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Abstract: The purpose of this study is to derive an analytical solution for a cantilever beam with
a novel spring-like actuator that behaves like a time-dependent spring and to study the dynamic
behavior of the system. A time-dependent spring was set at the free end of the cantilever beam
to model the novel spring-like actuator. First, the boundary conditions were transformed from
being nonhomogeneous to being homogeneous using the shifting function method. The solution of
the analytic series was then obtained by using the expansion theorem method. The correctness of
the proposed analytical solution was verified by comparing the results with those obtained via the
separation of variables in the special extreme case of a constant spring coefficient. We took the free end
of a cantilever beam with harmonic spring stiffness and an external periodic unit load as an example.
The influence of the actuator parameters, such as the effect of the magnitude and the frequency of the
time-dependent spring stiffness on the resonance frequency, was investigated. An important new
result was found, i.e., that the resonance frequency is clearly dependent on the magnitude and the
frequency of the spring-like actuator in the first two modes, but not in the third and fourth modes. In
practical engineering applications, system resonance can be avoided by adjusting the magnitude and
frequency of the actuator.

Keywords: spring-like actuator; time-dependent spring; beam vibration; shifting function method;
analytical solution

MSC: 35A25; 37N15; 70G60; 74H10; 74H45; 74K10

1. Introduction

With the rapid development of mechatronics, typical examples such as micro-actuators,
micro-generators, micro-switches, and micro-beams have been used to manufacture the
various structures and models of cantilever beams [1–6]. Meanwhile, smart materials
have been developed in recent decades and these can be used to manufacture controller
components [7–13]. With the development trend of mechatronics and smart materials, it is
assumed that in the future researchers will be able to design and fabricate a new type of
spring-like actuator (Figure 1), which can work like a time-dependent spring with a fast
dynamic response (Figure 2). Therefore, a novel cantilever beam with a free end supported
by a time-dependent spring is proposed. Several books [14,15] have presented and derived
the governing equations of motion for beams with different boundary conditions; however,
no analytical solutions have been presented for a cantilever beam with a time-dependent
spring-like actuator. In this study, an analytical solution of the undamped forced vibration
of a beam system with a time-dependent spring was achieved and its dynamic behavior
and parameters were investigated in detail.
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solution of the undamped forced vibration of a beam system with a time-dependent 
spring was achieved and its dynamic behavior and parameters were investigated in detail. 

 
Figure 1. Vibration of a cantilever beam with a novel spring-like actuator at the free end, subjected 
to a transverse load. 

 
Figure 2. Vibration of a cantilever beam with a time-dependent spring support at the free end, 
subjected to a transverse load. 

Although none of the previous literature has focused on this topic, the classical 
problem of a beam’s vibration with time-dependent boundary conditions (usually 
occurring in the spring design, the dynamic analysis of tires, and the suppression of shock 
in landing gear) has been studied by many researchers since the 1940s, including 
Nothmann in 1948 [16] and Lee and Yan in 2015 [17]. The time-dependent boundary 
conditions of such beams mainly include both geometric (deflection or slope) and natural 
(shear force or moment) conditions. The solutions to the problems can be generated using 
either the Laplace transform method (see, e.g., Nothmann [16] and Yen and Kao [18]) or 
the expansion theorem method (see, e.g., Mindlin and Goodman [19] and Lee and Yan 
[17]). Nothmann and Yen and Kao used the Laplace transform method to solve the 
vibration of a cantilever beam with prescribed end motion and the vibration of beam–
mass systems with time-dependent boundary conditions, respectively. The main 
difficulty in using the Laplace transform method, however, lies in the inversion process, 
which involves the evaluation of an integral in most transforms. Therefore, few studies 

Figure 1. Vibration of a cantilever beam with a novel spring-like actuator at the free end, subjected to
a transverse load.
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Figure 2. Vibration of a cantilever beam with a time-dependent spring support at the free end,
subjected to a transverse load.

Although none of the previous literature has focused on this topic, the classical
problem of a beam’s vibration with time-dependent boundary conditions (usually occurring
in the spring design, the dynamic analysis of tires, and the suppression of shock in landing
gear) has been studied by many researchers since the 1940s, including Nothmann in
1948 [16] and Lee and Yan in 2015 [17]. The time-dependent boundary conditions of
such beams mainly include both geometric (deflection or slope) and natural (shear force
or moment) conditions. The solutions to the problems can be generated using either the
Laplace transform method (see, e.g., Nothmann [16] and Yen and Kao [18]) or the expansion
theorem method (see, e.g., Mindlin and Goodman [19] and Lee and Yan [17]). Nothmann
and Yen and Kao used the Laplace transform method to solve the vibration of a cantilever
beam with prescribed end motion and the vibration of beam–mass systems with time-
dependent boundary conditions, respectively. The main difficulty in using the Laplace
transform method, however, lies in the inversion process, which involves the evaluation
of an integral in most transforms. Therefore, few studies ([16,18]) have used the Laplace
transform method, while the expansion theorem method has been more frequently applied
in other studies.

For example, Mindlin and Goodman used the expansion theorem method, along with
four fifth-order shifting polynomial functions (the M–G method), to change the variables
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and to transform a mathematical problem with nonhomogeneous boundary conditions into
one with homogeneous boundary conditions. The idea that one could choose dependent
variables with the result that boundary conditions and partial differential equations could
still hold homogeneous boundaries was suggested by Edstorm [20]. By extending that
idea and resolving Nothmann’s example, Grant [21] stated that the solution could easily
be obtained without the difficulty of finding the Laplace inverse transforms. Later, the
M–G method was used by Herrmann [22] to analyze the behavior of the forced vibration
of Timoshenko beams, by Berry and Nagdhi [23] to investigate elastic bodies with time-
dependent boundary conditions, and by Epstein [24] to study the Bernoulli–Euler beams
with internal time-dependent boundaries. In addition, Aravamudan and Murthy [25]
combined the perturbation method, the Galerkin method, and the M–G method to study
the nonlinear vibration of beams with time-dependent boundary conditions. In the 1990s,
Lee and Lin [26–28] and Lin [29] proposed the shifting function method, which modified
the M–G method to analyze Bernoulli–Euler beams, Timoshenko beams, and pre-twisted
nonuniform beams with time-dependent boundary conditions. Lee et al. [30] extended the
prior studies and considered the transverse vibration problem to develop a set of shifting
functions that consisted of fundamental solutions of nonuniform beams and to discuss
the physical meaning of the shifting functions. Recently, the shifting function method
was extended by Lee and Yan [17] to derive the exact deflection of an out-of-plane curved
Timoshenko beam with nonlinear boundary conditions.

