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Abstract: In this article, a new family of bivariate discrete distributions is proposed based on the
copula concept, in the so-called bivariate discrete odd generalized exponential-G family. Some
distributional properties, including the joint probability mass function, joint survival function, joint
failure rate function, median correlation coefficient, and conditional expectation, are derived. After
proposing the general class, one special model of the new bivariate family is discussed in detail. The
maximum likelihood approach is utilized to estimate the family parameters. A detailed simulation
study is carried out to examine the bias and mean square error of maximum likelihood estimators.
Finally, the importance of the new bivariate family is explained by means of two distinctive real data
sets in various fields.
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1. Introduction

Probability distributions are statistical functions that describe all possible values of a
random variable and their likelihood, within a specific range. These are a result of the data
generating process of an occurrence or its probability density function (PDF). Probability
distributions are useful in modeling our environment to acquire estimates of the likelihood
that a specific event will occur or to determine the variability of occurrence. There are many
types of probability distributions, including binomial distribution, uniform distribution,
Poisson distribution, normal distribution, lognormal distribution, beta distribution, expo-
nential, and bivariate distribution. In our study, we highlight the exponential distribution
(E) as a basic probability model for the proposed generator. The E model is a fundamental
and widely recognized probability distribution in research. For lifetime phenomenon and
reliability studies, the E distribution is rarely utilized due to the constant failure rate (FR);
however, its memoryless property proves useful in queuing theory. Different extensions
or generalizations of the E distribution have been introduced in the literature, with the
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generalized exponential (GE) garnering increased attention. The cumulative distribution
function (CDF) of the GE distribution can be formulated as expression

Fge(x;¢,v) = (1 - e“:")v;x >0, ¢))

where ¢ > 0is the scale parameter and v > 0 is the shape parameter. Based on the technique
of Alzaatreh et al. [1] for generating families of distributions, Tahir et al. [2] proposed the
new odd generator of distributions called the odd generalized exponential-G (OGE-G),
which exhibits flexible FR shapes such as increasing, decreasing, bathtub or upside-down
bathtub. The CDF of the OGE-G family is given by the following formula

Foceg(x; & v,0) = (1 — E’H(""@))V;x >0, )

where ¥(x;0) = G(x;0)/(1 — G(x;0)), G(x; ©) is a non-negative function of any model
that depends on positive parameter vector ® > 0. For more detail around the odd ratio,
¥ (x; @) (see Tahir et al., [2]). Due to the flexibility of Alzaatreh et al. [1] approach, several
authors utilized this technique to generate new models for analyzing different types of data
sets in various fields, for instance, see Silva et al. [3], Alizadeh et al. [4], Korkmaz et al. [5],
Djibrila [6], Reyad et al. [7], Alizadeh et al. [8], among others.

The above probability models can be applied to discuss and analyze univariate data.
In some applied sciences, bivariate data can be generated from different fields. Bivariate
data refer to a data set that contains exactly two variables. In statistics, bivariate data
represents data where each value of one variable is paired with a corresponding value of
the other variable. Typically, it would be of interest to investigate the possible association
between the two variables. A probability distribution involving two random variables
is called a bivariate probability distribution. The bivariate (BV) distributions have been
introduced, developed, and discussed by many authors and have wide applications in
various fields like engineering, weather, sports, drought, among others. More detail is
given in Balakrishnan and Lai [9]. The construction of the BV discrete and continuous
distributions are mainly via (I) the copulas (II) compounding (III) marginals (IV) reduction
and (V) conditioning, for instance, Johnson and Tenenbein [10], Quesada and Rodrguez [11],
Fang et al. [12], Durante [13], Kundu and Gupta [14], Sarabia et al. [15], Roozegar and
Jafari [16], Eliwa et al. [17], among others.

In several cases, the BV lifetimes need to be recorded on a discrete scale rather than on
a continuous one. Due to the previous reasons, discretizing continuous BV distributions
has received much attention in the statistical literature, for instance, Lee and Cha [18],
Kundu and Nekoukhou [19], El-Morshedy et al. [20], Nekoukhou et al. [21], De Oliveira
and Achcar [22], among others. Herein, we focus on the copulas approach. A copula
function for bivariate discrete probability distributions is a function that connects the joint
probability mass function of two discrete variables to their marginal probability mass
functions. A copula function can be obtained by discretizing a continuous copula function,
which is a function that links a multivariate distribution function to its one-dimensional
marginal distribution functions. Alternatively, a copula function can be derived from a
specific bivariate discrete distribution, such as the bivariate geometric, binomial, Poisson,
or negative binomial distributions. A copula function for bivariate discrete probability
distributions can be used to model the dependence structure between the variables and
to simulate bivariate discrete data with given marginals and correlation; for more details,
see, Kobus and Kurek, [23], Najarzadegan et al., [24], and Yamaguchi and Maruo, [25].
One of the important constructions of the bivariate distribution in survival and lifetime
models is frailty models. So, both copulas and frailty are important in lifetime models (see
Emura et al., [26]). The copula function can be formulated as follows

C(Fi(x1), F2(x2)) = G(x1,x2) forall x1,x = 0,1,..., ®)
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Py (x1,x2)

where G(x1, x,) represents the CDF of a given BV continuous model on (0, oo)z, whereas
Fi(x1) and F,(x,) are the marginals. There are some known parametric copulas such as
the following: the normal copulas, Farlie-Gumbel-Morgenstern (FGM) copulas, Marshall
and Olkin (MO) copulas, Cuadras and Augé (CA) copulas (see Cuadras and Augé, [27]),
among others. The CA copulas family was proposed as an extension of the BV distributions,
defined as follows

Co(x1,x2) = min{xy, xp } max{xy, x,}17°, (4)

where 0 < 6 <1and 0 < x1,xp < 1. The parameter 0 measures the degree of dependence
and plays the role of the parameter of upper-tail dependence of Cy(x1, x2). The CA copulas
family is utilized in a variety of modeling’s for exchangeable random vectors because
it is symmetric in its marginals. The aim of this paper is to propose a new discrete BV
family of distributions based on the CA copulas approach, in the so-called BV discrete
odd generalized exponential-G (BDsOGE-G) family, where the marginals have the OGE-G
families.

