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Abstract: The Jimbo-Miwa equation (JME) that describes certain interesting (3+1)-dimensional waves
in plasma physics is studied in this work. The Hirota bilinear equation is developed via the Cole-
Hopf transform. Then, the symbolic computation, together with the ansatz function schemes, are
utilized to seek exact solutions. Some new solutions, such as the multi-wave complexiton solution
(MWCS), multi-wave solution (MWS) and periodic lump solution (PLS), are successfully constructed.
Additionally, different types of travelling wave solutions (TWS), including the dark, bright-dark and
singular periodic wave solutions, are disclosed by employing the sub-equation method. Finally, the
physical characteristics and interaction behaviors of the extracted solutions are depicted graphically
by assigning appropriate parameters. The obtained outcomes in this paper are more general and
newer. Additionally, they reveal that the used methods are concise, direct, and can be employed to
study other partial differential equations (PDEs) in physics.

Keywords: Hirota bilinear equation; Cole-Hopf transform; multi-wave complexiton solution; multi-
wave solution; periodic lump solution; sub-equation method
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1. Introduction

Complex phenomena in engineering and physics can usually be reduced to PDEs [1–6].
The study on the properties of these equations such as the explicit analytical solutions,
especially the soliton solutions, is of great significance since they can help us to better
understand complex phenomena and their inner nature. Up to now, a series of different
effective methods have been developed to construct the exact solutions of PDEs such as the
Hirota bilinear method [7–10], Wang’s Bäcklund transformation-based method [11,12], trial
equation method [13,14], Sardar subequation method [15–17], exp-function method [18,19],
Riccati equation mapping method [20] and so on [21–28]. In this work, we aim to examine
the (3+1)-dimensional JME given by [29]:

Πxxxy + 3ΠxΠxy + 3ΠyΠxx + 2Πyt − 3Πxz = 0, (1)

Equation (1) is derived from the second equation in the well-known KP hierarchy
of integrable systems and used widely to describe some interesting (3+1)-dimensional
waves in plasma and optics. Up to now, some important research achievements have been
developed to deal with Equation (1). In [29], the Kudryashov method is used with the
symbolic computation and different solutions are obtained. In [30], four kinds of different
wave forms are constructed via the Hirota bilinear method. In [31], the authors employ
the direct algebraic method to handle Equation (1) and some different wave forms are
constructed. In [32], several closed-form solutions are developed by using the singular
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manifold method. In [33], the Riccati equation mapping method is adopted. The exp-
function method is utilized in [34] and some generalized solutions with parameters are
constructed. In [35], the authors carry out the linear superposition principle to seek for
multi-resonant solutions of Equation (1). In [36], the authors make use of the generalized
Bernoulli equation method to inquire into Equation (1). In this study, we will present th
results of a detailed investigation of Equation (1). The rest of the content of this work is
given as follows. In Section 2, the Cole-Hopf transform is adopted to establish the Hirota
bilinear form, and symbolic computation, combined with the ansatz function schemes, is
utilized to search for the MWCS, MWS and PLS. In Section 3, the sub-equation method
is used to seek for the TWSs. In Section 4, the physical characteristics and interaction
behaviors are presented. Finally, we reach a conclusion in Section 5.

2. The Hirota Bilinear Equation and the Exact Solutions

To obtain the Hirota bilinear form of Equation (1), we adopt the Cole-Hopf transform as:

Π = 2 ln(Ξ)x, (2)

Taking it into Equation (1), we can obtain the bilinear form as:(
D3

xDy + 2DyDt − 3DxDz

)
Ξ · Ξ = 0. (3)

Here, the definition of the operators Dm
x Dn

τ is [37,38]:

Dm
x Dn

t f · g =

(
∂

∂x
− ∂

∂x′

)m( ∂

∂t
− ∂

∂t′

)n
f (x, t)g

(
x′, t′

)
|x=x′ ,t=t′ . (4)

Additionally, there are
Dx( f · g) = fxg− f gx,

D2
x( f · g) = fxxg− 2 fxgx + f gxx,

D2
x( f · f ) = 2

(
fxx f − f 2

x

)
,

DtDx( f · g) = ftxg− ftgx − fxgt + gtx f .

