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Abstract: We studied a class of generalized n-species non-autonomous cooperative Lotka–Volterra
(L-V) systems with time delays. We obtained new criteria on the dynamic properties of the systems.
First, we obtained the boundedness and permanence of the system using the inequality analysis
technique and comparison method. Then, the existence of positive periodic solutions was inves-
tigated using the coincidence degree theory. The global attractivity of the system was obtained
by constructing suitable Lyapunov functionals and utilizing Barbalat’s lemma. The existence and
global attractivity of the periodic solutions were also obtained. Finally, we conducted two numerical
simulations to validate the feasibility and practicability of our results.
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1. Introduction

In recent decades, humans have caused the diversity of species on Earth to change
at an unprecedented rate. Large-scale human disturbances endanger the survival and
diversity of animal species. Predicting survival and diversity is one of the cutting-edge
interdisciplinary research directions and hot issues in Earth science and ecology. Given
the large timescales associated with population evolution and the inherent complexity
of ecosystems, many important scientific questions such as these cannot be solved using
traditional field observations and statistical analysis alone. The study and prediction of
the dynamic behavior of relevant ecosystems are becoming increasingly popular [1].

A cooperative population system is an ecosystem formed by many individuals work-
ing together whose dynamic behavior is closely related to the cooperative relationship
between the individuals. Cooperative populations can help us understand collaborative
behavior in ecosystems. Cooperation is a common behavior in ecosystems; for example,
bees gathering nectar together, or birds and fish migrating in large numbers [2].

Studying the dynamics of cooperative population systems can help us better under-
stand these cooperative behaviors and how they function. Factors such as climate change
and human activity can impact populations and collaborative behavior in ecosystems. It
can also help us understand the effects of these changes on ecosystems and how to respond
to the impacts of climate change. Understanding collaborative behavior in ecosystems can
help us design more effective environmental management and conservation measures to
protect the balance and stability of ecosystems and promote environmental management
and protection [3]. The dynamic behavior of cooperative systems can provide a reference
for the further research of new technologies, disease prevention, and regulation and control
development trends of species [4–6].
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The L-V system is a population dynamics model for representing the behavior of
species in ecosystems. It is worth noting that understanding the survival of populations in
biological systems is one of the most fundamental and important issues in biomathematics.
Coexistence is a well-known way to achieve species survival. Many scholars have studied
cooperative systems and obtained good results. For example, authors that considered the
problem of determining the permanence or persistence of non-autonomous multi-species
L-V systems with and without delays managed to obtain some criteria for the permanence
or persistence of the systems they studied [7–13].

The problem of the uniform persistence (permanence) of autonomous and
non-autonomous two-species L-V cooperative systems with or without delays has been
studied, and the researchers derived some criteria for the uniform persistence of the
systems [14–20].

In [7], the authors studied the following n-species cooperative system without delays
and they obtained some criteria for the persistence of this system.

drj(µ)

dµ
= rj(µ)[dj(µ)− cjjyj(µ) +

n

∑
i 6=j

cjiri(µ)], j = 1, 2, . . . , n. (1)

However, in the real world, a population’s environment often changes over time,
leading to changes in population growth. Therefore, the impact of time delays on biological
systems cannot be ignored.

Over the past few years, there have been many interesting results published on L-V
cooperative systems with delays. For example, in [8], the authors discuss an autonomous
two-species cooperative model with multiple discrete delays and they derived conditions
for the permanence of system (2).

ṙ1(µ) = r1(µ)
[
b1(µ)−

l11

∑
l=1

a11l(µ)r1(µ− τ11l) +
l12

∑
l=1

a12l(t)r2(µ− τ12l)
]
,

ṙ2(µ) = r2(µ)
[
b2(µ) +

l21

∑
l=1

a21l(µ)r1(µ− τ21l)−
l22

∑
l=1

a22l(µ)r2(µ− τ22l)
]
.

(2)

The authors also considered an autonomous two-species L-V cooperative model, based
on system (2), with several discrete delays and established a new sufficient condition for its
permanence. Furthermore, the authors presented an open problem on a class of n-species
L-V cooperative systems with delays.

In [9], the authors discussed a class of n-species L-V systems with time delays, and they
established some criteria for the permanence of system.