Sajjadi et al. [31] developed a nonlinear meniscus force and applied it to a trolling-
mode atomic force microscope nanoneedle. A multiple time scales method was employed
to derive the analytical solution to the distributed parameter system. The analytical solution
was compared with the experimental data and the finite element solution in order to assess
the accuracy of the method. Horssen et al. [32] showed why the variable separation method
cannot solve the wave problems on a fixed bounded interval that involves a Dirichlet-type
boundary condition at one end and a Robin-type boundary condition with a time-varying
spring coefficient at the other end. The d’Alembert formula was used to solve this problem.
Ahmad et al. [33] investigated the vibrational behavior of rectangular and V-shaped atomic
force microscopy microcantilevers with an extended piezoelectric layer using the finite
element method. A nonlinear spring was used in finite element modeling to simulate the
nonlinear attraction–repulsion interaction between the tip and the sample. The simulation
results of the three-dimensional finite element method were verified by comparison with
the experimental and analytical results. An initial boundary value problem for a forced
string equation was studied by Wang et al. [34]. The string was also on a fixed bounded
interval, and the boundary conditions consisted of a slowly varying time-dependent spring
coefficient of Robin type at one end and of Dirichlet type at the other end. An adapted
version of the variable separation method, the averaging, and perturbation techniques were
applied in order to solve resonance problems. Wang et al. [35] studied a robot structure with
a time-dependent stiffness. The vibration-driven robot was excited with sinusoidal stiffness.
The incremental harmonic balance method was employed to evaluate the response.

The purpose of this paper is to analytically solve the dynamic behavior of a cantilever
beam with a time-dependent spring support at the free end using the shifting function
method combined with the expansion theorem method. To the best of the authors’ knowl-
edge, no literature has investigated the beam vibration with a time-dependent spring
support. In this paper, the dynamic response of the novel spring-like actuator was analyzed
using the generated closed solution of a Bernoulli–Euler beam with a time-dependent
spring support at the free end. The governing equation of this problem was a fourth-order
ordinary differential equation with nonhomogeneous boundary conditions. The boundary
conditions were transformed from nonhomogeneous into homogeneous by using the shift-
ing function method that did not require any integral transformation. The shifting function
derived in this study was a quartic polynomial function. Then, we applied the expansion
theorem to solve the differential equation, and the analytical solution was obtained in
the form of a series. The correctness of the proposed analytical solution was verified by
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comparing it with the results obtained by the separation of variables method in the special
extreme case of a constant spring coefficient. The dynamic behavior of the system was
analyzed in detail by considering the harmonic function of time as a time-dependent spring
coefficient.

The novelty and contributions of this paper are as follows:

(1) The novelty of this study comes from the fact this is the first investigation of the
dynamic behavior of a cantilever beam with a time-dependent spring support at the
free end.

(2) The proposed method, combining the shifting function method with the expansion
theorem method, can efficiently find the analytic solution to the dynamic problem of
a time-dependent spring-supported cantilever beam.

(3) The influence of time-dependent spring coefficients on the beam system has been
obtained and discussed.

2. Mathematical Modeling

To evaluate the dynamic behavior of the novel spring-like actuator, the actuator is
set up at the free end of a Bernoulli–Euler cantilever beam with a uniform cross section
(Figure 1). The actuator is modeled as a spring support with a time-dependent medium, and
the beam is assumed to be loaded laterally (Figure 2). The governing equation, boundary
and initial conditions can be expressed as follows [14,15]:

EI
∂4W(x, t)

∂x4 + ρA
∂2W(x, t)

∂t2 = P(x, t), 0 < x < L, t > 0, (1)

W(0, t) = 0 ,
∂W(0, t)

∂x
= 0, at x = 0, (2)

∂2W(L, t)
∂x2 = 0, EI

∂3W(L, t)
∂x3 − K(t)W(L, t) = 0, at x = L, (3)

W(x, 0) = W0(x) ,
∂W(x, 0)

∂t
= W0(x), when t = 0, (4)

where W(x, t) is the flexural displacement, x is the coordinate along the centerline of the
beam, t is the time, and L is the beam length. E, I, and A denote the Young’s modulus,
the area moment of inertia, and the cross-sectional area, respectively. ρ is the mass density
and P(x, t) is the applied transverse force per unit length. K(t) denotes a time-dependent
spring function; W0(x) and W0(x) are the initial deflection and initial velocity, respectively.

Using the dimensionless approach, we define the following quantities

ξ =
x
L

, w(ξ, τ) =
W(x, t)

L
, τ =

t
L2

√
EI
ρA

, p(ξ, τ) =
P(x, t)L3

EI
,

w0(ξ) =
W0(x)

L
, w0(ξ) =

W0(x)
L

, S(τ) =
K(t)L3

EI
. (5)

The governing differential equation and the associated boundary conditions for the
system can be derived as

w′′′′ (ξ, τ) +
..
w(ξ, τ) = p(ξ, τ), (6)

w(0, τ) = 0, w′(0, τ) = 0, (7)

w′′ (1, τ) = 0, w′′′ (1, τ) = S(τ)w(1, τ) = kα(τ)w(1, τ), (8)
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where α(τ) and k represent the unit time function and the magnitude of the dimensionless
time-dependent spring stiffness. It is noted that the primes and the dots are used to denote
differentiation with respect to the dimensionless position ξ and the dimensionless time τ,
respectively. The dimensionless initial conditions are specified as two arbitrary functions

w(ξ, 0) = w0(ξ),
.

w(ξ, 0) = w0(ξ). (9)

3. The Solution Methodology
3.1. The Shifting Function Method

To find the solution of the beam vibration system, the shifting function method [26–28]
is adopted by taking

w(ξ, τ) = v(ξ, τ) + g(ξ) f (τ), (10)

where v(ξ, τ) is the transformed function, g(ξ) is the shifting function to be specified, and
f (τ) is defined as

f (τ) = S(τ)w(1, τ). (11)

Substituting Equation (10) into Equations (6)–(9), the partial differential equation is
derived as

v′′′′ (ξ, τ) +
..
v(ξ, τ) = p(ξ, τ)− g′′′′ (ξ) f (τ)− g(ξ)

..
f (τ), (12)

and the boundary conditions are

v(0, τ) = −g(0) f (τ), v′(0, τ) = −g′(0) f (τ), (13)

v′′ (1, τ) = −g′′ (1) f (τ), v′′′ (1, τ) = [1− g′′′ (1)] f (τ). (14)

Additionally, the corresponding initial conditions now become

v(ξ, 0) = w0(ξ)− g(ξ) f (0), (15)

.
v(ξ, 0) = w0(ξ)− g(ξ)

.
f (0). (16)

Since there are two variables v(ξ, τ) and f (τ) in Equation (12), the boundary value
problem cannot be solved directly via an analytical method. The relationship between them
is deduced below.

The shifting function g(ξ) is chosen to satisfy the following ordinary differential
equation with five boundary conditions by changing Equations (13) and (14) from nonho-
mogeneous into homogeneous boundary conditions.

g′′′′ (ξ) = C, (17)

g(0) = 0, g′(0) = 0, g′′ (1) = 0, g′′′ (1) = 1, g(1) = 0, (18)

where C is a constant to be determined. The fifth condition in Equation (18) is added to
construct a relationship between w(1, τ) and v(1, τ).