2.1. The MWCS

In order to find the MWCS, it is assumed that the solution of Equation (3) is:

Ξ = u1ep + u2e−p + u3 sin(q) + u4sin h(ρ), (5)

with 
p = x + k1y + k2z + k3t

q = x + k4y + k5z + k6t

ρ = x + k7y + k8z + k9t

,

where ui(i = 1, 2, 3, 4.) and ki(i = 1, 2, 3, 4, 5, 6, 7, 8, 9.) are constants that can be determined
later. Substituting Equation (5) into Equation (3) and setting the coefficients of different
terms to zero, an algebraic equation system is attained. Solving it, we derive:

Case 1:

k1 = 3k2
2(k9+2) , k2 = k2, k3 = k9, k4 = − 3k2

2(k9+2) , k5 = k2−k2k9
2+k9

, k6 = k9 + 1, k7 = 3k2
2(2+k9)

,

k8 = k2, k9 = k9, u1 = u1, u2 = u2, u3 = u3, u4 = u4.
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The MWCS is obtained as:

Π(x, y, z, t) =

2

 u1e
x+ 3k2

2(k9+2) y+k2z+k9t − u2e
−(x+ 3k2

2(k9+2) y+k2z+k9t)
+ u3 cos

(
x− 3k2

2(k9+2)y + k2−k2k9
2+k9

z + (k9 + 1)t
)

+u4cos h
(

x + 3k2
2(2+k9)

y + k2z + k9t
)


u1e

x+ 3k2
2(k9+2) y+k2z+k9t

+ u2e
−(x+ 3k2

2(k9+2) y+k2z+k9t)
+ u3 sin

(
x− 3k2

2(k9+2)y + k2−k2k9
2+k9

z + (k9 + 1)t
)

+u4sin h
(

x + 3k2
2(2+k9)

y + k2z + k9t
)

. (6)

For the special case u1 = −u2 = 2u4, Equation (6) becomes:
Case 2:

k1 = k1, k2 = k2, k3 = −2 + 3k2
2k1

, k4 = −k1, k5 = 2k1 − k2, k6 = −1 + 3k2
2k1

, k7 = k1, k8 = k2,

k9 = −2 + 3k2
2k1

, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

Thus, we can obtain the MWCS as:

Π(x, y, z, t) =

2

 u1ex+k1y+k2z+(−2+ 3k2
2k1

)t − u2e−(x+k1y+k2z+(−2+ 3k2
2k1

)t)
+ u3 cos

(
x− k1y + (2k1 − k2)z +

(
−1 + 3k2

2k1

)
t
)

+u4cos h
(

x + k1y + k2z +
(
−2 + 3k2

2k1

)
t
)


u1ex+k1y+k2z+(−2+ 3k2

2k1
)t
+ u2e−(x+k1y+k2z+(−2+ 3k2

2k1
)t)

+ u3 sin
(

x− k1y + (2k1 − k2)z +
(
−1 + 3k2

2k1

)
t
)

+u4sin h
(

x + k1y + k2z +
(
−2 + 3k2

2k1

)
t
)

. (7)

Case 3:

k1 = k1, k2 = 2
3 (2k1 + k1k9), k3 = k9, k4 = −k1, k5 = − 2

3 (−k1 + k1k9), k6 = −1 + k9, k7 = k1,

k8 = 2
3 (2k1 + k1k9), k9 = k9, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

Thus, we obtain the MWCS solution as:

Π(x, y, z, t) =

2

[
u1ex+k1y+ 2

3 (2k1+k1k9)z+k3t − u2e−(x+k1y+ 2
3 (2k1+k1k9)z+k3t) + u3 cos(x + k4y + k5z + (k9 − 1)t)

+u4cos h
(

x + k1y + 2
3 (2k1 + k1k9)z + k9t

) ]
u1ex+k1y+ 2

3 (2k1+k1k9)z+k3t + u2e−(x+k1y+ 2
3 (2k1+k1k9)z+k3t) + u3 sin(x + k4y + k5z + (k9 − 1)t)