ṙ1(t) = r1(µ)
[
c1(µ)−

n

∑
j=1,j 6=2

m

∑
l=0

al
1j(µ)rj(µ− lτ) + a1

12(µ)r2(µ− τ)
]
,

ṙi(µ) = ri(µ)
[
ci(µ)−

n

∑
j=1,j 6=i+1

m

∑
l=0

al
ij(µ)rj(µ− lτ) +

m

∑
l=0

al
ii+1(µ)ri+1(µ− lτ)

]
,

ṙn(t) = rn(µ)
[
cn(µ)−

n

∑
j=2

m

∑
l=0

al
nj(µ)rj(µ− lτ) +

m

∑
l=0

al
n1(µ)ri+1(µ− lτ)

]
,

i = 2, · · · , n− 1.

(3)

The following general L-V cooperative system with both varying and distributed
time delays was studied in [11]. They obtained sufficient conditions for the extinction and
permanence of model (4).
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dri(µ)

dµ
=ri(µ)

[
di(µ)− eii(µ)ri(µ) +

n

∑
j 6=i

eij(µ)rj(µ− τij(µ)) +
n

∑
j 6=i

∫ 0

−σij

fij(µ, s)rj(µ + s)ds
]
,

i = 1, 2, . . . , n.

(4)
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As we all know, periodic phenomena are commonplace in nature. In an ecosystem,
environmental factors such as the season, availability of food, and physiological char-
acteristics always show periodic changes, which implies that these system parameters
are periodic functions of time and that the population has multiple dynamic equilibrium
states. Therefore, studying the periodic solutions and its stability in dynamic population
systems has great practical significance. In [12], the author studied the following periodic
cooperative systems (5) and derived several conditions of periodic solutions for them.

ṙi(µ) =ri(t)
[
ci(µ)− pii(µ)ri(µ) +

n

∑
k 6=i

pik(µ)rk(µ)−
n

∑
j=1

qij(µ)ri
(
µ− τij(µ)

)
+

n

∑
k 6=i

n

∑
j=1

dikj(µ)rk(µ− γikj(µ))
]
, (i = 1, 2, . . . , n).

(5)

In [8–11,13,15–19], the authors derived conditions for the persistence, permanence,
and extinction of the considered systems. However, while studying the dynamics of those
systems, they ignore the periodic solutions and the global attractivity of the cooperative
models. Furthermore, there have been few relevant studies on the permanence, periodic
solutions, and the global attractivity of multispecies cooperative systems with delays.

Considering these factors, and inspired by the studies cited above, we investigated
the following delayed n-species L-V cooperative systems:

żi(t) = zi(t)
[
si(t)− bi0(t)zi(t)−

m

∑
k=1

bik(t)zi(t− kε) +
n

∑
j=1,j 6=i

cij(t)zj(t)
]
,

i = 1, 2, . . . , n.

(6)

where zi(t) corresponds to the density of n cooperative species, respectively; cij(t) denotes
the cooperative coefficients between n species, respectively; bij(t) represents the intra-patch
restriction density, respectively; si(t) represents the intrinsic growth rate, respectively; and
ε is a time delay.

The purpose of this study is to obtain further conditions on global attractivity, perma-
nence, and periodic solutions. We will achieve this by constructing appropriate Lyapunov
functionals, using inequality techniques and a comparison method, coincidence degree
theory, and knowledge of differential equations.

2. Preliminaries

In this paper, we always use I , {1, 2, . . . , n}, and we define

Al = min
s∈[0,+∞)

A(s), Au = max
s∈[0,+∞)

A(s), F̄ =
1
Ω

∫ Ω

0
F (s)ds.

where A(s) is any bounded continuous function defined on [0,+∞) and F (s) is any Ω-
periodic continuous function on [0,+∞).

Now, we shall give some assumptions for convenience.

Hypothesis 1 (H1). ε > 0, si(t) > 0, bij(t) > 0, cij(t) > 0 (i, j ∈ I) are all continuous
bounded functions on [0,+∞).

Hypothesis 2 (H2). ε > 0, si(t) > 0, bij(t) > 0, cij(t) > 0 (i, j ∈ I) are all continuous
bounded and Ω-periodic functions on [0,+∞).
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The initial conditions associated with system (6) are given by

zi(t) = Γi(t), ∀t ∈ [−σ, 0], i ∈ I , (7)

where Γi(t) (i ∈ I) are satisfying Γi(0) > 0 and continuous non-negative functions defined
on [−σ, 0].

For further study, we need the following lemmas in this paper.

Lemma 1 ([21]). If p > 0, q > 0 and ṡ(µ) ≤ q− ps(µ), we have

s(µ) ≤ q
p
[1 + (

ps(0)
q
− 1)e−pµ)],

when µ ≥ 0 and s(0) > 0.