By solving Equations (17) and (18), the translation function and constant C can be
obtained as

g(ξ) =
2ξ4 − 5ξ3 + 3ξ2

18
, (19)

C =
8
3

. (20)
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Substituting the shifting function back into Equation (10) yields

w(ξ, τ) = v(ξ, τ) +
2ξ4 − 5ξ3 + 3ξ2

18
f (τ). (21)

Then, setting ξ = 1 in the above equation gives the relationship

w(1, τ) = v(1, τ). (22)

As a result, using this relationship, the two variables in Equation (12) are integrated
into one. Therefore, according to Equations (11) and (22), Equation (12) can be rewritten in
terms of the transformed function as follows:

v′′′′ (ξ, τ) +
..
v(ξ, τ) = p(ξ, τ)− 8

3
kα(τ)v(1, τ)− kg(ξ)

[
α(τ)

..
v(1, τ) + 2

.
α(τ)

.
v(1, τ) +

..
α(τ)v(1, τ)

]
. (23)

The right-hand side of the above equation represents the forced terms of the trans-
formed system; the associated boundary conditions, Equations (13) and (14), thus become
homogeneous as

v(0, τ) = 0, v′(0, τ) = 0, (24)

v′′ (1, τ) = 0, v′′′ (1, τ) = 0. (25)

Under these boundary conditions, v(ξ, τ) exactly represents the deflection of the
cantilever beam. Rearranging Equations (15) and (16), the corresponding initial conditions
become

v(ξ, 0) = w0(ξ)− kg(ξ)α(0)v(1, 0), (26)

.
v(ξ, 0) = w0(ξ)− kg(ξ)[α(0)

.
v(1, 0) +

.
α(0)v(1, 0)]. (27)

3.2. The Expansion Theorem Method

The method of eigenfunction expansion is used to solve the boundary value problem
of v(ξ, τ) (Equations (23)–(25)), and the corresponding eigenfunctions are obtained through
homogeneous governing differential equations and homogeneous boundary conditions.

In order to derive the orthogonality condition for the system eigenfunctions, the
following trial function will be used

φn(ξ) = φnor[sin λnξ − sinhλnξ − Hn(cos λnξ − cosh λnξ)], n = 1, 2, 3, · · · · · · (28)

where Hn is defined as

Hn =
sin λn + sinhλn

cos λn + cosh λn
(29)

and the eigenvalues λns are the roots of the following transcendental equation

cos λn cosh λn + 1 = 0. (30)

In this case, the trial function is chosen such that the inner product is∫ 1

0
φm(ξ)φn(ξ)dξ = δmn, (31)

where δmn denotes the Kronecker delta and φnor in Equation (28) is defined as

φnor = (cos λn + cosh λn)[(− cos 2λn + cosh 2λn + 4 sin λnsinhλn)/2]−
1
2 . (32)
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By using the expansion theorem method, one can assume that the solution of
Equation (23) is of the form

v(ξ, τ) =
∞

∑
n=1

φn(ξ)qn(τ) (33)

where qn(τ) (n = 1, 2, 3, · · · ) represents the time-dependent generalized coordinates.
Substituting the solution of Equation (33) into Equation (23), one can obtain

∞
∑

n=1
[φ′′′′n (ξ)qn(τ) + φn(ξ)

..
qn(τ)]

= p(ξ, τ)−
∞
∑

n=1

{ 8
3 kφn(1)α(τ)qn(τ) + kφn(1)g(ξ)[α(τ)

..
qn(τ) + 2

.
α(τ)

.
qn(τ)+

..
α(τ)qn(τ)]

} . (34)

Expanding p(ξ, τ) on the right-hand side of Equation (34) in terms of series yields

∞
∑

n=1
[φ′′′′n (ξ)qn(τ) + φn(ξ)

..
qn(τ)]

=
∞
∑

n=1
φn(ξ)βn(τ)−

∞
∑

n=1

{ 8
3 kφn(1)α(τ)qn(τ) + kφn(1)g(ξ)[α(τ)

..
qn(τ) + 2

.
α(τ)

.
qn(τ)+

..
α(τ)qn(τ)]

} (35)

where βn(τ) is defined as

βn(τ) =
∫ 1

0
φn(ξ)p(ξ, τ)dξ. (36)

From Equation (35), one can obtain

φ
′′′′
n (ξ)qn(τ) + φn(ξ)

..
qn(τ)

= φn(ξ)βn(τ)− 8
3 kφn(1)α(τ)qn(τ)− kφn(1)g(ξ)[α(τ)

..
qn(τ) + 2

.
α(τ)

.
qn(τ) +

..
α(τ)qn(τ)]

. (37)

Now, by taking the inner product of any trial function φn(ξ) in the above equation
and integrating over the entire domain, the differential equation for qn(τ) can be obtained
as follows:

..
qn(τ) +

2δnk
.
α(τ)

1 + δnkα(τ)

.
qn(τ) +

λ4
n + γnkα(τ) + δnk

..
α(τ)

1 + δnkα(τ)
qn(τ) =

βn(τ)

1 + δnkα(τ)
(38)

where γn and δn are defined by the following expressions:

γn =
8
3

φn(1) ·
∫ 1

0
φn(ξ)dξ = −8φn(1)φnor

3λn
[Hn(sin λn − sinhλn) + cos λn + cosh λn − 2], (39)

δn = φn(1) ·
∫ 1

0 φn(ξ)g(ξ)dξ

= φn(1)φnor
3λ5

n
· {8 [2− cos λn − cosh λn − Hn(sin λn − sinhλn)]

−3λn[sin λn − sinhλn − Hn(cos λn − cosh λn)]}
. (40)

It is worth noting that the coefficients of the
.
qn(τ) term in Equation (38) exerts a

damping effect.
Additionally, the initial functions w0(ξ) and w0(ξ) expand in series to

w0(ξ) =
∞

∑
n=1

ηnφn(ξ), w0(ξ) =
∞

∑
n=1

ζnφn(ξ), (41)

where ηn and ζn are defined as

ηn =
∫ 1

0
φn(ξ)w0(ξ)dξ, ζn =

∫ 1

0
φn(ξ)w0(ξ)dξ. (42)
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Now, the corresponding initial conditions in Equations (26) and (27) become

∞

∑
n=1

φn(ξ)qn(0) =
∞

∑
n=1

ηnφn(ξ)− g(ξ)kα(0)
∞

∑
n=1

φn(1)qn(0), (43)

∞

∑
n=1

φn(ξ)
.
qn(0) =

∞

∑
n=1

ζnφn(ξ)− g(ξ)[kα(0)
∞

∑
n=1

φn(1)
.
qn(0) + k

.
α(0)

∞

∑
n=1

φn(1)qn(0)]. (44)

In this case, let

φn(ξ)qn(0) = ηnφn(ξ)− φn(1)g(ξ)kα(0)qn(0), (45)

φn(ξ)
.
qn(0) = ζnφn(ξ)− φn(1)g(ξ)[kα(0)

.
qn(0) + k

.
α(0)qn(0)]. (46)

After multiplying Equation (45) by φn(ξ) and integrating over the domain, one can
obtain

qn(0) =
ηn

1 + kα(0)δn
. (47)

Likewise, performing the same operation and collecting the like terms in Equation (46)
yields

.
qn(0) =

ζn

1 + kα(0)δn
− ηnδnk

.
α(0)

[1 + kα(0)δn]
2 . (48)

Finally, after solving Equation (38) with two initial conditions (Equations (47) and (48)),
the complete solution for qn(τ) is obtained.