+u4sin h
(

x + k1y + 2
3 (2k1 + k1k9)z + k9t

) . (8)

Case 4:

k1 = − 3k5
2(k9−1) , k2 = − 2k5(1+k9)

k9−1 , k3 = k9, k4 = 3k5
2(k9−1) , k5 = k5, k6 = k9 − 1,

k7 = − 3k5
2(k9−1) , k8 = − 2k5(1+k9)

k9−1 , k9 = k9, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

Accordingly, the MWCS is:

Π(x, y, z, t) =

2

 u1ex− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z+k9t − u2e−(x− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z+k9t)
+ u3 cos

(
x + 3k5

2(k9−1) y + k5z + (k9 − 1)t
)

+u4cos h
(

x− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z + k9t
)


u1ex− 3k5

2(k9−1) y− 2k5(1+k9)
k9−1 z+k9t

+ u2e−(x− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z+k9t)
+ u3 sin

(
x + 3k5

2(k9−1) y + k5z + (k9 − 1)t
)

+u4sin h
(

x− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z + k9t
)

. (9)
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Case 5:

k1 = −k4, k2 = k8, k3 = −
(

2 + 3k8
2k4

)
, k4 = k4, k5 = −(2k4 + k8), k6 = −

(
1 + 3k8

2k4

)
, k7 = −k4,

k8 = k8, k9 = −
(

2 + 3k8
2k4

)
, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

where k4 6= 0. Thus, we can obtain the MWCS as:

Π(x, y, z, t) =

2

 u1ex−k4y+k8z−(2+ 3k8
2k4

)t − u2e−(x−k4y+k8z−(2+ 3k8
2k4

)t)
+ u3 cos

(
x + k4y− (2k4 + k8)z−

(
1 + 3k8

2k4

)
t
)

+u4cos h
(

x− k4y + k8z−
(

2 + 3k8
2k4

)
t
)


u1ex−k4y+k8z−(2+ 3k8

2k4
)t
+ u2e−(x−k4y+k8z−(2+ 3k8

2k4
)t)

+ u3 sin
(

x + k4y− (2k4 + k8)z−
(

1 + 3k8
2k4

)
t
)

+u4sin h
(

x− k4y + k8z−
(

2 + 3k8
2k4

)
t
)

. (10)

For the special case u1 = −u2 = 2u4, Equations (6)–(10) become:

Π(x, y, z, t) = 2 cot
(

x− 3k2

2(k9 + 2)
y +

k2 − k2k9

2 + k9
z + (k9 + 1)t

)
.

Π(x, y, z, t) = 2 cot
(

x− k1y + (2k1 − k2)z +
(
−1 +

3k2

2k1

)
t
)

.

Π(x, y, z, t) = 2 cot(x + k4y + k5z + (k9 − 1)t).

Π(x, y, z, t) = 2 cot
(

x +
3k5

2(k9 − 1)
y + k5z + (k9 − 1)t

)
.

Π(x, y, z, t) = 2 cot
(

x + k4y− (2k4 + k8)z−
(

1 +
3k8

2k4

)
t
)

.

2.2. The MWS

Here, we can use the following ansatz function:

Ξ = u1 cos(p) + u2cos h(q) + u3cos h(ρ), (11)

with 
p = x + k1y + k2z + k3t

q = x + k4y + k5z + k6t

ρ = x + k7y + k8z + k9t

,

where ui(i = 1, 2, 3.) and ki(i = 1, 2, 3, 4, 5, 6, 7, 8, 9.) are constants that can be determined
later. In the same manner, substituting Equation (11) into Equation (3) and making the
corresponding adjustments, we derive:

Case 1:

k1 = k1, k2 = k2, k3 = 2 +
3k2
2k1

, k7 = −k1, k8 = −2k1 − k2, k9 = 1 +
3k2
2k1

, u1 = u1, u2 = 0, u3 = u3.