Lemma 2 ([22]). If s(µ) ≥ 0 and limµ→∞ s(µ) ≤ Ms such that

ṡ(µ) ≥ s(µ)
[
θ −

m

∑
l=0

λls(µ− kε)
]
, λ =

m

∑
l=0

λl ,

then there is a 0 < ms < ∞, such that

lim
µ→∞

s(µ) ≥ ms =
θ

λ
e(θ−λMs)mτ > 0.

3. Main Results

Theorem 1. If H1 holds and Ai > 0(i ∈ I), then system (6) is permanent. Where

Ai = min
t∈R
{bi0(t)−

1
2

n

∑
j=1,j 6=i

(cij(t) + cji(t))}.

Proof. Suppose that (z1(t), z2(t), · · · , zn(t)) is a solution of system (6) with initial condi-
tions (7). We firstly define that

W(t) =
n

∑
i=1

zi(t), s = min
i∈I

si(t), S = max
i∈I

si(t), t ∈ R.

Then, we have

Ẇ(t) + sW(t) ≤2
n

∑
i=1

Szi(t)−
n

∑
i=1

bi0(t)z2
i (t) + zi(t)

n

∑
j=1,j 6=i

cij(t)zj(t)

=2
n

∑
i=1

Szi(t)−
n

∑
i=1

bi0(t)z2
i (t) +

1
2

n

∑
i=1

n

∑
j=1,j 6=i

(cij(t) + cji(t))z2
i (t)

=−
n

∑
i=1

[(
bi0(t)−

1
2

n

∑
j=1,j 6=i

(cij(t) + cji(t))
)
z2

i (t)− 2Szi(t)
]

≤−
n

∑
i=1

[
Aiz2

i (t)− 2Szi(t)
]
.

(8)

Since Ai > 0, then one can easily obtain

Aiz2
i (t)− 2Szi(t) = Ai[zi(t)−

2S
Ai

zi(t) + (
S
Ai

)2 − (
S
Ai

)2] = Ai(zi(t)−
S
Ai

)2 − S2

Ai
.
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Hence, from (8), we derive that

Ẇ(t) + sW(t) ≤
n

∑
i=1

S2

Ai
:= θ.

Then, by using the Lemma 1, we can find that

W(t) ≤ θ

s
+ (W(0)− θ

s
)e−θt. (9)

It follows from (9) when t→ ∞,

lim
t→∞

W(t) ≤ lim
t→∞

(
θ

s
+ (W(0)− θ

s
)e−θt) =

θ

s
:= M. (10)

Hence, there exists a T0 > 0 such that zi(t) ≤ M(i ∈ I) for t > T0.
Next, for each zi(t), we can find that

żi(t) ≥ zi(t)[sl
i −

m

∑
k=0

bu
ikzi(t− kε)].

Let Bi = ∑m
k=0 bu

ik, then by Lemma 2, for t > T0, we directly obtain

lim
t→∞

zi(t) ≥
sl

i
Bi

e(s
l
i−Bi M)mε := mi > 0, i ∈ I . (11)

Then, there is a T1 > T0 such that zi(t) ≥ mi for t > T1. This implies that system (6) is
permanent.

Theorem 2. If H2 holds and

min
t∈R

{
bi0(t) +

m

∑
k=1

bik(t + kε)−
n

∑
j=1,j 6=i

cji(t)
}

:= Di > 0, i ∈ I ,

and the system of algebraic equations

s̄i − b̄i0vi −
m

∑
k=1

b̄ikvi +
n

∑
j 6=i

c̄ijvj = 0, i ∈ I ,

has a unique positive solution, then system (6) has a positive Ω-periodic solution. Where vi > 0 is
a constant.

Proof. Let
zi(t) = eui(t), i ∈ I .

Then, we obtain

u̇i(t) = si(t)− bi0(t)eui(t) −
m

∑
k=1

bik(t)eui(t−kε) +
n

∑
j=1,j 6=i

cij(t)e
uj(t). (12)

Let Z and X be the normed vector spaces, and C(R,Rn) the space of all continuous
functions u(t) = (u1(t), u2(t), . . . , un(t)) : R → Rn. We take

X = Z = {u(t) ∈ C(R,Rn) : u(t) is an Ω-periodic function},
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with norm

‖u‖ =
n

∑
i=1

max
t∈[0,Ω]

|ui(t)|.