3.3. The Complete Solution and the Extreme Case Study

Substituting Equations (11), (22) and (33) back into Equation (10), the deflection of the
cantilever beam with a time-dependent spring support is

w(ξ, τ) =
∞

∑
n=1
{[φn(ξ) + φn(1)g(ξ)kα(τ)]qn(τ)}. (49)

Two extreme cases of the time-dependent spring coefficient are considered. One is a
constant spring coefficient, and the other is zero spring stiffness. Their descriptions are as
follows:

(A) When considering a constant spring coefficient, i.e., S(τ) = k, Equation (38) becomes

..
qn(τ) +

λ4
n + kγn

1 + kδn
qn(τ) =

βn(τ)

1 + kδn
. (50)

The corresponding two initial conditions in Equations (47) and (48) are

qn(0) =
ηn

1 + kδn
, (51)

.
qn(0) =

ζn

1 + kδn
. (52)

Therefore, the solution in Equation (50) can be calculated as

qn(τ) =
ηn

1 + kδn
cos κnτ +

ζn

κn(1 + kδn)
sin κnτ +

1
κn(1 + kδn)

∫ τ

0
βn(ϕ) sin[κn(τ − ϕ)]dϕ, (53)
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where κn is defined as

κn =

(
λ4

n + kγn

1 + kδn

) 1
2

. (54)

The dynamic deflection of a cantilever beam with a constant spring coefficient becomes

w(ξ, τ) =
∞

∑
n=1
{[φn(ξ) + kφn(1)g(ξ)]qn(τ)}. (55)

(B) If the spring stiffness k is equal to zero, i.e., the cantilever beam is only subjected to
external loads, then Equation (53) becomes

qn(τ) = ηn cos λ2
nτ +

ζn

λ2
n

sin λ2
nτ +

1
λ2

n

∫ τ

0
βn(ϕ) sin[λ2

n(τ − ϕ)]dφ, (56)

and the dynamic deflection of the cantilever beam is now

w(ξ, τ) =
∞

∑
n=1
{φn(ξ)qn(τ)}. (57)

Then, the classical solution is derived.

4. Harmonic Excitation and Harmonic Type of a Time-Dependent Spring Support

The problem of cantilever beams with time-dependent supports and time-varying
external loads is very important in practical engineering applications. Among various
types of dynamic external loads, harmonic excitation is typical in mechanical design, and
other general force situations can be solved by transforming them into harmonic forms
through Fourier series expansion. Therefore, we assume that the external periodic unit
load p(ξ, τ) at the free end of the cantilever beam is of the harmonic form

p(ξ, τ) = δ(ξ − 1) cos Ωτ, (58)

where δ represents the Dirac’s delta function and Ω represents the frequency of the external
periodic load.

Substituting Equation (58) into Equation (36), there is

βn(τ) = φn(1) cos Ωτ. (59)

The time-dependent function S(τ) of the harmonic spring support is taken as

S(τ) = kα(τ) = k(
1 + cos ω0τ

2
) (60)

such that S(τ) ranges from 0 to k. k and ω0 represent the magnitude and frequency of the
time-dependent spring stiffness, respectively. Differentiate S(τ) with respect to τ once and
twice to obtain

.
S(τ) = −k(

ω0 sin ω0τ

2
),

..
S(τ) = −k(

ω2
0 cos ω0τ

2
). (61)

The ordinary differential equation with variable coefficients in Equation (38) can be
written as

..
qn(τ) + B(τ)

.
qn(τ) + C(τ)qn(τ) = D(τ) cos Ωτ, (62)

where B(τ), C(τ), and D(τ) are given by

B(τ) = − 2kδnω0 sin ω0τ

2 + kδn(1 + cos ω0τ)
, (63)
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C(τ) =
2λ4

n + kγn(1 + cos ω0τ)− kδnω2
0 cos ω0τ

2 + kδn(1 + cos ω0τ)
, (64)

D(τ) =
2φn(1)

2 + kδn(1 + cos ω0τ)
. (65)

The particular solution of Equation (62) can be expected to be harmonic, so it is
assumed to be of the form

qn(τ) = Qn(τ) cos[Ωτ − Tn(τ)], (66)

where Qn(τ) and Tn(τ) denote the magnitude and phase angle of qn(τ), respectively.
Substituting Equation (66) into Equation (62) yields

Qn(τ) =
D(τ)√

[C(τ)−Ω2]2 + [B(τ)Ω]2
. (67)

B(τ) in Equation (62) represents the material damping. When it is zero, the resonance
frequency Ωnr can be obtained. Excluding k = 0 or ω0 = 0, B(τ) = 0 always occurs when
τ is an odd or even multiple of π

ω0
. The two cases of τ are discussed in detail below.

(1) When the time τ is an odd multiple of π
ω0

, there is

τ =
nπ

ω0
, n = 1, 3, 5, · · · . (68)

At this time, the time-dependent function S(τ) of the harmonic spring support be-
comes zero, and the beam system becomes a clamped-free beam at the same time.

From Equation (64), the resonance frequency is calculated as

Ωnr =

√
2λ4

n + kδnω2
0

2
. (69)

(2) When the time τ is an even multiple of π
ω0

, there is

τ =
nπ

ω0
,n = 2, 4, 6, · · · (70)

At this time, S(τ) becomes k and the beam system becomes a clamped-constant
spring-supported beam.

Likewise, from Equation (64), the resonance frequency is derived as

Ωnr =

√
2λ4

n + 2kγn − kδnω2
0

2 + 2kδn
. (71)

Since the resonance frequencies derived in Equations (69) and (71) are the same, one
can obtain

ω0n =

√
2(γn − δnλ4

n)

δn(2 + kδn)
. (72)

5. Numerical Results and Discussions

To illustrate the preceding analysis and check the accuracy of the solution, the follow-
ing two examples are considered and studied.

Example 1. Beam vibrations with constant spring stiffness.
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The initial deflection and initial slope of the clamped-spring supported beam under
the unit concentrated load at the free end is taken as

w0(ξ) =
−1

2(k + 3)
(ξ3 − 3ξ2), w0(ξ) = 0. (73)

Substituting these conditions back into Equations (28) and (42) yields

ηn =
∫ 1

0 φn(ξ)w0(ξ)dξ

= −φnor
λ4

n(k+3)

{
[3(sinhλn − sin λn) + λ3

n(cos λn + cosh λn)]

+Hn[3(cos λn − cosh λn) + λ3
n(sin λn − sinhλn)]

} , (74)

ζn = 0. (75)

In the case, a constant spring coefficient k = 1 and a forcing frequency Ω = 1 are used.
Integrating Equation (53), qn(τ) can be obtained as

qn(τ) =
ηn

1 + kδn
cos κn τ − φn(1)

(κ2
n −Ω2)(1 + kδn)

(cos κn τ − cos Ω τ). (76)

The separation of variables method cannot be used to find the analytical solution
to the dynamics of a cantilever beam supported by a time-dependent spring at the free
end. However, the separation of variables method can be used to solve the problem in
the extreme case of the cantilever beam supported by a spring with a constant stiffness
coefficient. By using the separation of variables method, qn(τ) is derived as

qn(τ) = ηn cos λ
2
nτ − φn(1)

(λ
4
n −Ω2)

(cos λ
2
nτ − cos Ωτ) (77)

where λns are the roots of the following characteristic equation.