Then, we obtain the MWS as:

Π(x, y, z, t) =
2
[
−u1 sin

(
x + k1y + k2z +

(
2 + 3k2

2k1

)
t
)
+ u3sin h

(
x− k1y− (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
)]

u1 cos
(

x + k1y + k2z +
(

2 + 3k2
2k1

)
t
)
+ u3cos h

(
x− k1y− (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
) . (12)

Case 2:

k1 = k1, k2 = −2k1 − k5, k3 = −1− 3k5
2k1

, k4 = −k1, k5 = k5, k6 = −2− 3k5
2k1

, u1 = u1, u2 = u2, u3 = 0.
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Thus, we obtain the MWS as:

Π(x, y, z, t) =
2
[
−u1 sin

(
x + k1y− (2k1 + k5)z−

(
1 + 3k5

2k1

)
t
)
+ u2sin h

(
x− k1y + k5z−

(
2 + 3k5

2k1

)
t
)]

u1 cos
(

x + k1y− (2k1 + k5)z−
(

1 + 3k5
2k1

)
t
)
+ u2cos h

(
x− k1y + k5z−

(
2 + 3k5

2k1

)
t
) . (13)

2.3. The PLS

The solution of Equation (3) is assumed as:

Ξ = u1 sin(p) + u2cos h(q) + k7, (14)

with {
p = x + k1y + k2z + k3t

q = x + k4y + k5z + k6t
,

where ui(i = 1, 2.) and ki(i = 1, 2, 3, 4, 5, 6, 7.) are constants to be determined later. In the
same manner, substituting Equation (14) into Equation (3) and making the corresponding
adjustments, we derive:

Case 1:

k1 = k1, k2 = 2
3 k1(k6 − 1), k3 = k6 + 1, k4 = −k1, k5 = − 2

3 k1(2 + k6), k6 = k6, k7 = 0, u1 = u1,

u2 = u2.

The PLS to Equation (1) is:

Π(x, y, z, t) =
2
[
u1 cos

(
x + k1y + 2

3 k1(k6 − 1)z + (k6 + 1)t
)
+ u2sin h

(
x− k1y− 2

3 k1(2 + k6)z + k6t
)]

u1 sin
(

x + k1y + 2
3 k1(k6 − 1)z + (k6 + 1)t

)
+ u2cos h

(
x− k1y− 2

3 k1(2 + k6)z + k6t
) . (15)

Case 2:

k1 = 3k2
2(k6−1) , k2 = k2, k3 = k6 + 1, k4 = − 3k2

2(k6−1) , k5 = − 2k2(k6+1)
k6−1 , k6 = k6, k7 = 0, u1 = u1,

u2 = u2.

Thus, we obtain the PLS of Equation (1) as:

Π(x, y, z, t) =
2
[
u1 cos

(
x + 3k2

2(k6−1)y + k2z + (k6 + 1)t
)
+ u2sin h

(
x− 3k2

2(k6−1)y− 2k2(k6+1)
k6−1 z + k6t

)]
u1 sin

(
x + 3k2

2(k6−1)y + k2z + (k6 + 1)t
)
+ u2cos h

(
x− 3k2

2(k6−1)y− 2k2(k6+1)
k6−1 z + k6t

) . (16)

Case 3:

k1 = − 3k5
2(k3+1) , k2 = k5(2−k3)

k3+1 , k3 = k3, k4 = 3k5
2(k3+1) , k5 = k5, k6 = k3 − 1, k7 = 0, u1 = u1,

u2 = u2

The PLS of Equation (1) is obtained as:

Π(x, y, z, t) =
2
[
u1 cos

(
x− 3k5

2(k3+1)y + k5(2−k3)
k3+1 z + k3t

)
+ u2sin h

(
x + 3k5

2(k3+1)y + k5z + (k3 − 1)t
)]

u1 sin
(

x− 3k5
2(k3+1)y + k5(2−k3)

k3+1 z + k3t
)
+ u2cos h

(
x + 3k5

2(k3+1)y + k5z + (k3 − 1)t
) . (17)

