factor B(Aq + m, A,) is the best possible factor.

Remark 2. (i) For Ay + Ay = Ain (13), we have

(o] Fm
Iy im / / x +y A+m dxdy < B(A1+m, Ay)

1 1
®  p(—A—m)—1pp P a-2a)—1(,(n) 14y’
x[/o 0 Fm<x>dx] [/0 y (s w)dy|’. o)

We confirm that the constant factor B(A1 4+ m, Ay) in (20) is the best possible. Otherwise,
we would reach a contradiction according to (17) (for Ay + Ay = A) that the constant factor in (15)
is not the best possible.

(ii) In view of the note of Lemma 1, Theorem 1, Theorem 2 and Theorem 3 are valid for m = 0
orn=0.Form=n=0A=1,A = %,)Lz = %, both (15) and (20) reduce to (2).

Remark 3. (i) For A =1,A1 = -, Ay = % in (15), we have

1
q
© e f(x)g(y) =N
bl Gyt < gy LG+

v “xpmm(x)dx); ] g @)
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(ii)) For A = 1,A1 = %,)\2 = % in (15), we have the dual form of (21) as follows:
(v) Tl
/ / x+y1+"dXdy n'sm% Ho p
1 1
P ® q
< ([Tmmgwa)| | yP-2<g<"><y>>qdy} ; @)
(iii) For p = q = 2, both (15) and (21) reduce to
e f(x)g(y)
=t dxd
./0 ./o (x +y)lttn ey
1
m2m—DU r® 50 /°° ) (24|
e O TR @)

The constant factors in the above inequalities are all the best possible.

4. The Reverses

According to Lemma 3 and Theorem 1 (ii), we have:

Theorem 4. For 0 < p < 1 (g < 0), we have the following reverse Hardy—Hilbert-type integral
inequality involving one multiple upper limit function and one derivative function of higher order:

/ / x+y“”dxciy

T'(A+m)

1
7327 Ay, A+m—Ay)Bi (A +m,A— A
()\_‘_ ) ( 2, A+ 2) ( 1 l)

1
X { / ) x”(lxl”l“ﬂﬁ(x)dx} ' [ / yi=12)=1 (g (y))"dy} L@
0 0
In particular, for Ay + Ay = A (0 < A, Ay < A), we reduce (24) to the following:

x)8(y) LA +m),
/ / dedy>m (A +m, Ap)

1 1
| [Tt g || [T g e
0 JO

where the constant factor

I'(A+m)

———B

Tt ) DM A2)
is the best possible.
Proof. We only prove that the constant factor (()‘+m)) (A1 +m, Ap) in (25) is the best possible.

For any 0 < ¢ < Ay min{p, |q|}, we consider the functions Fi(x) (k = 0,--- ,m) and
§"D(y) (1=0,---,n) as in Theorem 1. If there exists a positive constant
I'(A+m)
>~ 7
M > r(/\+n) B()\l +m,/\2),

such that (25) is valid when we replace 11:((/;1':)) B(Aq 4 m, Ap) with M, then in particular,

since
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we have

(
_ Mmfl n— 1
> MJ=—]| (A1+1—— -1 /\2+]**(1*80( ).
A 0

—_

In view of the proof of the results of Theorem 1, it follows that

Ap+n— n—1 B

where

00 oo y)\z-‘r}’l -1 1
Iy = / 761 d
0 1 [ 1 (x+y))‘+” y] *
1 1 )\2+n 1 /\2+n -1
- <\ e +/ L
8[0 (1+u)A+n AT wr

<l 1 Op(y" 1) ] M—£-1
0<I:/ / —= 77 dx < My < oo,
T A [ 1 (x+y)rr ¥ =2
According to the above results, it follows that
1 /\2+}’l 1 oo u/\z-‘rl’l—%—l
|7 + [ e
o (1 +u)A+n 1 (1+ )A+n

— s M=) ]‘[Aﬁ]—a (1-e0(1))7.
i=0 j=0

Letting ¢ — 07 in the above inequality, in view of the continuity of the beta function
we obtain

(Al,/\2+n >MH/\1+Z H)\z-l—]
i=0 j=0
namely

1"(/\_._ m— n—

m) N
——2B(A A B(Aq, A (A (A >
F()\-‘—n) ( l+mr 2) 1, 2+1’l g 1+1 H 2+])] _M

=
—_

j=0

—.

and then, M = ((TJ:ZZ)) B(Aq 4 m, Ay) is the best possible constant factor of (25).