Then, X and Z are the Banach spaces. We let L : DomL ⊂ X → Z be a linear
operator and N : X → Z be a continuous operator satisfying:

Lu(t) = u̇(t),

N u(t) = (N u1(t),N u2(t), . . . ,N un(t)),

where

N ui(t) = si(t)− bi0(t)eui(t) −
m

∑
k=1

bik(t)eui(t−kε) +
n

∑
j=1,j 6=i

cij(t)e
uj(t). (13)

Next, we let P : X → X and Q : Z → Z are continuous projectors satisfying:

Pu(t) =
1
Ω

∫ Ω

0
u(t)dt, Qv(t) =

1
Ω

∫ Ω

0
v(t)dt.

Then, ImL =
{

v ∈ Z :
∫ Ω

0 v(t)dt = 0
}

and KerL = Rn. Further, ImL is closed in Z
and dim KerL = n. Since for any v ∈ Z there are unique v1 ∈ Rn and v2 ∈ ImL with

v1 =
1
Ω

∫ Ω

0
v(t)dt, v2(t) = v(t)− v1,

such that v(t) = v1 + v2(t), we obtain codimIm L = n. Thus, L is a Fredholm mapping of
index zero. Moreover, the following form is the generalized inverse (to L ) KP : ImL →
KerP ∩DomL:

KPv(t) =
∫ t

0
v(s)ds− 1

Ω

∫ Ω

0

∫ t

0
v(s)dsdt.

Let F (t) = (F1(t),F2(t), . . . ,Fn(t)) as follows:

Fi(t) = si(t)− bi0(t)eui(t) −
m

∑
k=1

bik(t)eui(t−kε) +
n

∑
j=1,j 6=i

cij(t)e
uj(t). (14)

Thus, we have

QN u(t) =
1
Ω

∫ Ω

0
F (t)dt, (15)

and
KP (I −Q)N u(t) =KP IN u(t)−KPQN u(t)

=
∫ t

0
F (s)ds− 1

Ω

∫ Ω

0

∫ t

0
F (s)dsd t

+

(
1
2
− t

Ω

) ∫ Ω

0
F (s)ds.

(16)

So, one can see that QN and KP (I −Q)N are continuous operators. Further, using
the Arzela–Ascoli theorem,QN (Ω0) is bounded and KP (I −Q)N (Ω0) is compact for any
open bounded set Ω0 ⊂ X . Hence, N is L-compact on Ω0 for any open bounded subset
Ω0 ⊂ X .

Corresponding to Lu(t) = λN u(t) with λ ∈ (0, 1) and from (14), we obtain

u̇i(t) = λFi(t), i ∈ I . (17)
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Suppose that u(t) = (u1(t), u2(t), . . . , un(t)) ∈ X is a solution of system (7) for some
parameter λ ∈ (0, 1). Then ,integrating system (12) over the interval [0, Ω], we have

s̄iΩ−
∫ Ω

0

(
bi0(t)eui(t) +

m

∑
k=1

bik(t + kε)eui(t) −
n

∑
j=1,j 6=i

cij(t)e
uj(t)

)
dt = 0, i ∈ I .

consequently, we have

∫ Ω

0

(
bi0(t)eui(t) +

m

∑
k=1

bik(t + kε)eui(t) −
n

∑
j=1,j 6=i

cij(t)e
uj(t)

)
dt = s̄iΩ, i ∈ I . (18)

For each bik(t), we have

∫ Ω

0

m

∑
i=1

bik(t)eui(t−kε)dt =
∫ Ω+ε

kε

m

∑
i=1

bik(s + kε)eui(s)ds

=
∫ Ω

0

m

∑
i=1

bik(s + kε)eui(s)ds

=
∫ Ω

0

m

∑
i=1

bik(t + kε)eui(t)dt.

(19)

From (17) and (18), one can easily obtain

∫ Ω

0
|u̇i(t)|dt =

∫ Ω

0
|si(t)− bi0(t)eui(t) −

m

∑
k=1

bik(t + kε)eui(t)

+
n

∑
j=1,j 6=i

cij(t)e
uj(t)|dt

≤
∫ Ω

0
|si(t)|dt +

∫ Ω

0

[
bi0(t)eui(t) +

m

∑
k=1

bik(t + kε)eui(t)

+
n

∑
j=1,j 6=i

cij(t)e
uj(t)

]
dt

≤ (s̄i + S̄i)w := Ci, i ∈ I ,

(20)

where S̄i =
1
Ω

∫ Ω
0 |si|dt.

