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Abstract: Chebyshev Wavelets of the third kind are proposed in this study to solve nonlinear systems
of FDEs. The main goal of the method is to convert the nonlinear FDE into a nonlinear system of
algebraic equations that can be easily solved using matrix methods. In order to achieve this, we
first generate the operational matrices for the fractional integration using third kind Chebyshev
Wavelets and block-pulse functions (BPF) for function approximation. Since the obtained operational
matrices are sparse, the obtained numerical method is fast and computationally efficient. The original
nonlinear FDE is transformed into a system of algebraic equations in a vector-matrix form using the
obtained operational matrices. The collocation points are then used to solve the system of algebraic
equations. Numerical results for various examples and comparisons are presented.
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1. Introduction

Fractional differential equations (FDEs) can use real-valued orders for derivatives and
integrals. FDEs applied to the evolution of physical processes reveal behaviors that classical
differential equations do not allow. On the other hand, because of the additional complexity
brought on by arbitrary orders of derivation and integration, it is extremely difficult
to derive analytical solutions to many sorts of such FDEs. Finding precise and efficient
numerical solution methods for the FDEs is therefore crucial. Recent years have seen the use
of specific numerical techniques for FDEs, including Adomian decomposition method [1,2],
predictor–corrector methods [3,4], finite difference method [5], Adams-Bashforth-Moulton
method [6,7], F-expansion method [8], B-spline collocation method [9], reproducing kernel
method [10,11], the homotopy perturbation transform method [12,13], and the residual
power series method [14,15].

Similar research is being conducted on several wavelet types for various computation-
ally demanding problems. Data can be divided into numerous time-frequency components
using wavelet analysis. These functions are produced by stretching and moving a so-called
mother wavelet function. The obvious advantage of the wavelet basis is that it simplifies
the FDE problem’s solution to the solution of a system of algebraic equations. The other
benefits can be their orthogonality, compact support, and simultaneous representation of
data in several resolutions. A wide variety of FDEs have been solved using numerous
wavelet basis functions [16–25].

In this study, we attmpt to solve the system of FDEs in the form of:

Dαi∗ ui(x) = fi(x, u1, u2, . . . , un), u(r)
i
(0) = ci, 1 ≤ i ≤ n, 0 ≤ r ≤ dαie (1)
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where mi − 1 < αi ≤ mi, mi ∈ Z+, Dαi∗ is the Caputo fractional differential operator. To
this end, we obtain operational matrices for function integration by employing Chebyshev
wavelets of the third kind. Chebyshev wavelets are constructed using Chebyshev polyno-
mials. The set of Chebyshev polynomials form an orthonormal basis, thus, they can be used
for function approximation by obtaining the corresponding Chebyshev series/expansion
for the function. All identities and theorems of Fourier series have a corresponding Cheby-
shev counterpart because Chebyshev series can be converted to Fourier cosine series using
a change of variables [26]. Some of their important advantages are forming a complete
orthogonal system, converging to any piecewise smooth and continuous function (even this
smoothness condition can be relaxed for many practical cases), converging to the average
of the right and left limits of a discontinuity, etc.

This paper is organized as follows. In Section 2, we introduce the third kind Chebyshev
wavelets and obtain the operational matrices for the numerical integration. We include sev-
eral numerical examples in Section 3 to show the efficiency and accuracy of the method. The
paper is concluded with the important results and prospects for future work In Section 4.

2. Operational Matrices of Fractional Integration for Third Kind Chebyshev Wavelets
2.1. Third Kind Chebyshev Wavelets

Wavelets consist of a localized wave-like main function and sub-functions can be
obtained from this function with the properties of zero-average and finite-energy. The
main function is called the mother wavelet. Then, the shifted and stretched versions of
this mother wavelet is obtained using a dilation parameter (a) and a translation parameter
(b). Using the shifted and stretched versions of the wavelet function provides information
on both the frequency content of the analyzed signal and where in time this frequency
component occurs. The family of continuous wavelets is defined by,

ψa,b(t) = |a|−1/2ψ

(
t− b

a

)
, a, b ∈ R, a 6= 0 (2)