The article is organized as follows: In Section 2, the BDsOGE-G family of distributions
is introduced. Some mathematical and statistical properties are derived in Section 3.
In Section 4, the BDsOGE-Weibull distribution is discussed in detail. The parameters of
the new bivariate family are estimated via the maximum likelihood technique in Section 5.
In Section 6, a simulation study is performed to discuss the performance of the maximum
likelihood estimators. Two distinctive data sets are analyzed to discuss the flexibility of the
proposed family in Section 7. Finally, some concluding remarks and future work are listed
in Section 8.

2. The BDOGE-G Class

Recall that, in Equation (2), the CDF and probability mass function (PMF) of the
discrete OGE-G (DsOGE-G) family can be formulated as follows

) v
Fosoce.G(%; p,v,©) = (1 — p‘Y(fo@)) S x=0,1,23,... )
and

. v o v
fpsoGEG (% p,v, ©) = (1 - p‘Y(x“'@)) - (1 - p“’("f@)) ;x=0,1,23,..., (6

respectively, where p = ¢7¢,0 < p < 1, v > 0 and @ is the vector of parameters (1 x k).
Equation (6) can be writen as follows

fpsoce-G(x;p,v,0) = Z(—l)k+1(}<’) {Pk‘f(x;@)) _ pk‘}’(erl;)} ' @)
k=1

Utilizing the CA copulas approach with ¥ = 1 — 6, the joint PMF of the BDsOGE-G
can be expressed as

Py (xlr x2) if x1 <x
fX1;X2 (X1,X2) = PZ(xlr Xz) if x <xg (8)
P3(x) lf X1 =X =X,

where

{(1 _ p‘I’(xl-H;@)))V _ (1 _ p‘P(xl;@)))V} [(1 _ p\lf(x2+1;®))” _ (1 _ p‘Y(xz;(a))”}

fps0GE-G(¥1; P, V, ®) fpsoGe-G (X2; P, V7Y, ©),



Axioms 2023, 12, 534 4 0of 22

Py(x1,x2) = {(1 _ qu(xlﬂ;@))” _ (1 _ P‘F(Jq;@))wq Kl _ p‘f’(x2+1;®))v _ (1 _ p‘I’(xz;G)))V}
= fpsoGE-G(X1; P, v, ©) fps0GE-G (X2; P, V, ©),
and
Py(x) = (1 _ PW(HL))” [(1 _ p‘}’(erl;@)))V _ (1 _ p‘f’(x;@))v} _ (1 _ p‘I’(x;)>V

. vy . vy
% [(1 _ p‘I’(x+1,®)) _ (1 _ p‘I’(x,@)) }
@)\ o\
= (1 - P‘Y(XH’@)) fpsoGEG (X p, v, @) — (1 - PT(X’®)> fosoce-G(X; p, v, ©).
The joint CDF of the BDsOGE-G family can be proposed as
. vy . vy . v(1—y)
P, 3, (x1,32) = (1= p¥sb@)) T (1 — p¥lab@) ) (g p¥E0)) Ty vy —0,1,2,3.,
where z = min{xy, x2 }. The marginal CDF of the BDSOGE-G family is

FpsoceG (% p,v, ©) = (1 - p‘l’("i“;@)y; i=1,2 )

If (X3, Xy) ~ BDsOGE-G(p, v, v, ®), then X; and X, are positive quadrant dependent
(PQD) where

Pr(X; < x1, Xy < xp) > Pr(X; < x1)Pr(Xp < xp), for all x; and x.

The joint RF is given by
S1(x1,x2) if x1<x
Sx.,%,(x1,x%2) = ¢ Sa(x1,x2) if xo <xp (10)
S3(x) if xi=x=ux,
where

) =1 (1O (1) (1 (1 1)),

Sa(apm) =1 (1= pT )T (1 pTle ) (1 (1 preren)T),

and
S3(x) =1-— 2(1 - p‘Y(XH;@))V + (1 _ p‘I’(x-&-l;@))V(lJF’Y)'

The joint HRF function can be expressed by using hx, x, (x1,X2) = fx,,x,(X1,%2)/Sx,,x,
(x1 — 1, xp — 1) whereas the joint reversed HRF function can be proposed via vx, x, (x1, x2) =
fxy,x, (x1,%2) / Fx, x,(x1, x2). If the bivariate vector X have the BDsOGE-G model, then the
distribution for each W = max{Xj, X} and V = min{Xj, X, } can be written as follows

Fy (z) = Fpsoge-G (z p,v1 +12 +13,0) (11)
and
Fv (z) = FpsoGe-G (2 p,v1 +13,0) + FpsogeG (z:p,v2 +13,0) — Fy (z),  (12)

respectively.
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3. Distributional Properties
3.1. Median Correlation Coefficient

In statistics and probability theory, the median is a type of summary statistics used
to give important information about a certain data point or population. It is the value
separating the higher half from the lower half of an ordered data sample, a population,
or a probability distribution. For a bivariate version, the median correlation coefficient,
say Ly, x,, can be expressed as a form Lyx, x, = 4Fx, x,(Lx,,Lx,) —1, where Ly, and
Lx, denote the median of X; and Xy, respectively. If X; ~ DsOGE-G (@, v; + v3) and
X, ~ DsOGE-G (0,1, + v3), then

Ly x, = { 4Fps0GE-G (Lxy; P, V2, ©) Fpsoge-G (Lx,ipovi +v3,0) =1 if x1 < xp (13)
12 4FpsoGe-G (Lxy; P11, ©) Fosoge-G (Lx,; pova +13,0) =1 if x1 > xp,

where Ly, ;i = 1,2 is the quantile function for the marginals.