Case 4:

k1 = −k4, k2 = − 2
3 k4(k3 − 2), k3 = k3, k4 = k4, k5 = 2

3 k4(k3 + 1), k6 = k3 − 1, k7 = 0, u1 = u1,

u2 = u2.
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Thus, the PLS of Equation (1) is attained as:

Π(x, y, z, t) =
2
[
u1 cos

(
x− k4y− 2

3 k4(k3 − 2)z + k3t
)
+ u2sin h

(
x + k4y + 2

3 k4(k3 + 1)z + (k3 − 1)t
)]

u1 sin
(

x− k4y− 2
3 k4(k3 − 2)z + k3t

)
+ u2cos h

(
x + k4y + 2

3 k4(k3 + 1)z + (k3 − 1)t
) . (18)

Case 5:

k1 = k1, k2 = k2, k3 = 2 +
3k2

2k1
, k4 = −k1, k5 = −2k1 − k2, k6 = 1 +

3k2

2k1
, k7 = 0, u1 = u1, u2 = u2.

We obtain the PLS of Equation (1) as:

Π(x, y, z, t) =
2
[
u1 cos

(
x + k1y + k2z +

(
2 + 3k2

2k1

)
t
)
+ u2sin h

(
x− k1y− (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
)]

u1 sin
(

x + k1y + k2z +
(

2 + 3k2
2k1

)
t
)
+ u2cos h

(
x− k1y− (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
) . (19)

3. The TWS

This section aims to study the TWS using the sub-equation method [39,40]. For this
end, we apply the following variable transformation to Equation (1):

Π(x, y, z, t) = =(χ), χ = mx + ny + kz + st, (20)

where m, n, k, and s are non-zero constants. Equation (1) can be converted as:

m3n=(4) + 6m2n=′=′′ + (2ns− 3mk)=′′ = 0, (21)

where =(4) = d4=
dχ4 , =′′ = d2=

dχ2 , =′ = d=
dχ . Integrating Equation (21) with respect to χ once

and setting the integral constant to zero, we derive:

m3n=′′′ + 3m2n(=′)2 + (2ns− 3mk)=′ = 0. (22)

Based on the sub-equation method, the solution of Equation (22) can be assumed as:

=(χ) =
c

∑
i=0

εiℵi(χ). (23)

where εi(i = 0, 1, 2, . . . , c.) are constants that can be determined later. Additionally, there is:

ℵ′(χ) = σ + ℵ2(χ). (24)

Here, σ is a constant. Equation (24) has the following different solutions:

ℵ(χ) =



−
√
−σtan h

(√
−σχ

)
, σ < 0

−
√
−σcot h

(√
−σχ

)
, σ < 0

√
σ tan

(√
σχ
)
, σ > 0

−
√

σ cot
(√

σχ
)
, σ > 0

− 1
ζ+Λ , Λ is a constant, σ = 0

. (25)

We can determine the value of c in Equation (23) via balancing =′′′ and (=′)2 in
Equation (22) as:

c = 1. (26)

Then, Equation (23) becomes:

=(χ) = ε0 + ε1=(χ). (27)
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Substituting Equation (27) with Equation (24) into Equation (22) and setting their
coefficients of the different powers of =(χ) to zero, it yields:

Solving them, we derive:

=0(χ): −3kmσε1 + 2nsσε1 + 2m3nσ2ε1 + 3m2nσ2ε2
1 = 0,

=2(χ): −3kmε1 − nsε1 + 8m3nσε1 + 6m2nσε2
1 = 0,

=4(χ): 6m3nε1 + 3m2nε2
1 = 0.

Case 1:

ε0 = ε0, ε1 = ε1, m = − ε1

2
, n = n, k = k, s = −

ε1
(
3k + nσε2

1
)

4n
, σ = σ.