If parameters a and b are discrete as a = a−k
0 , b = nb0a−k

0 , a0 > 1, b0 > 0, the family of
discrete wavelets are obtained as

ψkn(t) = |a0|k/2ψ
(

ak
0t− nb0

)
(3)

where n and k are positive integers. Discrete Chebyshev Wavelets of the third kind
ψnm(t) = ψ(k, n, m, t) can be defined on the interval [0, 1) as [25],

ψnm(t) =

{
2k/2
√

π
Vm

(
2kt− 2n + 1

)
, n−1

2k−1 ≤ t < n
2k−1

0 , otherwise

}
(4)

where k is a positive integer, n = 1, 2, 3, . . . , 2k−1, and t denotes the normalized time. Vm(t)
are the Chebyshev polynomials of the third kind of the degree m, which are orthogonal

with respect to the weight function ω(t) =
√

1+t
1−t on the interval [–1, 1] and satisfy the

following recursive formula:

V0(t) = 1, V1(t) = 2t− 1, Vm+1(t) = 2tVm(t)−Vm−1(t) (5)

2.2. Function Approximation

A function f (t) defined over [0, 1) may be approximated by Chebyshev wavelets [16–19]
as,

f (t) '
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t) = CTΨ(t) (6)

where, T denotes transposition, C and Ψ(t) are 2k−1M× 1 vectors given as,

C =
[
c10, c11, . . . c1(M−1), c20, c21, . . . c2(M−1) . . . c2k−10, c2k−11, . . . c2k−1(M−1)

]T
(7)
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Ψ(t) =
[
ψ10, ψ11, . . . ψ1(M−1), ψ20, ψ21, . . . ψ2(M−1) . . . ψ2k−10, ψ2k−11, . . . ψ2k−1(M−1)

]T
(8)

Now let us define m′ = 2k−1M. The third-kind Chebyshev wavelet matrix is defined as

φm′×m′ = [Ψ(t1) Ψ(t2) Ψ(t3) · · · Ψ(tm′)] (9)

where ti are collocation points chosen as ti =
i−0.5

m′ , i = 1, 2, 3, . . . , m′.

2.3. Block Pulse Functions

An m′ set of Block Pulse Functions (BPFs) is defined as

bi(t) =
{

1 , i−1
m′ ≤ t < i

m′
0 , otherwise

}
(10)

where i = 1, 2, 3, . . . , m′. The functions bi(t) are disjoint and orthogonal. They have the
following properties for t ∈ [0, 1)

bi(t)bj(t) =
{

0 , i 6= j
bi(t), i = j

}
(11)

1∫
0

bi(τ)bj(τ) dτ =

{
0 , i 6= j
1

m′ , i = j

}
(12)

Any function f (t) defined in [0, 1) with the property of squarely integrable in the
interval can be expanded into an m′ set of BPFs as

f (t) '
m′

∑
i=1

fi bi(t) = f T Bm′(t) (13)

where f = [ f1, f2, . . . , fm′ ]
T , Bm′(t) = [b1(t), b2(t), . . . , bm′(t)]

T and

fi =
1

m′

i/m′∫
(i−1)/m′

f (t) bi(t) dt.

The third kind Chebyshev wavelet matrix can also be expanded to an m′ set of BPFs as,

Ψ(t) = φm′×m′ Bm′(t) (14)

The block -pulse operational matrix for fractional integration Fα is defined as [27]

IαBm′(t) ≈ Fα Bm′(t) (15)

where,

Fα =
1

(m′)α
1

Γ(α + 2)



1 ξ1 ξ2 ξ3 · · · ξm′−1
0 1 ξ1 ξ2 · · · ξm′−2
0 0 1 ξ1 · · · ξm′−3

...
...

. . . . . .
...