3.2. The Conditional CDF of Xy Given Xp = x (Xp < x3)

A conditional distribution is a probability distribution for a sub-population. In other
words, it shows the probability that a randomly selected item in a sub-population has a
characteristic of interest. Conditional distributions have many applications in statistics
and machine learning. For example, they can be used in regressing structured response
variables. In addition, conditional distributions can be embedded into a Hilbert space,
which is potentially useful in applications where conditional distributions are the key
quantities of interest. Assuming X follows the BDsOGE-G family, the conditional CDF of
(X1 | X2 = x2), say Fx, |x,—x, (¥1), is given by

P1(x1 | Xz) if 0<x; <
Fx,x,=x, (1 | x2) = Fy(x1 | x2) if 0<x<x (14)
F3(x1 | x2) if 0<x=x=x,
where
o\ N4 o\ VY
P (1 _ p‘f’(lerl,G))) [(1 _ p‘Y(szrl,G))) _ (1 _ p‘f’(xz,@))) }
1\X1 | X2) = ,
(1= p¥Cat1@)" — (1 - p¥(20))"]
)\ VY
Fz(xl | x2) _ (1 _ P‘I’(x1+1,®)> ,
and

. vy
B(x1 | x) = (1-p*s1@))

P(X1<x1,Xp=27)
P(Xp=x7)

say Fx, |x,<x, (%1 | X2), is given by

where Fy, x,—, (¥1 | X2) = . Similarly, the conditional CDF of X; | X, < xp,

(1 . P‘Y(x1+1;®))v(1 _ p‘Y(XzH;@))_V(l_w if 0<x1 < xy,
Fx, | x,<x, (1 | x2) = (1 — p¥(a+1,0) o if 0<x <ux, (15)
(1 - pwxﬂ;@))” if 0<% =x=nx

3.3. The Conditional Expectation of X1 Given X, = x

In probability theory, the conditional expectation of a random variable is its expected
value given that a certain set of “conditions” is known to occur. The conditional expectation
is the expected value of a random variable, computed with respect to a conditional proba-
bility distribution. To derive the conditional expectation of Xj, given X, = x,, the PMF of
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X1 given X, = x5 should be calculated first. Assuming X follow the BDsOGE-G family, the
PMF of X; given X, = x; can be expressed as

fi(xr | x2) if 0<x<x
fX1|X2:x2(x1 | x2) = fg(xl | x2) if 0< Xy < X1 (16)
f3(xl |x2) lf nglzxzzx’
where
fi(x1 | x0) = fDs0GE-G (%1, P, V, ©) fosocE-G (%2, p, V7, ©)
fpsoce-G(x2; p, v, ©) ’
f2(x1 | x2) = fposoce-G(x1; p,v7, @),
and

. 1/')’ ) v
(1 - PY(’(“’@)) fosoceG(x;p, v, ©) — (1 — P‘F("’@)) fosoce-G(x; p, vy, ©)

x1 | x) =
Sl [ x2) fosoce-G(x; p, v, ©)
Thus, the conditional expectation of X | X, = xp, say E(X | X = xp), is given by
vy . v . . . . o\ VY
E(Xl | X2 — xZ) — Z Z (1>1x1( l’)’) {pz‘I’(xl-i—l,@) _ pz‘I‘(xl,Q)} + X2 (1 _ p‘F(XZ'Fl,@))

i=0x1=x2+1

v xp—1 . . ) . ) ) vy ) vy

YT (—Dixn(Y) [pl‘l’(x1+1,®) _ pl‘Y(xl,Q)} [(1 _ p‘Y(xz+1,®)> _ (1 _ pT(x2,®)> }

+1:0x1:0

(1= p¥Cat10))" — (1 - p¥(20))"]

X2 (1 - P‘Y(xz;e))v [(1 — p‘”xﬁl}@))v7 _ (1 _ pw(xz;e))vq
[(1 - p‘f’(x2+1;®))1/ — (1 — plY(Xz;(@))v}

7

[e0)
where E(Xq [ X2 = x2) = ¥ x1fx,|x,=x, (X1 | x2). The accurate estimation of conditional
X1:0

expectations is an important problem arising in different branches of science and engi-
neering as well as finance, economics and various business applications (see Casella and
Berger, [28]; Pfeiffer, [29]; and Emura et al., [26]).

4. The BDsOGE-Weibull (BDsOGEW) Distribution

Considering the CDF of Weibull distribution with one positive shape parameter a, the
joint PMF of the BDsOGEW model is

Py (xl,xz) if x1 <x
fX1,X2 (x1/x2) = PZ(xlz xz) if x <xg 17)
P;3(x) if x1=x =1,

where

Pz, xz) = {(1 ) - (1 P(gxlﬂ”)u] [(1 ) I (. p<exz“1>>”}

Pz(xl,xz) = {(] _ p(e(xl-f-l)afl))l/’y B (1 _ P(exl"l))V’Y] [(1 B p(g(xzﬂ)ail))v B (1 B p(ﬁxzal))v}
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Joint PMF

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

and

Py(x) = (1- ,ﬁ,<e<x+l>"4>)“7 {(1 = p<e<x+l>"71>)” - (1- p<e"”1>)”] -(1- p(e"”fn)” X

(1= per 0y (1),

Figure 1 shows the joint PMF of the BDsOGEW model for various values of the parameters.

e p=0.7a=0.5n=10 g=1.3 e p=0.8a=04n=189g=0.3
p=0.8a=0.5n=10 g=1.3 p=0.9a=0.4n=189g=0.3
e p=0.9a=05n=10 g=1.3 e p=0.8a=0.3n=1.89g=0.3

0.015 0.020

Joint PMF
0.010

(LA R R T )
203 2 :ongv:aznzn:n:q" s g
S8 a0 o00tatetasassans®

ol e %30
pTe22P 0
u“:.. 28 s
fo3e%

0 5 10 15

0.005

0.000

Figure 1. The joint PMF of the BDsOGEW model.