λ
3
n[Hn(sin λn − sinh λn) + cos λn + cosh λn] = Hn(cos λn − cosh λn)− sin λn + sinh λn. (78)

In order to verify the accuracy of the solution using the proposed method in this study,
the extreme case is considered, and the results obtained using the proposed method and the
separation of variables method are compared. Table 1 shows the deflections at the free end
of the beam for S(τ) = k = 1 and Ω = 1 obtained using the two methods. The numerical
data in the table display the time points from 0 to 10 and the number of expansion terms
from 1 to 5. The data in rows A and B are obtained using the present method and the
separation of variables method, respectively. It is found that, although the difference in
results depends on the dimensionless time τ for τ from 0 to 10, the trends of the solutions
obtained using the two methods are almost the same.

Table 1. The deflections of the beam at ξ = 1 and various time τ [w0(ξ) = −ξ3+3ξ2

2(k+3) , w0(ξ) = 0,
S(τ) = k = 1, Ω = 1 ].

τ

w (1, τ)

1 Term 2 Terms 3 Terms 4 Terms 5 Terms

A B A B A B A B A B

0 0.2393 0.2402 0.2455 0.2485 0.2463 0.2495 0.2465 0.2498 0.2466 0.2499

1 0.1507 0.148 0.1572 0.1525 0.1577 0.1531 0.1578 0.1532 0.1578 0.1533

2 −0.1032 −0.1030 −0.1086 −0.1064 −0.1089 −0.1069 −0.1089 −0.1070 −0.1089 −0.1070

3 −0.2716 −0.2674 −0.2780 −0.2756 −0.2788 −0.2767 −0.2790 −0.2770 −0.2791 −0.2771
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Table 1. Cont.

τ

w (1, τ)

1 Term 2 Terms 3 Terms 4 Terms 5 Terms

A B A B A B A B A B

4 −0.1508 −0.1531 −0.1590 −0.1586 −0.1596 −0.1593 −0.1598 −0.1594 −0.1599 −0.1595

5 0.0689 0.0692 0.0728 0.0715 0.0729 0.0718 0.073 0.0719 0.073 0.0719

6 0.236 0.2358 0.2426 0.2438 0.2433 0.2448 0.2437 0.2451 0.2438 0.2452

7 0.2127 0.2086 0.2201 0.2148 0.2209 0.2156 0.2211 0.2158 0.2212 0.2159

8 −0.0491 −0.0469 −0.0513 −0.0481 −0.0512 −0.0483 −0.0513 −0.0483 −0.0513 −0.0483

9 −0.2387 −0.2367 −0.2455 −0.2443 −0.2463 −0.2453 −0.2465 −0.2455 −0.2466 −0.2456
10 −0.1997 −0.2005 −0.2071 −0.2075 −0.2080 −0.2083 −0.2082 −0.2086 −0.2083 −0.2087

A: Present solution, Equation (76); B: Separation of variables method, Equation (77).

To check the numerical convergence of the proposed method, Table 2 is established.
The relative error |(An+1 − An)/An+1| is considered, where An and An+1 are the solutions
using the proposed method with n and n + 1 terms expansion, respectively. The results in
Table 2 show that for n ≥ 2, the relative error is less than 1%, and that the larger n is, the
smaller the relative error will be. The three-term approximation is used when applying the
expansion theorem approach in the following studies.

Table 2. Convergence checks of the solutions of the proposed method in Table 1 under different
numbers of expansion terms.

τ

∣∣∣ An+1−An
An+1

∣∣∣
n = 1 n = 2 n = 3 n = 4

0 2.53% 0.325% 0.0811% 0.0376%

1 4.13% 0.317% 0.0634% 0%

2 4.97% 0.275% 0% 0%

3 2.30% 0.287% 0.0717% 0.0358%

4 5.16% 0.376% 0.125% 0.0625%

5 5.36% 0.137% 0.137% 0%

6 2.72% 0.288% 0.164% 0.0410%

7 3.36% 0.362% 0.0905% 0.0452%

8 4.29% 0.195% 0.195% 0%

9 2.77% 0.325% 0.0811% 0.0406%

10 3.57% 0.437% 0.096% 0.0480%
An: Present solution with n terms expansion; An+1: Present solution with n + 1 terms expansion.

Example 2. Beam vibrations with a time-dependent spring support.

First, the free-end deflections of three kinds of free-end-supported cantilever beams
are studied. By denoting the spring stiffness magnitude k = 1 and the spring stiff-
ness frequency ω0 = 2, the dimensionless time-dependent spring stiffness becomes
S(τ) = (1 + cos 2τ)/2. Figure 3 plots the deflection w(1, τ) at the free end of a pure can-
tilever beam (S(τ) = 0), a cantilever beam with a constant spring coefficient (S(τ) = 1), and
a cantilever beam with a time-dependent spring support (0 ≤ S(τ) = (1 + cos 2τ)/2 ≤ 1).
As time τ goes from 0 to 10, it can be seen that the pure cantilever beam deflects the most
(S(τ) = 0), while a cantilever beam with a constant spring coefficient deflects the least
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(S(τ) = 1). This is as expected. For a cantilever beam with a time-dependent spring
support (S(τ) = (1 + cos 2τ)/2), there are also oscillations at the peaks and troughs.
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Figure 3. The deflection at the free end of a pure cantilever beam (S(τ) = 0), a cantilever beam with a
constant spring coefficient (S(τ) = 1 ), and a cantilever beam with a time-dependent spring support
(S(τ) = (1 + cos 2τ)/2 ).

In the application, the parameter error, caused by several reasons, has the potential
to cause the deflection error, meaning that it is necessary to analyze the sensitivity of
the parameter. For the sensitivity analysis of the deflection of a cantilever beam with a
time-dependent spring support, the spring parameters, such as the magnitude k and the
frequency ω0 of the spring stiffness S(τ) = k( 1+cos ω0τ

2 ), are considered. First, Figure 4
shows the deflection of the free end of the cantilever with three spring magnitudes of 0.9, 1.0,
and 1.1 and a constant spring frequency of 2.0. It can be seen that the deflection differences
of the three spring magnitudes are more pronounced near the peaks and troughs. Then,
Figure 5 shows the deflection w(1, τ) of the cantilever with three spring frequencies of 1.9,
2.0, and 2.1 and a constant spring magnitude of 1.0. The longer the time taken, the more
obvious the separation of deflection curves will be. This can be explained by the fact that a
variation in the spring frequency changes the deflection frequency, resulting in a separation
of the deflection curves at different spring frequencies.

From the numerical data, the sensitivity of deflection with respect to spring magnitude
and frequency is also obtained on a time scale of 0 to 10, as shown in Table 3. When the
spring magnitude is changed from 1.0 to 0.9 and 1.1 during 0 ≤ τ ≤ 10, the sensitivity
|∆w(1, τ)/∆k|% ranges from 0.0463% to 13.5% and 0.0566% to 13.1%, respectively. The
sensitivity |∆w(1, τ)/∆ω0|% varies from 0.0% to 58.0% and 0.0% to 63.9% as the spring
frequency changes from 2.0 to 1.9 and 2.1. When the time is zero, the sensitivity of the
deflection with respect to the spring frequency is also zero. It is clear that the spring
frequency error has a greater effect on the variation in the cantilever deflection than the
spring magnitude error. To gain an insight into the dynamic behavior of a cantilever
beam with a time-dependent spring support, the conditions under which resonance occurs
should be studied. By using Equations (62) and (64), the resonance frequencies at times
τ = π/ω0 and τ = 2π/ω0 can be calculated for various spring frequencies. Table 4 shows
the resonance frequencies of a cantilever beam with time-dependent spring support at times
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τ = π/ω0 and τ = 2π/ω0 for spring stiffness magnitude k = 1 and with spring stiffness
frequency ω0 ranging from 0 to 48. The first two modes are calculated and displayed in
this table.
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Table 3. The sensitivity of the cantilever deflection with spring stiffness S(τ) = k( 1+cos ω0τ
2 ) for

ω∗0 = 2.0, k∗ = 1.0, 0 ≤ τ ≤ 10.