...
0 0 · · · 0 1 ξ1
0 0 · · · 0 0 1


(16)

with ξk = (k + 1)α+1 − 2kα+1 + (k− 1)α+1.
Now we obtain the operational matrix of fractional integration for the third kind

Chebyshev wavelet method (TKCWM):

IαΨ(t) ≈ Pα
m′×m′Ψ(t) (17)

where the Pα
m′×m′ matrix of size m′×m′ is called the TKCWM. Using (14) and (15) we obtain,

IαΨ(t) ≈ Iαφm′×m′ Bm′(t) = φm′×m′ IαBm′(t) ≈ φm′×m′F
αBm′(t) (18)
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Employing (14), (15), (17) and (18) results in

Pα
m′×m′Ψ(t) ≈ IαΨ(t) ≈ φm′×m′F

αBm′(t) = φm′×m′F
αφ−1

m′×m′Ψ(t) (19)

The resulting operational matrix for TKCWM, denoted as Pα
m′×m′ yields

Pα
m′×m′ ≈ φm′×m′F

αφ−1
m′×m′ (20)

This method yields a fractional integration operational matrix with a large number
of zero entries, which speeds up the simulation. The error estimation of the third kind
Chebyshev Wavelets and the convergence analysis can be found in [25].

3. Numerical Examples

We present three numerical examples using TKCWM in this section. Matlab R2021a is
used for the simulations.

3.1. Example 1

First, let us look at the system of FDE given below:

Dαu(t) = u(t) + v(t), 0 < α ≤ 1,
Dβv(t) = −u(t) + v(t), 0 < β ≤ 1

(21)

The initial values are u(0) = 0, v(0) = 1 and the exact solution for α = β = 1 is given
as uex(t) = et sin t, vex(t) = et cos t , t ∈ [0, 1].

As a result of using the proposed approach for fractional derivatives, we now obtain,

Dαu(t) ≈ RT
m′ Ψ(t)

Dβv(t) ≈ ST
m′Ψ(t)

(22)

where, RT
m′ = [r1, r2, . . . , rm′ ] and ST

m′ = [s1, s2, . . . , sm′ ] are the unknown coefficients of
size 1×m′. Using the Caputo definition for fractional derivatives [28] and using (14), (17),
(22), and the initial conditions we obtain,

u(t) = IαDαu(t) + u(0) ≈ RT
m′ Pα

m′×m′Ψ(t) ≈ RT
m′ Pα

m′×m′φm′×m′︸ ︷︷ ︸
HT

m′

Bm′(t)

v(t) = IβDβv(t) + v(0) ≈ ST
m′ Pβ

m′×m′Ψ(t) + 1 ≈ ST
m′ Pβ

m′×m′φm′×m′︸ ︷︷ ︸
KT

m′

Bm′(t) + 1
(23)

where HT
m′ = [h1, h2, . . . , hm′ ] KT

m′ = [k1, k2, . . . , km′ ] are also the vectors of size 1×m′.
Finally, using (22) and (23) in (21) the following system of algebraic equations,

which yields:
RT

m′ φm′×m′ = HT
m′ + KT

m′ + [1, 1, . . . , 1]1×m′ ,

ST
m′ φm′×m′ = −HT

m′ + KT
m′ + [1, 1, . . . , 1]1×m′

(24)

Here, the RT
m′ and ST

m′ vectors include the total of 2m′ unknowns. Equation (24) is
used to create a system of algebraic equations using collocation points and RT

m′ and ST
m′ are

calculated by solving this system. Thus, the numerical solutions for u(t) and v(t) are also
obtained as shown in (23).

The absolute errors obtained for TKCWM in u(t) and v(t) for several m′ values
(α = β = 1) are given in Table 1 where the absolute errors in u(t) and v(t) are repre-
sented by Eu and Ev, respectively. The numerical solution results for fractional orders
α = 0.75, 0.85, 0.95, β = 0.75, 0.85, 0.95 are given in Table 2. Figure 1 shows the TKCWM
result graphs u(t) and v(t) for α = β = 1 with the exact solution, whereas Figure 2 dis-
plays the TKCWM result graphs u(t) and v(t) for the fractional orders α = 0.75, 0.85, 0.95,
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β = 0.75, 0.85, 0.95 with the integer orders α = β = 1. The proposed method substantially
approximates the exact solution for the integer-orders of α = β = 1, as shown in Table 1
and Figure 1. As m′ increases, the absolute errors decrease. The calculated absolute errors
are about 10−4 for m′ = 32, 10−4–10−5 for m′ = 64, and 10−5–10−6 for m′ = 128. The
fractional orders α, β can take any arbitrary value on the interval [0, 1], they are chosen
to be equal in Table 2 and Figure 2. As Table 2 and Figure 2 demonstrate, the solution
approaches to the exact solution when α, β approach 1. We provide a comparison using
the Differential Transformation Method (DTM) [29] and Homotopy Perturbation Method
(HPM) [30] for the fractional orders α = 0.7, β = 0.9 in Table 3. Table demonstrates that
the approximate solutions for these fractional orders are close to one another for all the
methods. Tables 1–3 and Figures 1 and 2 thus show that the suggested approach is a good
approximation to the relevant system of FDE.