It is worth noting that the joint probability mass function (PMF) can exhibit either a
unimodal or a decreasing surface shape. This flexibility allows it to be used for modeling
and analyzing both asymmetric and symmetric data. The corresponding joint CDF and
joint RF to Equation (17) can be formulated as

FXl/XZ(x1,x2) — (1 . p(exlﬂ_1)>v7 (1 B p(t’xza—l))wr (1 B p(ezu—l))v(177)

and
Sx,x,(¥1,%) = 1-— (1 _ p(m“—l))v B (1 _ p(exz”_1)>v N (1 B p(exl“_1)>w

% (1 _ p(eX2" _1))V’Y (1 B p(eza_l))v(lf'y),

respectively. Figures 2 and 3 illustrate the joint RF and joint HRF of the proposed bivariate
model based on different values of its parameters.

It is noted that the joint HRF can be either a unimodal, constant, or decreasing surface.
Thus, the joint HRF of this model can be used to analyze several types of data in various
fields. Figure 4 lists different plots of the conditional PMF of X; given that x, = 5, 15, 25
under various specific schemes Figure 4a: a = 0.4, p = 0.8, v = 1.3, v = 10 and Figure 4b:
a=04,p=038, v =023, v =18 Whereas the attitude of the conditional PMF of X, given
that x; =5, 15, 25 can be proposed through schemes Figure 5a: a = 0.4, p = 0.8, v = 1.3,
v = 10 and Figure 5b: a = 04, p = 0.8, v = 0.3, v = 1.8 in Figure 5.
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JointRF

e p=0.8a=0.4n=18g=0.3
e p=0.9a=0.4n=18g=0.3
e p=0.8a=0.3n=1.89g=0.3

JointHRF

JointRF

e p=0.7a=0.5n=10 g=1.3
e p=0.8a=05n=10 g=1.3
e p=0.9a=0.5n=10 g=1.3

14

Figure 2. The joint RF of the BDsOGEW model.

e p=0.8a=0.4n=18g=0.3
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Figure 3. The joint HRF of the BDsOGEW model.
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Figure 4. Some scatter plots of the conditional PMF forX; given x5.
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@ (b)

e x2=5 e x2=15 ¢ x2=25 e x2= 5 e x2=15 ¢ x2=25
[=2]
o
o
~
[=]
o
©
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g ' =] |‘,// 20
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H s 4
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8 8
So 5 10 15 20 25 30 So 5 10 15 20 25 30
x1 x1

Figure 5. Some scatter plots of the conditional PMF for X, given x;.

5. Point and Interval Estimations
5.1. Maximum Likelihood Estimation (MLE)

In statistics, MLE is a method of estimating the parameters of an assumed probability
distribution, given some observed data. This is achieved by maximizing a likelihood
function so that, under the assumed statistical model, the observed data is most probable.
MLE has applications in many fields such as physics, engineering, economics, finance,
and biology. In this section, the approach of MLE is used to estimate the unknown param-
eters p, v, v and © of the BDsOGE-G family. Suppose that a sample size 7, of the form
{(>11,%21), (%12, %22), - . ., (X1, X21) } from BDsOGE-G family. Under the following nota-
tions: I} = {X]j < x2]‘}, L = {.’)Cz]' < xlj}, Iy = {xlj = Xgj = x]‘}, I=LULUI,, |I1| =ny,
|| = na, |In| = np and n = ny + ny + ny, the likelihood function can be expressed as

L(p,l/, ’y,@) = H Pl(xlj, x2]') H Pz(xlj, xzj) H P3(x]-). (18)

jGI] jGIZ jelz

The log-likelihood function becomes

I(p,v,v,0) = Y In(gi(xyj;v))+ Y In(g1(x25v7))

jeh jeh

+ ) In(g1(xjvy)) + ) In(g1(xa);v))

jGIQ j612

+) ln((l - Pw(xﬁl;@))w&(xj;v) - (1 - p‘l’(x/','(a)>vg1 (xj;v'y)), (19)

j€l

where

s = (14700 (1759’

The MLEs of the parameters p, v, v and © can be obtained by computing the first
partial derivatives of Equation (19) with respect to p, v, v and O, respectively, and setting
the resulting equations equal to zero. The first partial derivatives are
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d(p,v,7,0) _ Y (1 v) — g0+ Lv) 3 82(%2j,vy) — g2(x2; + 1L, v7)
op j€h g1(x1j;v) jeh §1(x25;v77)
+y 2(x1j,vy) — &2(xj +1,v7) 3 82(x2j,v) — g2(x2j +1,v)
]'612 gl(xljl V’)/) jEIz g] (ij,l/)
R vy
T (1= p ) (g (xj,v) — ga(xj + 1,v)) — galxj + Lv7)ga (x;v)
210\ VY Yo v
€l (1= P10 g () — (1= P79 1 5v7)
y (1 - P‘Y("f’@)) (82(xj,vy) — g2(xj + 1,v)) — ga(xj,v)g1(xj;vy)
o . . vy . v 7
i (1) () - (1 pY)) gl
A(p,v,7,0) _ ¥ g3(x1j,v) — ga(x1; + 1L,v) iy v(83(x2j,vy) — g3(x2 +1,v7))
ov j€h 81(x1;v) jeh 81(x2j;v7)
iy v(83(x1j,vy) — g3(x1; +1,v7)) y 83(x2j,v) — g3(x27 + 1, v)
i€l gl(xlj;W) jel, g1(x2j;1/)
X ; vy
iy (1 —ptl ’H’@)) (83(xj,v) — g3(xj + Lv)) —rg3(x; + L vy)g1(xj;v)
4 vy . v
j€lo (1 - P‘{I(X’H'@)) g1(xj;v) — (1 - qu(x],e)) g1(xj;v)
. v
v (1= ¥ (g5 (x5, v7) — ga(x;+ 1,v)) — g (x5, 1)1 (x5 v7)
- i)\ 7 0\ ’
e (1= pT N ) - (1= ") g (i)
Alp,v,7,0) _ Y v(gs(%aj,vy) = 85(xoj +1Lv7)) 3 V(g3 (x1,vy) — &3(x1j +1L,v7))
Iy j€h 81(x25;v7) j€h 81(x1j;v7)
T —vga(xj +1,v7)g1 (xj;v) — v (1= p* 7)) (ga(x;,v7) — ga(x; +1,v7))
110\ VY Yoo v
i€l (1 — pT("J“')> g1(xj;v) — (1 — p‘Y( ]'@’)) g1(xj;vy)
and
Alp,v,7,0) _ 3 ga(x1j,v) — ga(x1; +1,v) iy §a(x2j,vy) — ga(x2j +1,v7)
90y jeh g1(x1j;v) ieh g1(x2j;vy)