This completes the proof of the theorem. [J
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Remark 4. For
~ A=A A A=A — Ay

A= =TT
p q p

S A=A A A=A =)

=" 20Ty,
q p q

it follows that A4 Ag = A, We find that for
—pM < A=A — A < p(A—Aq),

0< A <A

then, R R
O<h=A-A <A

According to the reverse Holder inequality (cf. [29]), we obtain
Atm=Ay | Ay+m

~ ~ ® uy P q
o > B(A1+m,/\z)=/0 Tatwh

Atm—Ay—1 A +m—1
= / 1+u)‘+’”<u Z )(u q )du (26)
)L+m Ap— 1 oo u/\1+m 1 %
= {/ 1+uA+m ] {O 1+u/\+mdu]

= %(/\2,)\4-771 A2)B %(A1+m)t A) > 0.

-1

du

Theorem 5. For 0 < p < 1,0 < Ay, Ay < A, if the constant factor

T'(A+m) 1 1
IWBP()\Z,A+m _/\Z)Bq()Ll +m,)\ - )\1)
in (24) is the best possible, then for —pA; < A — A1 — Ay < p(A — Aq), we have Ay + Ay = A.
Proof. For —pA; < A — A1 — Ay < p(A — Aq), by (25) (for A; = Xi(i =1,2)), since

T'(A+m)

1 1

is the best possible constant factor in (24), we have

T(A4m) 1 1
F(A+n)BV()t2,)\+m—)\2) T(A+m,A—Aq)
Fr(A+m) _ ~ ~

> mB(A1+m,A2) (ER4),

namely,
B(A1 + 1, A2) < BP(Ag, A + 1 — A2)BT(Ag 411, A — A1),

It follows that (27) retains the form of equality.

We observe that (27) retains the form of equality if and only if there exist constants A
and B such that they are not both zero and Autt"=42~1 = ByM+m=1 g e in Ry (cf. [29]).
Assuming that A # 0, it follows that ur =M =B/Aae. inRy, namely A — Ay — A =0;
then, Ay + Ay = A

This completes the proof of the theorem. [J

For n = m, we have:
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Corollary 2. For 0 < p < 1, we have the following reverse Hardy—Hilbert-type integral inequality
involving one multiple upper limit function and one derivative function of m-order:

* > f(x)8(y)
/0 /0 (x+y)7‘+mdxdy
> BP(Ag A+ — A2)Bi(Aq + m, A — Ay) 27)

1
®  p(1=A;—m)—1pp P a0=A2)=1( o (m) (,\\a
x[/o N Fm<x>dx] [/0 y (8 () dy

1
q

Moreover, if 0 < A1, Ay < A, the constant factor
B (Ag, A+ 1 — A2)BI (A + 1, A — Ay)
in (28) is the best possible, then for
—pA < A=A — Ay < p(A—Aq),

wehave A; + A = A.For A} + A, = A (0 < Ay, A < A), we reduce (19) to the following:

© [ f(x)8(y)
bl e ytemady > BO+ m )

1
[T g wa] | [T g e
0 0
where the constant factor B(A; + m, A;) is the best possible.

Remark 5. Forr > 1,% + % =1,AM = %,)\2 = % in (25), we have the following reverse
inequality

Jo Jo (x+y)rtn
m— n—1
[T+ DT+ "B

i=0 j=0

=T SXRW) g

[ay

) (29)

1
® gp(1=2—m)-1pp LT =21 ()0
X[/o X Fm(x)dx} [/0 y ") dy| ,

where the constant factor

—1 n—1
H AT+ B Y
i=0 j=0 r §

is the best possible. In particular, for A = 1, we have

/ / x+y 1+ndxdy
1

n'sm(r){/o P (E=m)=1EP (. )dx}[/ (g )qdy ’ 30)

where the constant factor ﬁ is still the best possible.
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5. Conclusions

In the present paper, we followed the methods of [15,17], used weight functions and
introduced parameters in order to prove a new Hardy-Hilbert-type integral inequality
with the kernel W involving one multiple upper limit function and one derivative
function of higher order. In this study, we also considered equivalent statements of the best
possible constant factor related to the parameters and obtained some particular inequalities,
in addition to considering the case of reverses. The lemmas and theorems presented in this
work provide an extensive account of this type of inequalities.
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