Thus, the TWS of Equation (1) can be obtained as:

Π(x, y, z, t) = ε0 − ε1
√
−σtan h

[
√
−σ

(
− ε1

2
x + ny + kz−

ε1
(
3k + nσε2

1
)

4n
t

)]
, σ < 0. (28)

Π(x, y, z, t) = ε0 − ε1
√
−σcot h

[
√
−σ

(
− ε1

2
x + ny + kz−

ε1
(
3k + nσε2

1
)

4n
t

)]
, σ < 0. (29)

Π(x, y, z, t) = ε0 + ε1
√

σ tan

[
√

σ

(
− ε1

2
x + ny + kz−

ε1
(
3k + nσε2

1
)

4n
t

)]
, σ > 0. (30)

Π(x, y, z, t) = ε0 − ε1
√

σ cot

[
√

σ

(
−α1

2
x + ny + kz−

ε1
(
3k + nσε2

1
)

4n
t

)]
, σ > 0. (31)

Case 2:

ε0 = ε0, ε1 = −2m, m = m, n = n, k = −
2
(
2m3nσ− ns

)
3m

, s = s, σ = σ.

Thus, the TWS of Equation (1) can be obtained as:

Π(x, y, z, t) = ε0 + 2m
√
−σtan h

[
√
−σ

(
mx + ny−

2
(
2m3nσ− ns

)
3m

z + st

)]
, σ < 0. (32)

Π(x, y, z, t) = α0 + 2m
√
−σcot h

[
√
−σ

(
mx + ny−

2
(
2m3nσ− ns

)
3m

z + st

)]
, σ < 0. (33)

Π(x, y, z, t) = ε0 − 2m
√

σ tan

[
√

σ

(
mx + ny−

2
(
2m3nσ− ns

)
3m

z + st

)]
, σ > 0. (34)

Π(x, y, z, t) = ε0 + 2m
√

σ cot

[
√

σ

(
mx + ny−

2
(
2m3nσ− ns

)
3m

z + st

)]
, σ > 0. (35)

4. The Physical Interpretations

The obtained solutions will be presented by the 3D plot and 2D contour in this section
by taking the reasonable parameters.

By assigning the parameters as k2 = 1, k9 = 2, u1 = 1, u2 = 1, u3 = 1, the multi-
wave complexiton solution given by Equation (6) for the different time is illustrated in
Figure 1 in the form of the 3D plot and 2D contour. Obviously, we can find there is a
collision phenomenon between the singular periodic wave and the lump in the outline. As
t increases, the waveform propagates in the negative direction of the x axis and y axis.
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Selecting 11 =k  , 22 =k  , 11 =u  , 12 =u  , 13 =u  , 14 =u  , we present the perfor-
mance of Equation (15) in Figure 3. Here, it can be found the waveform propagates along 
the negative direction of the x axis and positive direction of y axis. Additionally, the out-
line of the wave can be explained as the interaction between lump solution and trigono-
metric function solution. 

Figure 1. The graphical description of Equation (6) with k2 = 1, k9 = 2, u1 = 1, u2 = 1, u3 = 1 at
z = 0, (a,d) for t = 0, (b,e) for t = 2, (c,f) for t = 4.

We illustrate the dynamic behavior of Equation (12) by selecting k1 = 1, k2 = 1,
u1 = 0.6, u2 = 0.4 in Figure 2. From this, collision phenomena between the breather waves
and singular periodic waves are revealed. We can observe that the waveform travels along
the negative direction of the x axis and positive direction of y axis.
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Figure 2. The graphical description of Equation (12) with k1 = 1, k2 = 1,u1 = 0.6, u2 = 0.4 at z = 0.
(a,d) for t = 0, (b,e) for t = 1, (c,f) for t = 2.



Axioms 2023, 12, 592 9 of 13

Selecting k1 = 1, k2 = 2, u1 = 1, u2 = 1, u3 = 1, u4 = 1, we present the performance
of Equation (15) in Figure 3. Here, it can be found the waveform propagates along the
negative direction of the x axis and positive direction of y axis. Additionally, the outline
of the wave can be explained as the interaction between lump solution and trigonometric
function solution.
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characteristics of Equation (28) are revealed in Figure 4, where Figure 4a is the 3D plot, 
Figure 4b is the 2D contour and Figure 4c represents the 2D curve. In our observation, it 
is a dark wave. With the same parameters, Figure 5 illustrates the behaviors of Equations 
(3) and (10), which is a bright-dark wave. 
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Figure 3. The graphical description of Equation (15) with k1 = 1, k2 = 2, u1 = 1, u2 = 1, u3 = 1 at
z = 0. (a,d) for t = 0, (b,e) for t = 2, (c,f) for t = 4.