Ly ga(x1j,vy) — gi;(xlj +1,vy) > g4(x,v) — g4.(x2j +1,v)
ih §1(x1j;v7) = g1(x2;v)
T (1= p¥O 0N (g (x;,v) — ga(x; +1,0)) — ga(xj + 1L,u)g (x5v)
j€ho (1 - PT(ijrl;@))wgl(xj;v) - (1 - P‘F(xf;e))vgl(xj; vy)
(1= p¥050) (axj,v7) — ga(x; +1,v7)) — 8a (31, ¥)g1 (x507)

= (1 _ p‘P(xJ';G)))ng (xj;v) — (1 _ p‘I’(xj;G))Vgl (xj;v7)
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where
D(xv) = vp‘P(x?@))*l (1 _ p‘F(x;@)))V—ll
ga(xv) = 1n(1 _ p‘Y(x;®)) (1 B p‘P(x;G)))V,
v—1

a(xv) = vH(x;@)lnp p‘P(’“;@) (1—pT(x;®)) ,

where H(x;©) = a%}{‘I’(x; ©) and Oy is a vector of the parameters of the baseline model
(k =1,2,3,...). The MLEs of the parameters p, v, v and @ can be obtained by solving
the above system of non-linear equations. The solution of these equations is not easy to
solve. Thus, the “NMaximize” function in the Mathematica software was utilized. The
“NMaximize” is a built-in function that attempts to find a global maximum of a function or
an expression numerically see Appendix A.

5.2. Asymptotic Confidence Intervals

Asymptotic confidence intervals (ACls) are confidence intervals (Cls) that are based
on the normal approximation of the sampling distribution of a statistic. They are also
called large-sample Cls because they are only valid when the sample size is large enough.
The asymptotic normal distribution of the MLE is the most widely utilized approach for
establishing confidence bounds for the model parameters. With respect to the Fisher infor-
mation matrix (FIM), denoted as I(Y), which consists of the negative second derivatives of
the I(p, v, v, ©) evaluated at Y= (p,v,7%, (:)\k), the asymptotic variance-covariance matrix
(AVCM) of the MLE of the parameters, assuming that the AVCM of the parameter vector
can be formulated as

021(Y)
ap?
PUY)  PI(Y)
- EIZ:) o2
IY)=~E| 2v) o1y) a2y ’ 20)

dyop dyov 972
21(Y)  2(Y) *LY)  JFLY)
E)@kap E)@kav 000y a@%

where Var(Y) = I"1(Y). Based on the asymptotic normality of the MLE, a 100(1 — a)%
confidence interval for parameter Y can be constructed as follows: p =+ Z,,,+/Var(p),
Vit Zyp/Var(v), ¥ £ Zy o/ Var(y), and Ok + Z, 5/ Var(Oy). The second derivatives of

the likelihood function can be calculated with Maple software.

6. Simulation: Estimators Performance

Simulation for bivariate discrete data in statistics is a technique to generate random
data that follows a joint probability distribution of two discrete variables. There are
different methods to simulate bivariate discrete data, depending on the type and structure
of the distribution. One common method is to use copulas, which are functions that link
univariate marginal distributions to a multivariate distribution. Copulas can capture the
dependence structure between the variables and allow for flexible modeling of different
types of correlations. Another method is to use discretization of continuous bivariate
distributions. This involves rounding or truncating the continuous values to discrete
values, and adjusting the probabilities accordingly. A third method is to use specific
bivariate discrete distributions. Depending on the type of estimator, different metrics may
be used to measure the performance of the estimator. These measures may include bias,
mean squared error (MSE), confidence intervals (Cls), and coverage probability (CP) of the
95% Cls. In this segment, the second approach has been used. The performance of the MLE
is tested under different schemes for the BDsOGEW parameter as follows:
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e Schemel: (Vp=01v=037=05a=02 1 n =20, ny =50, nz =150, ny = 300,
ns = 500, ng = 700);

e Schemell: (Vp=02,v=05,9=03,a=05 1 n =20, np =50, n3 =150, ngy = 300,
ns = 500, ne = 700);

e Schemelll: (V p =05,v=03,7=0.7,a=09 | ny =20, n, =50, n3 = 150, ny = 300,
ns =500, ng = 700)
The numerical assessments are performed depending on the bias, MSE, CP, and 95%

CIs “lower bound (LB) and upper bound (UB)” using software R package. In general,

an estimator is considered good if it has low bias and low variance. The empirical results
are reported in Tables 1-3.