Parameter Sensitivity

ω0 = ω∗0 , k = ks
∣∣∣∆w(1, τ)

∆k

∣∣∣% a

ks = 0.9 0.0463~13.5%

ks = 1.1 0.0566~13.1%

ω0 = ωs
0, k = k∗

∣∣∣∆w(1, τ)
∆ω0

∣∣∣% b

ωs
0 = 1.9 0.0~58.0%

ωs
0 = 2.1 0.0~63.9%

a: ∆w(1, τ) = w(1, τ)|ω0=ω∗0 , k=ks − w(1, τ)|ω0=ω∗0 , k=k∗ , ∆k = k − k∗. b: ∆w(1, τ) = w(1, τ)|ω0=ωs
0 , k=k∗ −

w(1, τ)|ω0=ω∗0 , k=k∗ , ∆ω0 = ω0 −ω∗0 .

Table 4. The resonance frequencies of various spring frequencies at various times for mode I and
mode II [k = 1].

ω0
Mode I Mode II

τ = π/ω0 τ = 2π/ω0 τ = π/ω0 τ = 2π/ω0

0 3.516 4.038 22.034 22.126

(comparison) 3.516
(ES a)

4.040
(SVM b)

22.034
(ES a)

22.126
(SVM b)

1 3.517 4.037 22.034 22.126

2 3.520 4.035 22.034 22.127

5 3.541 4.016 22.031 22.130

10 3.616 3.950 22.020 22.141

15 3.737 3.838 22.001 22.160

20 3.900 3.674 21.975 22.186

25 4.100 3.453 21.942 22.219

30 4.330 3.161 21.901 22.260

35 4.591 2.777 21.853 22.308

40 4.873 2.254 21.797 22.363

45 5.174 1.448 21.734 22.426

47 5.299 0.898 21.706 22.453

48 5.363 0.374 21.692 22.467
a: Exact solution of the clamped-free beam system. b: Solution of the beam with constant spring stiffness by using
separation of variables method.

The resonance frequencies of the first two modes at ω0 = 0 and τ = π/ω0 are 3.516
and 22.034. When ω0 = 0 and τ = π/ω0 are considered, the beam system is the same as a
pure cantilever beam. The resonance frequencies calculated using the proposed method
are checked against those obtained from the exact solutions for the extreme case using
a clamped-free beam system. Comparing the two results obtained by using these two
methods, the results are the same, which verifies the correctness of the proposed solution.
When the spring stiffness frequency ω0 is zero, at time τ = 2π/ω0, the spring becomes the
other extreme case of a cantilever beam with a constant spring coefficient, meaning that the
resonance frequency can be solved using the separation of variables method. The results of
the first two modes are compared by using the proposed method and method of separating
variables. The relative difference of the first mode is |(4.038− 4.040)/4.040|= 0.0495% and
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the relative difference of the second mode is |(22.126− 22.126)/22.126|= 0%. It is clear
that the accuracy of the solution using the proposed method reaches a certain level.

For mode I, the resonance frequency increases with increasing ω0 at τ = π/ω0
and the resonance frequency decreases with increasing ω0 at τ = 2π/ω0. When ω0
is greater than the critical frequency of the spring stiffness ω0c (approximately 48.9), the
resonance frequency of the first mode at τ = 2π/ω0 will become a pure imaginary part. The
influence of ω0 on the first resonance frequency becomes significant when the divergence
instability is about to occur. For mode II, the change in resonance frequency is small with
ω0. Additionally, it is also found that the resonance frequencies for the second mode are
nearly the same for ω0 < 20 at τ = π/ω0 and τ = 2π/ω0.

The magnification factor MF for the boundary value problem is

MF = (k + 3)φn(1)|Qn(τ)| (79)

Figure 6 reveals the relationship between the magnification factor and the forcing
frequency for the first mode at eight time points at k = 1 and ω0 = 1. The resonance
frequency at τ = π is Ωr1 = 3.517 and that at τ = 2π is Ωr2 = 4.037, as shown in Table 4.
It is obvious that the maximum amplitude occurs at τ = π and τ = 2π. The amplitudes at
other times are much smaller than those near the two time points. The same results are also
found in other modes, which are not shown here for brevity.
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Figure 7 plots the resonance frequency versus the spring stiffness frequency ω0 at k = 1.
For modes I and II, the resonance frequency depends on the spring stiffness frequency. The
resonance frequency varies more significantly with the spring stiffness frequency, especially
for mode I. For modes III and IV, the resonance frequency is almost independent of the
spring stiffness frequency. The two resonance frequency curves of mode III coincide at
the two time points τ = π/ω0 and τ = 2π/ω0. The same happens in mode IV. It is also
found that the curve of the first mode at τ = 2π/ω0 in Figure 7 disappears for ω0 > 48.9.
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As discussed in Table 4, when the spring stiffness frequency is greater than the critical
frequency, the divergence instability occurs in the first mode at τ = 2π/ω0.
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Figure 7. The relationship of the resonance frequency and the spring stiffness frequency for the first
four modes at k = 1.

At ω0 = 30, the relationship between the resonance frequency and the magnitude
of the spring stiffness is shown in Figure 8. The situation in Figure 8 is similar to that
in Figure 7. The resonance frequencies of modes I and II depend on the spring stiffness
magnitude; in particular, the resonance frequency of mode I varies more obviously with
the spring stiffness magnitude. The resonance frequencies of modes III and IV are almost
independent of the spring stiffness magnitude. The two curves of mode III overlap at
the two times points of τ = π/ω0 and τ = 2π/ω0. The same happens in mode IV. As k
approaches 5.6, the first curve (τ = 2π/ω0) also exhibits divergence instability, as shown
in Figure 8.

Figure 9 is an enlarged plot of the resonance frequency versus the spring stiffness
frequency for the first mode at k = 1. For comparison, two dashed horizontal lines are
plotted at the resonance frequencies Ωr1 = 3.517 (S(τ) = 0; the extreme case of a pure
cantilever beam) and Ωr2 = 4.037 (S(τ) = k = 1; the extreme case of a cantilever beam with
a constant spring coefficient). The shaded areas indicate a magnification factor greater than
5, indicating the unsafe areas in engineering applications. Interestingly, one curve with odd
multiples of τ = π/ω0 and another curve with even multiples of τ = π/ω0 intersect at
ω01 = 16.2. This spring stiffness frequency at the intersection point can be calculated by
Equation (72).
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Figure 9. Zoomed-in plot of the resonance frequency versus the spring stiffness frequency for the
first mode at k = 1.
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Figure 10 is an enlarged plot of the resonance frequency versus the spring stiffness
magnitude for the first mode at ω0 = 30. A dashed horizontal line is drawn at the
resonance frequency of Ωr1 = 3.517 (S(τ) = 0; the extreme case of a pure cantilever beam)
for comparison. As in Figure 9, the shaded areas indicate that the magnification factor is
greater than 5; this represents an unsafe area in practical applications.