By using the parameters as ε0 = 1, ε1 = 1, n = 1, k = 1, σ = −1, the dynamic charac-
teristics of Equation (28) are revealed in Figure 4, where Figure 4a is the 3D plot, Figure 4b is
the 2D contour and Figure 4c represents the 2D curve. In our observation, it is a dark wave.
With the same parameters, Figure 5 illustrates the behaviors of Equations (3) and (10),
which is a bright-dark wave.

Axioms 2023, 12, x FOR PEER REVIEW 12 of 16 
 

   
(a) (b)  (c) 

   
(d)  (e) (f) 

Figure 3. The graphical description of Equation (15) with 11 =k  , 22 =k  , 11 =u  , 

12 =u , 13 =u  at 0=z . (a,d) for 0=t , (b,e) for 2=t , (c,f) for 4=t . 

By using the parameters as 10 =ε  , 11 =ε  , 1=n  , 1=k  , 1−=σ  , the dynamic 
characteristics of Equation (28) are revealed in Figure 4, where Figure 4a is the 3D plot, 
Figure 4b is the 2D contour and Figure 4c represents the 2D curve. In our observation, it 
is a dark wave. With the same parameters, Figure 5 illustrates the behaviors of Equations 
(3) and (10), which is a bright-dark wave. 

 
  

(a) (b) (c) 

Figure 4. The graphical description of Equation (28) with the parameters as 10 =ε  , 

11 =ε , 1=n , 1=k , 1−=σ . (a) for 0=z , 0=t , (b) for 0=z , 0=t , (c) for 0=y
, 0=z , 0=t . 

Figure 4. The graphical description of Equation (28) with the parameters as ε0 = 1, ε1 = 1, n = 1,
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5. Conclusions and Future Recommendation 
In this article, we obtained multi-wave complexiton solutions, multi-wave solutions 

and periodic lump solutions of the (3+1)-dimensional Jimbo-Miwa equation with the help 
of the Hirota bilinear method. Besides, we also construct its diverse travelling wave solu-
tions like the dark, bright-dark and singular periodic wave solutions by applying the sub-

Figure 5. The graphical description of Equation (29) with the parameters as ε0 = 1, ε1 = 1, n = 1,
k = 1, σ = −1. (a) for z = 0, t = 0, (b) for z = 0, t = 0, (c) for y = 0, z = 0, t = 0.

The performances of Equations (29) and (30) are presented in Figures 6 and 7, respec-
tively with ε0 = 1, ε1 = 1, n = 1, k = 1, σ = 1. We find that the profiles are both singular
periodic waves.
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5. Conclusions and Future Recommendation

In this article, we obtained multi-wave complexiton solutions, multi-wave solutions
and periodic lump solutions of the (3+1)-dimensional Jimbo-Miwa equation with the help
of the Hirota bilinear method. Besides, we also construct its diverse travelling wave
solutions like the dark, bright-dark and singular periodic wave solutions by applying
the sub-equation method. The evolution phenomenon of these different solutions are
described graphically. From these descriptions, the physical behavior and the interaction
are presented. The obtained results in this work are all new and have not been reported
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elsewhere. Additionally, they show that the methods adopted are effective and direct, and
can moreover be used to study the other PDEs arising in physics.

In recent years, the interest in fractal and fractional calculus [41–49] has intensified
in different fields due to their strong ability to describe complex phenomena. Applying
the fractal and fractional calculus to Equation (1) and obtaining the exact solutions will
animate our future research.
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Multi-wave solutions MWS
Periodic lump solutions PLS
Travelling wave solutions TWS
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