Table 1. Simulation results for scheme I.

ny =20 n, =50
p v 0 a p v 0 a
Bias 0.10125 0.21458 0.18256 0.25203 0.05236 0.18256 0.12469 0.19636
MSE 0.09856 0.18256 0.15246 0.21552 0.04254 0.15635 0.09850 0.16504
CP 0.88719 0.92335 0.93419 0.83963 0.88436 0.92144 0.93223 0.83745
95% ClIyp 0.06523 0.24714 0.42302 0.14025 0.07136 0.25748 0.44120 0.15699
95% Clyp 0.14569 0.35125 0.59368 0.27145 0.13825 0.34283 0.56774 0.26632
nz =150 ny =300
P v ¥ a p v 0 a
Bias 0.01365 0.12145 0.08254 0.14231 0.00858 0.07156 0.0236 0.11258
MSE 0.01258 0.10395 0.06632 0.12569 0.00652 0.05236 0.01428 0.09254
CP 0.88253 0.92074 0.93064 0.83164 0.88162 0.91886 0.92846 0.82854
95% Clpp 0.07512 0.26314 0.46256 0.16369 0.08124 0.27142 0.47428 0.17402
95% Clyp 0.12415 0.34472 0.54239 0.24012 0.11932 0.33748 0.53201 0.23148
ns = 500 ng = 700
P v 0% a 4 v 0% a
Bias 0.00103 0.01254 0.00125 0.06317 0.00003 0.00235 0.00024 0.00301
MSE 0.00084 0.00825 0.00052 0.01426 0.00001 0.00082 0.00011 0.00082
CP 0.87949 0.91278 0.92676 0.81746 0.87552 0.91075 0.92019 0.81298
95% Clpp 0.08412 0.28301 0.48241 0.18012 0.09174 0.28102 0.49102 0.19125
95% Clyp 0.11363 0.32823 0.53294 0.21989 0.10857 0.31025 0.52138 0.21011
According to the simulation results/performance as n — +oo, the bias and MSE
decrease; and consequently, an unbiased estimator was achieved for large samples under
consistency condition. Thus, the maximum likelihood approach can be used effectively to
estimate the BDSOGEW parameters.
Table 2. Simulation results for scheme II.
ny = 20 ny =50
[4 v Y a p v 0% a
Bias 0.12369 0.23529 0.13085 0.16625 0.10238 0.20136 0.09820 0.14823
MSE 0.10925 0.22968 0.12821 0.15530 0.09569 0.18014 0.07742 0.13224
CP 0.91203 0.82734 0.94537 0.85016 0.91027 0.82256 0.94521 0.84771
95% Clpp 0.15365 0.40123 0.22303 0.46369 0.16325 0.42013 0.24120 0.47102
95% Clyp 0.26636 0.59325 0.38204 0.54215 0.24932 0.57012 0.36025 0.53325




Axioms 2023, 12, 534

13 of 22

Table 2. Cont.

ny =150 ng = 300
p v 0% a p v 0% a
Bias 0.08256 0.16328 0.04230 0.12012 0.02137 0.11205 0.00803 0.08825
MSE 0.06636 0.14200 0.03047 0.09825 0.01452 0.09852 0.00625 0.06328
Cp 0.90734 0.82019 0.94338 0.84309 0.90193 0.81578 0.94219 0.84290
95% Cl; g 0.17714 0.43025 0.25202 0.48158 0.18230 0.45201 0.28323 0.48623
95% Clyp 0.23852 0.55236 0.34525 0.52745 0.22825 0.54414 0.32256 0.51445
ng = 500 ng = 700
p v v a p v 0% a
Bias 0.00615 0.02167 0.00012 0.00215 0.00023 0.00273 0.00003 0.00052
MSE 0.00321 0.00825 0.00008 0.00102 0.00004 0.00019 0.00001 0.00008
cp 0.89723 0.81426 0.94139 0.84311 0.89227 0.81337 0.93772 0.84382
95% Clp 0.18936 0.46236 0.29201 0.49012 0.19102 0.47525 0.29025 0.49523
95% Clyp 0.21985 0.53926 0.30941 0.51125 0.20824 0.53101 0.30125 0.50585
Table 3. Simulation results for scheme III.
np =20 n, =50
p v v a p v 0% a
Bias 0.09858 0.24223 0.19302 0.16014 0.07145 0.19073 0.16325 0.14085
MSE 0.07145 0.21014 0.16328 0.14025 0.05241 0.17452 0.14145 0.13748
Cp 0.92747 0.81457 0.97194 0.95712 0.91265 0.82602 0.97188 0.95639
95% Cl 0.46568 0.19365 0.58636 0.75145 0.47188 0.22325 0.61258 0.79569
95% Clyp 0.54258 0.41256 0.82414 1.15369 0.53521 0.38525 0.79201 1.10254
ny =150 ng = 300
4 v ¥ a p v 0% a
Bias 0.02035 0.14625 0.13205 0.12638 0.00413 0.12025 0.11015 0.11365
MSE 0.01996 0.13236 0.11859 0.12025 0.00251 0.11301 0.09852 0.09852
cp 0.91746 0.82746 0.96984 0.95612 0.92957 0.88230 0.96901 0.95598
95% ClIrp 0.48194 0.24189 0.64302 0.82638 0.48831 0.25885 0.66358 0.86677
95% Clyp 0.52825 0.34125 0.76012 0.98510 0.51254 0.33236 0.73258 0.93748
ns = 500 ne = 700
p v 0% a p v 0% a
Bias 0.00074 0.08236 0.08858 0.09014 0.00002 0.00714 0.00752 0.01173
MSE 0.00066 0.06326 0.07968 0.06852 0.00001 0.00513 0.00524 0.00721
Cp 0.90166 0.88109 0.96836 0.95583 0.90654 0.88112 0.96554 0.95566
95% Cl; g 0.49134 0.27256 0.68225 0.87480 0.49014 0.28541 0.69221 0.88369
95% Clyp 0.51015 0.32748 0.71529 0.93254 0.50895 0.31526 0.70418 0.91596

7. Data Analysis

In this section, we clear the experimental importance of the BDsOGE-G family by
using three applications. In each data set, we compare the fits of the proposed BDsOGEW
distribution with well-known bivariate models. The tested distributions are compared
using some criteria namely, the negative maximized log-likelihood (—I), Akaike information
criterion (AIC), and Hannan-Quinn information criterion (HQIC). The AIC is an estimator
of prediction error and thereby relative quality of statistical models for a given set of data.
It estimates the quality of each model, relative to each of the other models. AIC provides a
means for model selection. The HQIC is a criterion for model selection. It is an alternative
to AIC and Bayesian information criterion.
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7.1. Data Set I: Nasal Drainage Severity Score
This data set represents the efficacy of steam inhalation in the treatment of common
cold symptoms “0 = no symptoms; 1 = mild symptoms; 2 = moderate symptoms; 3 =
severe symptoms” (see Davis, [30]). Figure 6 shows scatter and violin plots of the Nasal
drainage severity score data.
Violin Plots Scatter Plot
o 3
™

o 3
0 D
o 3
e T
Min(X1, X2)
Figure 6. Scatter and violin plots of data set I.