Table 1. Example 1 ODE solution absolute errors Eu and Ev for several m′.

t
m’ = 16 m’ = 32 m’ = 64 m’ = 128

Eu Ev Eu Ev Eu Ev Eu Ev

0 2.07 × 10−3 1.34 × 10−4 5.04 × 10−4 1.60 × 10−5 1.24 × 10−4 1.95 × 10−6 3.08 × 10−5 2.41 × 10−7

0.1 6.76 × 10−4 1.52 × 10−4 5.09 × 10−4 6.85 × 10−5 4.14 × 10−5 8.49 × 10−6 3.19 × 10−5 4.35 × 10−6

0.2 2.27 × 10−3 6.18 × 10−4 1.93 × 10−4 7.81 × 10−5 1.42 × 10−4 3.91 × 10−5 1.22 × 10−5 5.03 × 10−6

0.3 2.49 × 10−3 1.06 × 10−3 2.21 × 10−4 1.39 × 10−4 1.56 × 10−4 6.53 × 10−5 1.37 × 10−5 8.53 × 10−6

0.4 9.49 × 10−4 8.06 × 10−4 6.69 × 10−4 3.90 × 10−4 6.00 × 10−5 5.20 × 10−5 4.18 × 10−5 2.42 × 10−5

0.5 2.68 × 10−3 1.11 × 10−3 6.62 × 10−4 2.39 × 10−4 1.64 × 10−4 5.53 × 10−5 4.10 × 10−5 1.33 × 10−5

0.6 1.01 × 10−3 1.58 × 10−3 7.21 × 10−4 7.08 × 10−4 6.29 × 10−5 9.66 × 10−5 4.51 × 10−5 4.44 × 10−5

0.7 2.87 × 10−3 3.61 × 10−3 2.38 × 10−4 4.97 × 10−4 1.80 × 10−4 2.27 × 10−4 1.49 × 10−5 3.13 × 10−5

0.8 2.75 × 10−3 4.53 × 10−3 2.06 × 10−4 6.32 × 10−4 1.73 × 10−4 2.81 × 10−4 1.29 × 10−5 3.92 × 10−5

0.9 6.03 × 10−4 3.04 × 10−3 6.27 × 10−4 1.37 × 10−3 3.76 × 10−5 1.93 × 10−4 3.93 × 10−5 8.57 × 10−5

Table 2. Example 1 FDE solutions for several α, β.

t
α = 0.75, β = 0.75 α = 0.85, β = 0.85 α = 0.95, β = 0.95 α = 1, β = 1

u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t)

0 0.008151 1.008791 0.002943 1.003305 0.000507 1.00069 −0.00012 1.000002
0.1 0.245542 1.188305 0.17689 1.147584 0.128903 1.113891 0.110374 1.099641
0.2 0.480441 1.298262 0.362622 1.25794 0.276847 1.216541 0.242798 1.197017
0.3 0.73729 1.367954 0.573061 1.346197 0.449214 1.309611 0.399066 1.289504
0.4 1.017162 1.397279 0.810237 1.410433 0.648025 1.390285 0.581004 1.37401
0.5 1.317927 1.38248 1.074454 1.446497 0.874702 1.454749 0.790275 1.446944
0.6 1.635917 1.317586 1.365448 1.448418 1.130786 1.497946 1.028909 1.503763
0.7 1.965327 1.198276 1.68092 1.410914 1.416159 1.515008 1.297475 1.539976
0.8 2.299381 1.019502 2.018072 1.32771 1.730663 1.500148 1.596678 1.550268
0.9 2.629946 0.77669 2.372987 1.192266 2.073434 1.447017 1.926711 1.528721
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v t
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=  