From the properties of solutions u(t) = (u1(t), u2(t), . . . , un(t)), we have some con-
stants ξi, ηi ∈ [0, Ω](i ∈ I) and satisfying

ui(ξi) = max
t∈[0,Ω]

ui(t), ui(ηi) = min
t∈[0,Ω]

ui(t), i ∈ I . (21)

Considering the integration of periodic functions, we have

∫ Ω

0
bik(t + kε)dt =

∫ Ω+kε

kε
bik(s)ds =

∫ Ω

0
bik(t)dt, i ∈ I . (22)

Then from (18) and (22), we have

s̄iΩ ≤
∫ Ω

0
bi0(t)eui(ξi)dt +

m

∑
k=1

∫ Ω

0
bik(t + kε)eui(ξi)dt

=
∫ Ω

0
bi0(t)eui(ξi)dt +

m

∑
k=1

∫ Ω

0
bik(t)eui(ξi)dt

= eui(ξi)
∫ Ω

0

[
bi0(t) +

m

∑
k=1

bik(t)
]
dt, i ∈ I .

(23)
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Therefore, we find that

ui(ξi) ≥ ln(
s̄i

b̄i0 + ∑m
k=1 b̄ik

), i ∈ I . (24)

On the other hand from (18) and (19), we have∫ Ω

0
[bi0(t)eui(t) +

m

∑
k=1

bik(t + kε)eui(t) −
n

∑
j=1,j 6=i

cij(t)e
uj(t)]dt = s̄iΩ, i ∈ I . (25)

From (25), we obtain∫ Ω

0
[b10(t)eu1(t) +

m

∑
k=1

b1k(t + kε)eu1(t) −
n

∑
j=1,j 6=i

c1j(t)e
uj(t)]dt

+
∫ Ω

0
[b20(t)eu2(t) +

m

∑
k=1

b2k(t + kε)eu2(t) −
n

∑
j=1,j 6=i

c2j(t)e
uj(t)]dt

+ · · ·+
∫ Ω

0
[bn0(t)eu2(t) +

m

∑
k=1

bnk(t + kε)eun(t) −
n

∑
j=1,j 6=i

cnj(t)e
uj(t)]dt

=
∫ Ω

0

[
b10(t) +

m

∑
k=1

b1k(t + kε)−
n

∑
j=1,j 6=i

cj1(t)
]
eu1(t)dt

+
∫ Ω

0

[
b20(t) +

m

∑
k=1

b2k(t + kε)−
n

∑
j=1,j 6=i

cj2(t)
]
eu2(t)dt

+ · · ·+
∫ Ω

0

[
bn0(t) +

m

∑
k=1

bnk(t + kε)−
n

∑
j=1,j 6=i

cjn(t)
]
eun(t)dt

=
n

∑
i=1

s̄iΩ.

(26)

Thus, we have∫ Ω

0

[
bi0(t) +

m

∑
k=1

bik(t + kε)−
n

∑
j=1,j 6=i

cji(t)
]
eui(t)dt ≤

n

∑
i=1

s̄iΩ, i ∈ I ,

and ∫ Ω

0
eui(t)dt ≤ ∑n

i=1 s̄iΩ
Di

, i ∈ I . (27)

From (21) and (27), we further obtain

u(ηi) ≤ ln
∑n

i=1 s̄i

Di
:= Bi, i ∈ I . (28)

From (20) and (28), we have

ui(t) ≤ ui(ηi) +
∫ Ω

0
|u̇i(t)|dt ≤ Bi + Ci := Mi,

ui(t) ≥ ui(εi)−
∫ Ω

0
|u̇i(t)|dt := Ni,

(29)

and
max |ui(t)| ≤ max(Mi, Ni) := Hi. (30)
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It is obvious that the constants Hi are independent of parameter λ ∈ (0, 1). For any
u = (u1, u2, . . . , un) ∈ Rn, from (13) we obtain

QN u = (QN u1,QN u2, . . . ,QN un),

QN ui = s̄i − b̄i0eui −
m

∑
k=1

b̄ikeui +
n

∑
j 6=i

c̄ije
uj , i ∈ I .

Let 0 < B < +∞ be big enough, satisfying
∣∣u∗1∣∣+ |u∗2 | + · · · + |u∗n| < B and B >

B1 + B2 + · · ·+ Bn. Let Ω0 ⊂ X be a bounded open set, satisfying

Ω0 = {u ∈ X : ‖u‖ < B}.