Before analyzing the bivariate data, we first fit the marginals X; and X, separately
and min (X3, Xp). The MLEs of the parameters v, p and « of the corresponding univariate
distribution for X;, X, and min(X;, X5) are (1.915,0.809,0.911), (5.073,0.516,0.601) and
(1.591,0.769, 0.923), respectively. The —I values are 78.855, 78.031 and 76.781, respectively.
Moreover, the p-values ranged from 0.658 to 0.759. Now, we compare the BDsOGEW
distribution with some competitive distributions like bivariate discrete exponential (BDsE),
bivariate Poisson with four parameters (BPo-4P), independent bivariate Poisson (IBPo),
bivariate discrete inverse exponential (BDsIE), bivariate discrete inverse Rayleigh (BDsIR),
and bivariate discrete inverse Weibull (BDsIW) distributions. Table 4 lists the MLEs and
some goodness-of-fit measures (GOFM).

Table 4. The MLEs and GOFM for data set I.

Model MLEs —1 AIC HQIC
BDsE 71 = 0.846,7, = 0.792, 73 = 0.693 88.002 182.004 183.349
BPo-4P M = 0.262,71 = 0.165, A, = 0.405,7, = 2.971 77.664 163.328 165.121
IBPo A1 =1.499,A, =1.367 92.478 188.956 189.853
BDsIE 71 = 0.501, 7, = 0.622, 73 = 0.383 92.482 190.964 192.309
BDsIR 71 = 0.262,v, = 0.405,73 = 0.363 78.659 163.318 164.663
BDsIW 71 =0.192, 7, = 0.337,73 = 0.360,{ = 2.453 76.513 161.026 162.815
BDsOGEW ¥ =0.574,v = 2457, p = 0.722,a = 0.780 71.162 150.324 152.117

It is observed that the BDsOGEW model is the best among all tested models because it
has the smallest values among —/, AIC, and HQIC when compared to the other competitive
models. The 95% Cls for the BDSOGEW parameters 7, v, p, a can be listed as [0.378,0.770],
[2.165,2.748], [0.624,0.820], and [0.594, 0.965], respectively. Figure 7 shows the estimated
joint PMF for the BDsSOGEW distribution and the other competitive models, which support
the results of Table 4.



Axioms 2023, 12, 534 15 of 22

PMF

PMF

Figure 7. The estimated joint PMF based on data set I.

Figures 8-10 show the profile | for each parameter as well as contour plots. It has been
found that the maximum likelihood estimates are unique.
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Figure 8. The profile [ for parameters a, 7, p and v for data set I.
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Figure 10. Contour diagrams of the model estimators based on data set I.

7.2. Data Set II: Football Score

The data set consists of a football match score in talian football matches from 1996
to 2011, between “ACF Fiorentina” (X;) and “Juventus” (X;). The data source is “http://
www.worldfootball.net/competition/ita-serie-a/ (accessed on 16 March 2023)”. Figure 11
shows scatter and violin plots of the football score data.


http://www.worldfootball.net/competition/ita-serie-a/
http://www.worldfootball.net/competition/ita-serie-a/
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Figure 11. Scatter and violin plots of data set II.
We first fit the marginals X; and X, separately and min(Xj, X). The MLEs of the pa-
rameters v, p and « of the corresponding univariate distribution for X;, X, and min(Xy, X»)
are (29.269,0.165,0.357), (5.083, 0.534, 0.631) and (28.051, 0.152, 0.384), respectively. The —I
values are 65.898, 67.856 and 64.723, respectively. Moreover, the p-values ranged from 0.786
to 0.801. Now, we compare the BDsOGEW distribution with some competitive distributions
like BDsE, bivariate discrete Rayleigh (BDsR), bivariate discrete Weibull (BDsW), bivari-
ate Poisson with minimum operator (BPoy,n), bivariate Poisson with three parameters
(BPo-3P), inverse bivariate Poisson (IBPo), BDsIE, and BDsIR distributions. Table 5 lists the
MLEs and some GOFM.
Table 5. The MLEs and GOFM for data set II.
Model MLEs —1 AIC HQIC
BDsE 71 = 0.625,7, = 0.812,173 = 0.713 75.421 156.842 157.929
BDsR 71 = 0.790,7, = 0.872,73 = 0.905 63.931 133.862 134.949
BDsW ;1 = 136,17, =2.10,73 = 2.27,{ = 2.125 63.911 135.822 137.271
BPomin 7 = 1.36,7, = 210,73 = 2.27 64.228 134.456 135.543
BPo-3P 71 =1.08,7, = 1.38,73 = 0.70 64.932 135.864 136.951
IBPo A1 =1.08,A, =138 67.623 139.246 139.971
BDsIE 71 = 0.669,7, = 0.388,73 = 0.514 78.541 163.082 164.169
BDsIR 71 = 0.493,7, = 0.212, 73 = 0.561 64.102 134.204 135.291
BDsOGEW ¥ =0.759,V = 23.807, p = 0.213,a@ = 0.399 62.589 133.178 134.627

It is noted that the BDSOGEW distribution is the best among all tested models. The 95%
ClIs for the BDSOGEW parameters 1y, v, p, a can be reported as [0.620,0.897], [23.529, 24.084],
[0.0611,0.3648], and [0.253,0.544], respectively. Figure 12 shows the estimated joint PMF
for the BDsOGEW distribution and the other competitive distributions, which prove the
results of Table 5.
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Figure 12. The estimated joint PMF based on data set II.
Figures 13-15 prove that the maximum likelihood estimates are unique.
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Figure 13. The profile [ of a, v, p and v according to data set II.
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Figure 15. Contour diagrams of the model estimators based on data set II.