= − +  









 (25) 

with the initial values 
( )u 0 =0

, 
( )v 0 =0

 ,and the exact solution for α=β=1 is given 

as
( ) 3

exu t t=
,

( ) 2exv t t=
, 

 0 1t ,
. 
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Figure 1. Example 1 ODE solutions for α = β = 1 (m′ = 32).
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Table 3. Example 1 FDE solution comparisons for α = 0.7 , β = 0.9.

t
TKCWM DTM [29] HPM [30]

u(t) v(t) u(t) v(t) u(t) v(t)

0 0.012176 1.00132 0 1 0 1
0.1 0.274122 1.118964 0.273774 1.11901 0.273774 1.119488
0.2 0.515992 1.203502 0.515442 1.203956 0.515442 1.207065
0.3 0.77603 1.261807 0.776046 1.265198 0.776046 1.274488
0.4 1.057885 1.291082 1.061045 1.302787 1.061045 1.322987
0.5 1.360936 1.286864 1.372598 1.315684 1.372598 1.352583
0.6 1.682584 1.244105 1.711912 1.302569 1.711912 1.362937
0.7 2.018624 1.157378 2.079813 1.262049 2.079813 1.353578
0.8 2.363428 1.021249 2.476944 1.192732 2.476944 1.323994
0.9 2.709949 0.830451 2.903849 1.093256 2.903849 1.273662

3.2. Example 2

Now consider the system of FDE given as

Dαu(t) = 3
4 v2(t) , 0 < α ≤ 1

Dβv(t) = u(t)v(t)− v4(t)
8 + 2, 0 < β ≤ 1

(25)

with the initial values u(0)= 0, v(0)= 0, and the exact solution for α = β = 1 is given as
uex(t) = t3, vex(t) = 2t, t ∈ [0, 1].

Employing the TKCWM method for this example, we obtain,

Dαu(t) ≈ RT
m′ ψ(t)

Dβv(t) ≈ ST
m′ ψ(t)

(26)

where, RT
m′ = [r1, r2, . . . , rm′ ] and ST

m′ = [s1, s2, . . . , sm′ ] are again the coefficients to be
determined in the method. With the help of Caputo definition for fractional derivatives [28]
and using (14), (17), and (26), together with the initial conditions, we obtain

u(t) = IαDαu(t) + u(0) ≈ RT
m′ Pα

m′×m′ψ(t) ≈ RT
m′ Pα

m′×m′φm′×m′︸ ︷︷ ︸
HT

m′

Bm′(t)

v(t) = IβDβv(t) + v(0) ≈ ST
m′ Pβ

m′×m′ψ(t) ≈ ST
m′ Pβ

m′×m′φm′×m′︸ ︷︷ ︸
KT

m′

Bm′(t)
(27)

where HT
m′ = [h1, h2, . . . , hm′ ] KT

m′ = [k1, k2, . . . , km′ ] are also the vectors of size 1×m′



Axioms 2023, 12, 546 7 of 12

v4(t) ≈
(
KT

m′
)4Bm′(t)

u(t)v(t) ≈
(

HT
m′ ∗ KT

m′
)

Bm′(t)
(28)

Finally, substituting (26)–(28) in (25) results the following system of algebraic equations
where RT

m′ and ST
m′ coefficients are the 2m′ unknowns to be determined:

RT
m′ φm′×m′ =

3
4
(
KT

m′
)2,

ST
m′ φm′×m′ = HT

m′ ∗ KT
m′ −

1
8
(
KT

m′
)4

+ [2, 2, . . . , 2]1×m′
(29)

As before, the approximate solution of the proposed method is obtained by solving
(29) for RT

m′ , ST
m′ and substituting those coefficients in (27).