One can see that Ω0 fulfills the first two conditions of coincidence degree theory [23].
Moreover, we can obtain

deg{JQN , Ω0 ∩KerL, (0, 0, . . . , 0)} = sgn

∣∣∣∣∣∣∣∣
f 1
u1

f 1
u2
· · · f 1

un
f 2
u1

f 2
u2
· · · f 2

un
· · · · · · · · · · · ·
f n
u1

f n
u2
· · · f n

un

∣∣∣∣∣∣∣∣ 6= 0.

It can be seen that the Ω0 satisfies the last condition of coincidence degree theory [23].
Therefore, system (12) has an Ω-periodic solution u∗(t) =

(
u∗1(t), u∗2(t), . . . , u∗n(t)

)
∈ Ω̄0.

Finally, we find that system (6) has a positive Ω-periodic solution.

Theorem 3. If H1 and Θ > 0 hold, the system (6) is globally attractive. Where

Θ = min{Θ1, Θ2, · · · , Θn},

and

Θi = min
t∈R

{
bi0(t)−

m

∑
k=1

bik(t + kε)−
n

∑
j=1,j 6=i

cji(t)
}

, i ∈ I .

Proof. Suppose that (x1(t), x2(t), . . . , xn(t)) and (z1(t), z2(t), . . . , zn(t)) are any two posi-
tive solutions of system (6), then from the conditions of Theorem 3, there exist real numbers
T∗ and M > m0 > 0 such that

m0 ≤ xi(t), zi(t) ≤ M, (31)

as t ≥ T∗. Construct the following Lyapunov functional:

V(t) =
n

∑
i=1

[
| ln xi(t)− ln zi(t)|+

m

∑
k=1

∫ t

t−kε
bik(s + kε)|xi(s)− zi(s)|ds

]
,

then we obtain
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D+V(t) =
n

∑
i=1

sign(xi(t)− zi(t))
[
− bi0(t)(xi(t)− zi(t)) +

n

∑
j=1,j 6=i

cij(t)(xj(t)− zj(t))

−
m

∑
k=1

bik(t)(xi(t− kε)− zi(t− kε))
]
+

n

∑
i=1

m

∑
k=1

[
bik(t + kε)|xi(t)− zi(t)|

− bik(t)|xi(t− kε)− zi(t− kε)|
]

≤
n

∑
i=1

[
− bi0(t)|xi(t)− zi(t)|+

m

∑
k=1

bik(t)|xi(t− kε)− zi(t− kε)|

+
n

∑
j=1,j 6=i

cij(t)|xj(t)− zj(t)|
]
−

n

∑
i=1

m

∑
k=1

bik(t)|xi(t− kε)− zi(t− kε)|

+
n

∑
i=1

m

∑
k=1

bik(t + kε)|xi(t)− zi(t)|

≤
n

∑
i=1

[
− bi0(t)|xi(t)− zi(t)|+

m

∑
k=1

bik(t + kε)|xi(t)− zi(t)|

+
n

∑
j=1,j 6=i

cij(t)|xj(t)− zj(t)|
]

≤−
n

∑
i=1

[
bi0(t)−

m

∑
k=1

bik(t + kε)−
n

∑
j=1,j 6=i

cji(t)
]
|xi(t)− zi(t)|

≤ −Θ|xi(t)− zi(t)|.

(32)

Integrating from T∗ to t on both sides of (32), we obtain

V(t) +
∫ t

T∗
Θ|xi(t)− zi(t)| ≤ V(T∗). (33)

Then, from (31) and the similar method in [22], we can find that (xi(t)− zi(t)) and
(ẋi(t)− żi(t)) are bounded on [T∗, ∞) and |xi(t)− zi(t)| ∈ L1[T∗,+∞). Then, by Barbalat’s
lemma, we find that for i ∈ I ,

lim
t→+∞

|xi(t)− zi(t)| = 0.

From the conditions and proofs of the above theorems, we can derive the following
result for system (6).

Corollary 1. If H2 holds and

min
t∈R

{
bi0(t)−

m

∑
k=1

bik(t + kε)−
n

∑
j=1,j 6=i

cji(t)
}

:= Πi > 0, i ∈ I ,

and the system of algebraic equations

s̄i − b̄i0vi −
m

∑
k=1

b̄ikvi +
n

∑
j 6=i

c̄ijvj = 0, i ∈ I ,

a unique positive solution, then system (6) is permanent and has a global attractive positive ω-
periodic solution.
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Remark 1. Because model (6) can be specialized as systems in [7–9,11,14–18], and compared
with the results in [7–9,11,14–18], in the present paper we derived the aforementioned results.
Therefore, system (6) and the results in this paper can be seen as the supplements and extensions of
the previously known results and models in [7–9,11,14–18].