8. Concluding Remarks and Future Work

In this paper, a flexible bivariate odd discrete generator has been introduced based on
the copula concept. Some of its statistical properties have been investigated. After reporting
the general class, one special model of the new bivariate family has been studied in-detail. It
was found that the new joint probability mass function can be utilized to model asymmetric
as well as symmetric data surfaces. Moreover, the hazard rate function of the newly
created distribution can be used to discuss various types of failures, including increasing-,
decreasing-, bathtub-, and unimodal-shaped surface. The bivariate model parameters
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Py (x1,x2)

have been estimated utilizing the maximum likelihood technique. A simulation has been
performed to test the performance of the maximum likelihood estimators based on different
sample sizes, and it was found that the maximum likelihood approach could be used to
discuss the real data herein. Finally, two distinctive real data sets, “Nasal drainage severity
score” and “Football score”, have been analyzed, and it was found that the proposed bivariate
family has worked quite well in modeling the data. As a future work, the bivariate quantile
residual life and multivariate extension of the proposed model with its applications will
be discussed.
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Appendix A
e  The PMF of the BDsOGE-G

Utilizing Equations (3)—(6), the join PMF of the BDsOGE-G can be expressed as

fx,x,(x1,x2) = C(Fx,(x1 +1),Fx,(x2 4+ 1)) — C(Fx, (x1 + 1), Fx,(x2))
—C(Fx, (x1), Fx,(x2 + 1)) + C(Fx, (x1), Fx,(x2))

Py (x1,x2) if x1 <x

Py (x1,x2) if x <x

P;(x) if xy=x =x,

where

(1 ¥ (x1+1;0) )”( p¥ e)) o (1 _ p‘f’(lerl;@))V (1 _ plf(xz;)>”
7( pt e ))V( _ ptlatt @)) i (1 _ qu(xl;@))v(l _ p‘y(xz;e))”

(1 ¥ (x1+1;0) )V (1 pt(atl; @)) " (1 _ plf(xz,-@)>v7] _

(1 ¥ (x1;0 ) [(1 ¥ (x2+1; ®)> " (1 _ p\f(xz;e))w]

Kl pt(1+10) )V ( p¥ e ))V} [(1 _ qu(xzﬂ;@))” _ (1 _ pq/(x%-@))”}

fpsoce-G(X1; P, v, ©®) fpsoGe-G (X2, p, v, 7, ©®),
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Py(x1,x2) = (1 _ P‘Y(x2+1;®))v (1 _ p‘l’(x1+1;®))wy _ (1 _ p‘I’(xz;G)))V (1 _ p‘P(xlﬂ;@))”
_ (1 _ p‘I’(xz-H;@))V(l _ qu(xz;@))v I (1 _ qu(xl;e))w (1 _ p‘Y(xz;G)>V

_ (1 _ p‘f(xﬁl;@)))w[(l _ p‘Y(szrl;G)))V _ (1 _ p‘P(xz;G))V]

(1 — p‘l’(xu@))W[(l — p‘Y(XzH;@))V — (1 _ p‘Y(Xz;G))V]

— {(1 _ pwxlﬂ;@))” _ (1 _ pwl;o))”} {(1 _ pwxw;@))” _ (1 _ p‘nxz;@))”}

= fpsoGe-G(X1; P, V, 7, ©) fpsoce-c(X2; p, v, ©)

and

Py(x) = (1 _ p‘I’(x+l;®))V’Y (1 B p‘Y(x+1;®))V B (1 _ p‘{’(x+l;®))
_ (1 _ p‘f(x;@))>” (1 _ p‘f(ﬁl;@))‘” n (1 _ p‘P(x,-@))V (1 _p
_ (1 _ p‘l’(Hl;@))” [(1 _ p‘lf(x+1;®))” _ (1 p¥ s @))”] (1 B p‘F(x;G))V
y Kl B plf(xﬂ;@))” _ (1 _ ‘f(x;@))'”}

. v
= (1 p (”1@) fosoce-G(x;p,v,©) — (1—PY(X/®)) fosoce-G (% p, v, 7, ©).

vy (1 _ plY(X;G))V
‘If(x,@))"“y

e  Estimation code for real data

Lok[a_, p_o_v_] = ¥ LOg[( p(—1+e(x1[[i]]+1) )) (1 ( Lbe ﬂ[[ima))v
g —Y—r 1

Bl ) o)
e
+ L 1Log_<1— (—rretr2ilE T\ ? (~reelzii?)\°

[ (1_ (~1rets ['+1”>>

( 1+e<z[m]+1>ﬂ)>” B (1 B P(ummﬂ))”)
(1 B p(1+e<zufﬂ+1>“))” T (1 3 p(l+e(z[[i]])“))v* )
o),

b3, 1), {2, 1}, {2, 0}
th

equal = {{1, 1}, {0, 0}, {1, 1}, {1, 1}, {2, 2}, {1, 1}, {2, 2}, {1, 1}, {2, 2}, {1, 1}, {2, 2}, {1, 1}, {2, 2},
{1, 1}, {1, 1}, (1,1}, {3, 3}};

Unprotect[Power]; Power[0 | 0.,0 | 0.] =1; Protect[Power];

Y1 =large[[All, 1]];

Y2 = large[[All, 2]];

nl = Length[x1]

x1 = small[[All, 1]];

x2 = small[[All 2]];

n2 = Length[Y1]

z = equal[[All, 1]];

n3 = Length[z]

NMaximize[{Lok[a_, p_v_,v_],0<p <1,0<a<00,0<v<00,0<vy<1},{a,p,v,7}|

Z Log "
=1 _(1_p(1+g (i) )) .

>y
-
aq
[¢)
I
»—\\oj\)r-e/—\ A
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