The absolute errors obtained for TKCWM for u(t) and v(t) for several m′ values
(α = β = 1) are given in Table 4 where the absolute errors in u(t) and v(t) are represented
by Eu and Ev, respectively. As the table demonstrates, to increase the accuracy, m′ should
be increased. Table 5 demonstrates the results of the numerical method for fractional
orders for several resolutions of m′. As can be seen from the table, the results approach
the exact solution when fractional orders approach the integer values, which validates
the results. Figure 3 shows the TKCWM result graphs u(t) and v(t) for α = β = 1 with
the exact solution, whereas Figure 4 displays the TKCWM result graphs u(t) and v(t) for
the fractional orders α = 0.45, 0.65, 0.85, β = 0.55, 0.75, 0.95 with the integer orders. As
Figures 3 and 4 demonstrate, the proposed TKCWM method substantially approximates
the exact solution for the integer-orders and the approximate solution approaches to the
exact solution of the α, β approach 1 for fractional orders.

Table 4. Example 2 ODE solution absolute errors Eu and for several m′.

t
m’ = 16 m’ = 32 m’ = 64 m’ = 128

Eu Ev Eu Ev Eu Ev Eu Ev

0 3.66 × 10−4 4.77 × 10−7 4.58 × 10−5 1.49 × 10−8 5.72 × 10−6 4.66 × 10−10 7.15 × 10−7 1.46 × 10−11

0.1 9.86 × 10−5 1.43 × 10−6 1.08 × 10−4 3.61 × 10−7 3.65 × 10−6 8.17 × 10−8 6.94 × 10−6 2.05 × 10−8

0.2 8.63 × 10−4 1.15 × 10−5 2.92 × 10−5 2.61 × 10−6 5.55 × 10−5 6.55 × 10−7 2.14 × 10−6 1.63 × 10−7

0.3 1.35 × 10−3 3.68 × 10−5 5.43 × 10−5 8.79 × 10−6 8.26 × 10−5 2.20 × 10−6 3.08 × 10−6 5.48 × 10−7

0.4 2.42 × 10−4 8.31 × 10−5 4.46 × 10−4 2.08 × 10−5 1.76 × 10−5 5.18 × 10−6 2.77 × 10−5 1.29 × 10−6

0.5 3.76 × 10−3 1.56 × 10−4 8.94 × 10−4 3.98 × 10−5 2.18 × 10−4 1.00 × 10−5 5.37 × 10−5 2.50 × 10−6

0.6 4.91 × 10−4 2.73 × 10−4 6.75 × 10−4 6.82 × 10−5 2.81 × 10−5 1.70 × 10−5 4.24 × 10−5 4.25 × 10−6

0.7 3.20 × 10−3 4.23 × 10−4 1.44 × 10−4 1.05 × 10−4 2.01 × 10−4 2.63 × 10−5 9.31 × 10−6 6.57 × 10−6

0.8 3.80 × 10−3 6.05 × 10−4 1.97 × 10−4 1.51 × 10−4 2.36 × 10−4 3.76 × 10−5 1.20 × 10−5 9.41 × 10−6

0.9 9.90 × 10−4 8.10 × 10−4 1.10 × 10−3 2.02 × 10−4 6.42 × 10−5 5.06 × 10−5 6.86 × 10−5 1.26 × 10−5

Table 5. Example 2 FDE solutions for several α, β.

t
α = 0.45, β = 0.55 α = 0.65, β = 0.75 α = 0.85, β = 0.95 α = 1, β = 1

u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t)

0 −0.00142 0.078944 −0.00019 0.017487 −1.7 × 10−5 0.001372 −5.7 × 10−6 −4.7 × 10−10

0.1 0.082167 0.63924 0.014506 0.387185 0.002302 0.229019 0.001004 0.2
0.2 0.249762 0.959284 0.064739 0.652929 0.015531 0.442512 0.008056 0.400001
0.3 0.497777 1.251181 0.155893 0.89129 0.047256 0.650949 0.027083 0.600002
0.4 0.84836 1.556029 0.293439 1.119811 0.104186 0.856963 0.064018 0.800005
0.5 1.338995 1.892988 0.484698 1.348781 0.192716 1.062435 0.124782 1.00001
0.6 2.015895 2.262136 0.741301 1.585873 0.320206 1.26917 0.216028 1.200017
0.7 2.898048 2.641492 1.075347 1.835601 0.492839 1.478814 0.343201 1.400026
0.8 3.974769 3.006082 1.501877 2.098782 0.71799 1.692719 0.512236 1.600038
0.9 5.21704 3.343328 2.035276 2.371821 1.00363 1.911611 0.729064 1.800051
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3.3. Example 3