4. Examples

In this section, we provide two examples to validate the practicability and feasibility
of our results.

Example 1.

ż1(t) = z1(t)
[
3 + sin(t)− (4 + 0.5 sin(t))z1(t)− (0.2 + 0.1 sin(t))z1(t− 0.4)

− (0.2 + 0.1 cos(t))z1(t− 0.8) + (0.4 + 0.2 sin(t))z2(t)

+ (0.4 + 0.2 cos(t))z3(t)
]
,

ż2(t) = z2(t)
[
2 + sin(t)− (5 + 1.5 sin(t))z2(t)− (0.3 + 0.1 sin(t))z2(t− 0.4)

− (0.3 + 0.1 cos(t))z2(t− 0.8) + (0.5 + 0.2 sin(t))z1(t)

+ (0.5 + 0.2 cos(t))z3(t)
]
,

ż3(t) = z3(t)
[
2 + sin(t)− (6 + 2 sin(t))z3(t)− (0.2 + 0.1 cos(t))z3(t− 0.4)

− (0.3 + 0.1 sin(t))z3(t− 0.8) + (0.3 + 0.1 sin(t))z1(t)

+ (0.3 + 0.1 cos(t))z2(t)
]
.

(34)

From direct calculation, we obtain

min
t∈R

{
b10(t)−

2

∑
k=1

b1k(t + kε)−
3

∑
j=2,j 6=1

cj1(t)
}
≈ 1.7 > 0,

min
t∈R

{
b20(t)−

2

∑
k=1

b2k(t + kε)−
3

∑
j=1,j 6=2

cj2(t)
}
≈ 1.3 > 0,

min
t∈R

{
b30(t)−

2

∑
k=1

b3k(t + kε)−
3

∑
j=1,j 6=3

cj3(t)
}
≈ 2.5 > 0,

and
4.4v1 − 0.4v2 − 0.4v3 = 3,

5.6v2 − 0.5v1 − 0.5v3 = 2,

6.5v3 − 0.3v1 − 0.3v2 = 2,

has a unique positive solution v1 = 0.7564, v2 = 0.4572, v3 = 0.3537. Obviously, the assumptions
of Corollary 1 are all satisfied. Therefore, system (34) is permanent and has a globally attractive
2π-periodic solution. The corresponding simulations demonstrated in Figure 1.
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Fig 1: The global attractivity, periodic solution and permanence of system (34).
Here, we take different initial values.

As shown in Figure ??, numerical simulations suggest that system (34) is permanent and has
a global attractive 2π-periodic solution.

Figure 1. The global attractivity, periodic solution and permanence of system (34). Here, we take
different initial values. (a) Permanence, periodicity and global attractivity of z1(t), z2(t) and z3(t).
(b) Permanence, periodicity and global attractivity of z1(t) and z2(t). (c) Permanence, periodicity
and global attractivity of z1(t) and z3(t). (d) Permanence, periodicity and global attractivity of z2(t)
and z3(t). (e) Permanence, periodicity and global attractivity of z1(t), z2(t) and z3(t).

As shown in Figure 1, numerical simulations suggest that system (34) is permanent and has a
global attractive 2π-periodic solution.
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Example 2.

ż1(t) = z1(t)
[
3.5 + 0.5 cos(t)− (3 + 0.5 cos(t))z1(t)− (5.2 + 0.1 cos(t))z1(t− 0.65)

− (5.3 + 0.1 cos(t))z1(t− 1.3) + (0.89 + 0.02 cos(t))z2(t)

+ (0.85 + 0.02 cos(t))z3(t)
]
,

ż2(t) = z2(t)
[
4 + 0.45 cos(t)− (3 + 0.55 cos(t))z2(t)− (5.8 + 0.1 cos(t))z2(t− 0.4)

− (5.7 + 0.1 cos(t))z2(t− 0.8) + (0.9 + 0.02 cos(t))z1(t)

+ (0.88 + 0.02 cos(t))z3(t)
]
,

ż3(t) = z3(t)
[
5 + 0.55 cos(t)− (3 + 0.45 cos(t))z3(t)− (5.5 + 0.1 cos(t))z3(t− 0.4)

− (5.6 + 0.1 cos(t))z3(t− 0.8) + (0.93 + 0.01 cos(t))z1(t)

+ (0.91 + 0.01 cos(t))z2(t)
]
.