Axioms 2023, 12, x FOR PEER REVIEW 23 of 26 
 

0 2 4 6 8 10
0

2

4

6

8

10

MF > 5

kc

Ω
r

k

 odd times (τ = π / ω0 , 3π / ω0 , ...)
 S ( τ ) = 0
 even times (τ = 2π / ω0 , 4π / ω0 , ...)

 0/ofmultiplesodd ωπτ =

 0)( =τS
 0/ofmultipleseven ωπτ =

 k

r
Ω

 
Figure 10. Zoomed-in plot of the resonance frequency versus the spring stiffness magnitude for the 
first mode at 300 =ω . 

It can be seen from Figures 9 and 10 that in engineering applications, the occurrence 
of resonance can be avoided by adjusting the spring stiffness frequency and/or the spring 
stiffness magnitude. 

6. Conclusions 
An analytical solution to the vibration of a beam with a time-dependent spring-

supported boundary condition at the free end was developed in order to understand the 
dynamic behavior of a novel spring-like actuator. The series solution was generated via 
the shifting function method and the expansion theorem method. Most importantly, two 
examples of constant spring stiffness and harmonic type time-dependent spring supports 
for Bernoulli–Euler beams were also well studied. 

The new findings of the present study were as follows: 
(1) The proposed approach, combining the shifting function method and the expansion 

theorem method, can obtain an analytical solution to the dynamic behavior of a 
cantilever beam with a time-dependent spring-like actuator. 

(2) The deflection of the cantilever beam with a time-dependent spring support is 
between the two extreme cases of a pure cantilever beam and a cantilever beam with 
a constant spring coefficient. 

(3) In the sensitivity analysis, the error in the spring frequency has a greater effect on the 
variation in the cantilever deflection than that in the spring magnitude. 

Figure 10. Zoomed-in plot of the resonance frequency versus the spring stiffness magnitude for the
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It can be seen from Figures 9 and 10 that in engineering applications, the occurrence of
resonance can be avoided by adjusting the spring stiffness frequency and/or the spring
stiffness magnitude.

6. Conclusions

An analytical solution to the vibration of a beam with a time-dependent spring-
supported boundary condition at the free end was developed in order to understand the
dynamic behavior of a novel spring-like actuator. The series solution was generated via
the shifting function method and the expansion theorem method. Most importantly, two
examples of constant spring stiffness and harmonic type time-dependent spring supports
for Bernoulli–Euler beams were also well studied.

The new findings of the present study were as follows:

(1) The proposed approach, combining the shifting function method and the expansion
theorem method, can obtain an analytical solution to the dynamic behavior of a
cantilever beam with a time-dependent spring-like actuator.

(2) The deflection of the cantilever beam with a time-dependent spring support is between
the two extreme cases of a pure cantilever beam and a cantilever beam with a constant
spring coefficient.

(3) In the sensitivity analysis, the error in the spring frequency has a greater effect on the
variation in the cantilever deflection than that in the spring magnitude.
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(4) When the magnitude or the frequency of the spring stiffness is greater than a crit-
ical value, the divergence instability occurs in the first mode at even multiples of
τ = π/ω0.

(5) The important new finding is that the resonance frequency depends significantly on
the magnitude and the frequency of the spring-like actuator in the first two modes.
The magnitude and/or the frequency of the time-dependent spring stiffness can be
adjusted to distribute the first two modes to avoid causing unsafe vibrations or even
resonances of the beam system.

The resonance frequencies calculated using the proposed method were verified via a
comparison with the exact solutions and with the solutions obtained using the separation
of variables method in the extreme cases. However, it is also recommended that future
work validate the results via a comparison with numerical and/or experimental data.
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Nomenclature

A Cross-sectional area (m2)
E Young’s modulus (N/m2)
f Auxiliary function
g Shifting function
Hn Auxiliary function
I Area moment of inertia (m4)
k A constant spring stiffness magnitude
K Time-dependent spring stiffness (N/m)
L Length of beam (m)
MF Magnification factor
p Dimensionless forcing term
qn Time-dependent generalized coordinate
Qn Amplitude of qn
S Time-dependent spring function
t Time variable (sec)
Tn Phase angle of qn
v Transformed function
w Dimensionless flexural displacement of beam
w0, w0 Dimensionless initial displacement and initial velocity
W Flexural displacement of beam
W0, W0 Initial displacement and initial velocity
x Longitudinal coordinate of the beam (m)
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Greek Symbols

α A unit dimensionless time-dependent spring stiffness function
βn Auxiliary function
δ Delta function used in Equation (58)
δn Auxiliary function
δmn Kronecker delta
φn Eigenfunction
φnor Norm of eigenfuction
ϕ Auxiliary integration variable
γn, ηn, κn Auxiliary functions
λn, λn Characteristic values
τ Dimensionless time variable
ω0 Frequency of time-dependent spring stiffness
ω0c Critical spring stiffness frequency
Ω Frequency in forcing term
ξ Dimensionless coordinate
ζn Auxiliary function

References
1. Jia, X.L.; Ke, L.L.; Feng, C.B.; Yang, J.; Kitipornchai, S. Size effect on the free vibration of geometrically nonlinear functionally

graded micro-beams under electrical actuation and temperature change. Compos. Struct. 2015, 133, 1137–1148. [CrossRef]
2. Zhang, B.; Sui, Y.; Bu, Q.; He, X. Remaining useful life estimation for micro switches of railway vehicles. Control Eng. Pract. 2019,

84, 82–91. [CrossRef]
3. Scornec, J.L.; Guiffarda, B.; Sevenoa, R.; Cam, V.L. Frequency tunable, flexible and low cost piezoelectric micro-generator for

energy harvesting. Sens. Actuators A Phys. 2020, 312, 112148. [CrossRef]
4. Wang, T.; Zhu, Z.-W. A new type of piezoelectric self-excited vibration energy harvester for micro-actuator’s energy storage. J.

Energy Storage 2022, 46, 103519. [CrossRef]
5. Wang, H.; Yamada, S.; Tanaka, S. Moving coil type electromagnetic microactuator using metal/silicon driving springs and

parylene connecting beams for pure in-plane large motion in three axes. Sens. Actuators A Phys. 2022, 342, 113606. [CrossRef]
6. Xie, Y.; Lei, J.; Guo, S.; Han, S.; Ruan, J.; He, Y. Size-dependent vibration of multi-scale sandwich micro-beams: An experimental

study and theoretical analysis. Thin Walled Struct. 2022, 175, 109115. [CrossRef]
7. Onoda, J.; Watanabe, N. Vibration suppression by variable-stiffness members. AIAA J. 1991, 29, 977–983. [CrossRef]
8. Giirdal, Z.; Olmedo, R. In-plane response of laminates with spatially varying fiber orientations: Variable stiffness concept. AIAA J.

1993, 31, 751–758. [CrossRef]
9. Kuder, I.K.; Arrieta, A.F.; Raither, W.E.; Ermanni, P. Variable stiffness material and structural concepts for morphing applications.