For our last example, we consider the following system of FDEs

Dαu(t) = u(t) , 0 < α ≤ 1

Dβv(t) = 2u2(t) , 0 < β ≤ 1

Dγw(t) = 3u(t)v(t) , 0 < γ ≤ 1

(30)

with the initial conditions u(0) = 0, v(0) = 1, w(0) = 0 and the exact solution for α = β = γ = 1
is given as uex(t) = et, vex(t) = e2t, and wex(t) = e3t − 1, t ∈ [0, 1].

Let us now employ TKCWM for this example and obtain

Dαu(t) ≈ RT
m′ ψ(t)

Dβv(t) ≈ ST
m′ ψ(t)

Dγw(t) ≈ TT
m′ ψ(t)

(31)

Here, there are a total of 3m′ coefficients to be determined, namely RT
m′ = [r1, r2, . . . , rm′ ],

ST
m′ = [s1, s2, . . . , sm′ ] and TT

m′ = [t1, t2, . . . , tm′ ].
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u(t) = IαDαu(t) + u(0) ≈ RT
m′ Pα

m′×m′ψ(t) + 1 ≈ RT
m′ Pα

m′×m′φm′×m′︸ ︷︷ ︸
HT

m′

Bm′(t) + 1

v(t) = IβDβv(t) + v(0) ≈ ST
m′ Pβ

m′×m′ψ(t) + 1 ≈ ST
m′ Pβ

m′×m′φm′×m′︸ ︷︷ ︸
KT

m′

Bm′(t) + 1

w(t) = IγDγw(t) + w(0) ≈ TT
m′ Pγ

m′×m′ψ(t) + 1 ≈ TT
m′ Pγ

m′×m′φm′×m′︸ ︷︷ ︸
LT

m′

Bm′(t)

(32)

Employing (31)–(32) in (30) results in the following system of algebraic equations:

RT
m′ φm′×m′ = HT

m′ + [1, 1, . . . , 1]1×m′ ,

ST
m′ φm′×m′ = 2

[(
HT

m′
)2

+ 2HT
m′ + [1, 1, . . . , 1]1×m′

]
,

TT
m′ φm′×m′ = 3

(
HT

m′ ∗ KT
m′
)
+ 3HT

m′ + 3KT
m′ + [3, 3, . . . , 3]1×m′

(33)

As before, the approximate solution is obtained by solving (33) for RT
m′ , ST

m′ and
TT

m′ and substituting the coefficients in (32).
The absolute errors obtained for TKCWM in u(t), v(t), and w(t) for m′ = 64 and

m′ = 128 (α = β = γ = 1) are summarized in Table 6 where Eu, Ev, and Ew denote the
absolute errors in u(t), v(t), and w(t), respectively. We obtain the absolute errors around
10−3–10−4 for m′ = 64, and around 10−4–10−5 for m′ = 128. Again, for higher accuracy, m′

should be increased. The solutions for fractional orders of ff , β, γ for several resolutions
is given in Table 7. When the orders α, β, γ approach 1, the TKCWM solution approaches
the exact solution for integer orders, which is expected. Figure 5 shows the TKCWM
result graphs of u(t), v(t), and w(t) for α = β = γ = 1, whereas Figure 6 displays the
TKCWM result graphs of u(t), v(t), and w(t) for the fractional orders 0.5, 0.7, 0.9 with
α = β = γ = 1. As is the case with the previous examples, the solution approaches the
exact solution when α, β, γ approach 1.