(35)

From direct calculation, we obtain

min
t∈R
{b10(t)−

1
2

3

∑
j=2,j 6=1

(c1j(t) + cj1(t))} ≈ 0.68 > 0,

min
t∈R
{b20(t)−

1
2

3

∑
j=1,j 6=2

(c2j(t) + cj2(t))} ≈ 0.645 > 0,

min
t∈R
{b30(t)−

1
2

3

∑
j=1,j 6=3

(c3j(t) + cj3(t))} ≈ 0.735 > 0,

min
t∈R

{
b10(t) +

2

∑
k=1

b1k(t + kε)−
3

∑
j=2,j 6=1

cj1(t)
}
≈ 10.94 > 0,

min
t∈R

{
b20(t) +

2

∑
k=1

b2k(t + kε)−
3

∑
j=1,j 6=2

cj2(t)
}
≈ 11.92 > 0,

min
t∈R

{
b30(t) +

2

∑
k=1

b3k(t + kε)−
3

∑
j=1,j 6=3

cj3(t)
}
≈ 11.68 > 0,

and
13.5v1 − 0.89v2 − 0.87v3 = 3.5,

14.5v2 − 0.9v1 − 0.88v3 = 4,

14.1v3 − 0.93v1 − 0.91v2 = 5,

has a unique positive solution v1 = 0.3058, v2 = 0.3188, v3 = 0.3954.
However, we find that

min
t∈R

{
b10(t)−

2

∑
k=1

b1k(t + kε)−
3

∑
j=2,j 6=1

cj1(t)
}
≈ −10.06 < 0,

min
t∈R

{
b20(t)−

2

∑
k=1

b2k(t + kε)−
3

∑
j=1,j 6=2

cj2(t)
}
≈ −11.08 < 0,

min
t∈R

{
b30(t)−

2

∑
k=1

b3k(t + kε)−
3

∑
j=1,j 6=3

cj3(t)
}
≈ −10.52 < 0.

Obviously, the assumptions of Theorems 1 and 2 are all satisfied. However, the assumptions of
Theorem 3 do not hold. The corresponding simulation is demonstrated in Figure 2.
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Fig 2: Dynamical behaviors of system (35). Here, we take different initial values.

As shown in Figure 2, numerical simulations suggest that system (35) is permanent, but has no
globally attractive positive periodic solution.

5. Conclusions

By considering the non-negligible nature of time delay and cooperative relationships
between populations, and by extending and generalizing previous works, in this paper, we
established and investigated an n-species Lotka-Volterra cooperative systems with time de-
lays (6). First, we obtained new conditions for the boundedness, permanence, and periodic
solution by using inequality techniques, the comparison principle, and the coincidence
degree theory. Second, by means of the Lyapunov method, we obtained conditions for the
global attractiveness of the system. Moreover, we derived the conditions for the existence
and global attractivity of the periodic solution. Finally, numerical simulations were em-
ployed to illustrate the effectiveness and feasibility of our results. Recently, the dynamic
properties of fractional-order delay differential equations have been extensively investi-
gated both in theory and applications [25,26]. Therefore, we have interesting future work
such as the dynamical behavior on the fractional-order n-species Lotka-Volterra cooperative
population systems with delays.
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As shown in Figure 2, numerical simulations suggest that system (35) is permanent, but has
no globally attractive positive periodic solution.

5. Conclusions

By considering the non-negligible nature of time delay and cooperative relationships
between populations, and by extending and generalizing previous works, in this paper, we
established and investigated an n-species Lotka–Volterra cooperative system with time de-
lays (6). First, we obtained new conditions for the boundedness, permanence, and periodic
solution by using inequality techniques, the comparison principle, and the coincidence
degree theory. Second, by means of the Lyapunov method, we obtained conditions for
the global attractiveness of the system. Moreover, we derived the conditions for the exis-
tence and global attractivity of the periodic solution. Finally, numerical simulations were
employed to illustrate the effectiveness and feasibility of our results. Recently, the dy-
namic properties of fractional-order delay differential equations have been extensively
investigated both in theory and applications [24,25]. Therefore, we have interesting future
work such as the dynamical behavior on the fractional-order n-species Lotka–Volterra
cooperative population systems with delays.
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