Prog. Aerosp. Sci. 2013, 63, 33–55. [CrossRef]
10. Sun, S.; Yang, J.; Li, W.; Deng, H.; Du, H.; Alici, G. Development of a novel variable stiffness and damping magnetorheological

fluid damper. Smart Mater. Struct. 2015, 24, 085021. [CrossRef]
11. Kumar, D.; Sarangi, S. Variable stiffness modeling of smart cantilever beam under the electrical loading condition. Procedia

Comput. Sci. 2018, 133, 697–702. [CrossRef]
12. Zhao, Y.; Meng, G. A bio-inspired semi-active vibration isolator with variable-stiffness dielectric elastomer: Design and modeling.

J. Sound Vib. 2020, 485, 115592. [CrossRef]
13. Baniasadi, M.; Foyouzat, A.; Baghani, M. Multiple shape memory effect for smart helical springs with variable stiffness over time

and temperature. Int. J. Mech. Sci. 2020, 182, 105742. [CrossRef]
14. Balachandran, B.; Magrab, E.B. Vibrations; Cambridge University Press: New York, NY, USA, 2018; Chapter 9; pp. 547–565.
15. Meirovitch, L. Analytical Methods in Vibrations; The Macmillan Company: London, UK, 1967; Chapter 7; pp. 300–308.
16. Nothmann, G.A. Vibration of a cantilever beam with prescribed end motion. ASME J. Appl. Mech. 1948, 15, 327–334. [CrossRef]
17. Lee, S.Y.; Yan, Q.Z. An analytical solution for out-of-plane deflection of a curved Timoshenko beam with strong nonlinear

boundary conditions. Acta Mech. 2015, 226, 3679–3694. [CrossRef]
18. Yen, T.C.; Kao, S. Vibration of beam-mass systems with time-dependent boundary conditions. ASME J. Appl. Mech. 1959, 26,

353–356. [CrossRef]
19. Mindlin, R.D.; Goodman, L.E. Beam vibrations with time-dependent boundary conditions. ASME J. Appl. Mech. 1950, 17, 377–380.

[CrossRef]
20. Edstrom, C.R. The vibrating beam with nonhomogeneous conditions. ASME J. Appl. Mech. 1981, 48, 669–670. [CrossRef]
21. Grant, D.A. Beam vibrations with time-dependent boundary conditions. J. Sound Vib. 1983, 89, 519–522. [CrossRef]
22. Herrmann, G. Forced motions of Timoshenko beam theory. ASME J. Appl. Mech. 1955, 22, 53–56. [CrossRef]
23. Berry, J.G. and Nagdhi, On the vibration of elastic bodies having time-dependent boundary conditions. Q. Appl. Math. 1956, 14,

43–50. [CrossRef]

https://doi.org/10.1016/j.compstruct.2015.08.044
https://doi.org/10.1016/j.conengprac.2018.10.010
https://doi.org/10.1016/j.sna.2020.112148
https://doi.org/10.1016/j.est.2021.103519
https://doi.org/10.1016/j.sna.2022.113606
https://doi.org/10.1016/j.tws.2022.109115
https://doi.org/10.2514/3.59943
https://doi.org/10.2514/3.11613
https://doi.org/10.1016/j.paerosci.2013.07.001
https://doi.org/10.1088/0964-1726/24/8/085021
https://doi.org/10.1016/j.procs.2018.07.130
https://doi.org/10.1016/j.jsv.2020.115592
https://doi.org/10.1016/j.ijmecsci.2020.105742
https://doi.org/10.1115/1.4009855
https://doi.org/10.1007/s00707-015-1410-7
https://doi.org/10.1115/1.4012046
https://doi.org/10.1115/1.4010161
https://doi.org/10.1115/1.3157697
https://doi.org/10.1016/0022-460X(83)90353-X
https://doi.org/10.1115/1.4010969
https://doi.org/10.1090/qam/79436


Axioms 2023, 12, 500 22 of 22

24. Epstein, H.I. Vibrations with time-dependent internal conditions. J. Sound Vib. 1975, 39, 297–303. [CrossRef]
25. Aravamudan, K.S.; Murthy, P.N. Nonlinear vibration of beams with time-dependent boundary conditions. Int. J. Nonlinear Mech.

1973, 8, 195–212. [CrossRef]
26. Lee, S.Y.; Lin, S.M. Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions. ASME J. Appl.

Mech. 1996, 63, 474–478. [CrossRef]
27. Lee, S.Y.; Lin, S.M. Nonuniform Timoshenko beams with time-dependent elastic boundary conditions. J. Sound Vib. 1998, 217,

223–238. [CrossRef]
28. Lin, S.M.; Lee, S.Y. The forced vibration and boundary control of pretwisted Timoshenko beams with general time-dependent

elastic boundary conditions. J. Sound Vib. 2002, 254, 69–90. [CrossRef]
29. Lin, S.M. Pretwisted nonuniform beams with time-dependent elastic boundary conditions. Am. Inst. Aeronaut. Astronaut. J. 1998,

36, 1516–1523. [CrossRef]
30. Lee, S.Y.; Wang, W.R.; Chen, T.Y. A general approach on the mechanical analysis of nonuniform beams with nonhomogeneous

elastic boundary conditions. ASME J. Appl. Mech. 1998, 120, 164–169. [CrossRef]
31. Sajjadi, M.; Pishkenari, H.N.; Vossoughi, G. On the nonlinear dynamics of trolling-mode AFM: Analytical solution using multiple

time scales method. J. Sound Vib. 2018, 423, 263–286. [CrossRef]
32. Horssen, W.T.V.; Wang, Y.; Cao, G. On solving wave equations on fixed bounded intervals involving Robin boundary conditions

with time-dependent coefficients. J. Sound Vib. 2018, 424, 263–271. [CrossRef]
33. Ahmad, M.; Ansari, R.; Darvizeh, M. Free and forced vibrations of atomic force microscope piezoelectric cantilevers considering

tip-sample nonlinear interactions. Thin Walled Struct. 2019, 145, 106382. [CrossRef]
34. Wang, J.; Horssen, W.T.V.; Wang, J.-M. On resonances in transversally vibrating strings induced by an external force and a

time-dependent coefficient in a Robin boundary condition. J. Sound Vib. 2021, 512, 116356. [CrossRef]
35. Wang, X.; Meng, L.; Yao, Y.; Li, H. A vibration-driven locomotion robot excited by time-varying stiffness. Int. J. Mech. Sci. 2023,

243, 108009. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0022-460X(75)80083-6
https://doi.org/10.1016/0020-7462(73)90043-7
https://doi.org/10.1115/1.2788892
https://doi.org/10.1006/jsvi.1998.1747
https://doi.org/10.1006/jsvi.2001.4084
https://doi.org/10.2514/2.546
https://doi.org/10.1115/1.2893800
https://doi.org/10.1016/j.jsv.2018.02.047
https://doi.org/10.1016/j.jsv.2018.03.009
https://doi.org/10.1016/j.tws.2019.106382
https://doi.org/10.1016/j.jsv.2021.116356
https://doi.org/10.1016/j.ijmecsci.2022.108009

	Introduction 
	Mathematical Modeling 
	The Solution Methodology 
	The Shifting Function Method 
	The Expansion Theorem Method 
	The Complete Solution and the Extreme Case Study 

	Harmonic Excitation and Harmonic Type of a Time-Dependent Spring Support 
	Numerical Results and Discussions 
	Conclusions 
	References