Table 6. Example 3 ODE solution absolute errors Eu , Ev and Ew for several m′.

t
m’ = 64 m’ = 128

Eu Ev Ew Eu Ev Ew

0 6.20 × 10−5 2.52 × 10−4 5.76 × 10−4 1.54 × 10−5 6.20 × 10−5 1.41 × 10−4

0.1 2.10 × 10−5 8.76 × 10−5 2.27 × 10−4 1.61 × 10−5 6.99 × 10−5 1.76 × 10−4

0.2 7.36 × 10−5 3.48 × 10−4 9.79 × 10−4 6.47 × 10−6 2.87 × 10−5 8.45 × 10−5

0.3 8.40 × 10−5 4.31 × 10−4 1.34 × 10−3 7.81 × 10−6 3.65 × 10−5 1.20 × 10−4

0.4 3.78 × 10−5 1.90 × 10−4 6.94 × 10−4 2.40 × 10−5 1.34 × 10−4 4.63 × 10−4

0.5 8.54 × 10−5 6.30 × 10−4 2.30 × 10−3 2.12 × 10−5 1.55 × 10−4 5.60 × 10−4

0.6 5.32 × 10−5 3.06 × 10−4 1.34 × 10−3 3.12 × 10−5 2.07 × 10−4 8.72 × 10−4

0.7 1.42 × 10−4 1.03 × 10−3 4.78 × 10−3 1.58 × 10−5 9.85 × 10−5 4.76 × 10−4

0.8 1.61 × 10−4 1.27 × 10−3 6.50 × 10−3 1.85 × 10−5 1.25 × 10−4 6.57 × 10−4

0.9 8.73 × 10−5 6.39 × 10−4 3.70 × 10−3 4.58 × 10−5 3.95 × 10−4 2.22 × 10−3

Table 7. Example 3 FDE solutions for several α, β,γ .

t
α = β = γ = 0.7 α = β = γ= 0.7

u(t) v(t) w(t) u(t) v(t) w(t)

0 1.025735 1.056337 1.113672 1.012877 1.024889 0.035737
0.1 1.495057 1.48695 2.338935 1.255704 1.597635 1.059627
0.2 1.909491 1.799196 3.573714 1.459601 2.196332 2.403574
0.3 2.370645 2.107951 5.076389 1.668271 2.919095 4.338173
0.4 2.908102 2.430266 6.94096 1.889877 3.807486 7.118278
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Table 7. Cont.

t
α = β = γ = 0.7 α = β = γ= 0.7

u(t) v(t) w(t) u(t) v(t) w(t)

0.5 3.546684 2.774319 9.262152 2.128873 4.904022 11.08098
0.6 4.316163 3.146505 12.16422 2.389192 6.264605 16.73065
0.7 5.245481 3.551287 15.77166 2.673636 7.945071 24.67848
0.8 6.371581 3.99339 20.24691 2.985366 10.01827 35.79012
0.9 7.73898 4.477634 25.78786 3.327679 12.57285 51.24301
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4. Conclusions

We have developed a numerical solution approach for the systems of FDEs in this study.
The operational matrices for the fractional integration are obtained using the suggested
method, which makes use of discrete third kind Chebyshev Wavelets. We employ the block
pulse functions and Chebyshev polynomials of the third kind in the method, which makes
the operational matrices for fractional integration very sparse, which in turn is crucial for
fast evaluation and reduced computational cost for the proposed method. Those sparse
operational matrices are used to map fractional terms in FDEs into the discrete terms in the
proposed method. The Newton-Raphson method is used to solve the algebraic equation
system created from the system of FDEs in order to determine the unknown coefficients. As
predicted, the accuracy of the suggested technique improves as the resolution is increased
by larger collocation points. Tables 1, 4 and 6 and Figures 1, 3 and 5 verify this claim.
The maximum errors for the collocation points up to 128 are typically in the range of
10−4 to 10−6.

The main focus of this study is fractional orders, and the numerical solutions derived
for these orders are consistent with those found for integer orders. Tables 2, 3, 5 and 7 and
Figures 2, 4 and 6 show how the method accurately solves fractional orders because when
the fractional orders become close to integer values, the answer likewise become close to
the exact solution found for integer orders.

Systems of variable-order FDEs, fractional partial differential equations, fractional
integral equations, and fractional delay differential equation systems can all benefit from
the advantages of the proposed method and are thus taken into consideration as potential
future applications of this research.
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