
Citation: Kaur, K.; Singh, G.

An Efficient Non-Standard

Numerical Scheme Coupled with a

Compact Finite Difference Method to

Solve the One-Dimensional Burgers’

Equation. Axioms 2023, 12, 593.

https://doi.org/10.3390/

axioms12060593

Academic Editor: Bin Han

Received: 13 May 2023

Revised: 1 June 2023

Accepted: 4 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

An Efficient Non-Standard Numerical Scheme Coupled with
a Compact Finite Difference Method to Solve the
One-Dimensional Burgers’ Equation
Komalpreet Kaur 1,2 and Gurjinder Singh 2,*

1 Department of Mathematical Sciences, I.K. Gujral Punjab Technical University Jalandhar, Main Campus,
Kapurthala 144603, Punjab, India; komal2581516@gmail.com

2 Department of Applied Sciences, I.K. Gujral Punjab Technical University Jalandhar, Main Campus,
Kapurthala 144603, Punjab, India

* Correspondence: gurjinder11@gmail.com

Abstract: This article proposes a family of non-standard methods coupled with compact finite
differences to numerically integrate the non-linear Burgers’ equation. Firstly, a family of non-standard
methods is derived to deal with a system of ordinary differential equations (ODEs) arising from
the semi-discretization of initial-boundary value partial differential equations (PDEs). Further, a
method of this family is considered as a special case and coupled with a fourth-order compact finite
difference resulting in a combined numerical scheme to solve initial-boundary value PDEs. The
combined scheme has first-order accuracy in time and fourth-order accuracy in space. Some basic
characteristics of the scheme are analysed and a section concerning the numerical experiments is
presented demonstrating the good performance of the combined numerical scheme.

Keywords: non-standard numerical scheme; compact finite difference method; Von Neumann
stability analysis
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1. Introduction

Differential equations are used in the mathematical modelling of physical phenomena
based on rate of change of quantities [1–4] and very few of them can be solved analytically.
Usually, in the absence of known analytical solutions, approximations of the true solution
are obtained by applying an appropriate numerical method according to the nature of
the given problem. Non-linear partial differential equations (PDEs) are considered a class
of challenging problems, and researchers have tried to develop numerical codes to solve
them accurately and efficiently. Obtaining accurate and efficient numerical approximations
of the true solution of a given differential equation is an ongoing research topic. In this
regard, the development and modification of new and existing efficient numerical code
has been considered to provide accurate numerical approximations of the true solution.
Many different approaches, including finite difference, finite element, finite volume and
spectral method, are available to numerically solve a given PDE. However, the finite
difference approach is still considered a fundamental approach for solving PDEs which
occur frequently in various physical fields, such as fluid mechanics, quantum mechanics,
electromagnetism, etc. In order to obtain high-order accurate approximations using the
finite difference approach, a stencil based on a large number of grid points is required. A
common drawback of this approach is the need to include more equations for grid points
near and at the boundaries. An alternative approach to overcome this difficulty, that is, not
to enlarge the stencil size is the compact finite difference approach. In this approach, values
of the derivative of a function at some grid points are used where the function has already
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been evaluated. It seems that these type of methods have been known for almost 55 years.
For instance, some of the these types of code were reported by Collatz [5]. In this article,
we proposed a non-standard combined numerical scheme based on the compact finite
difference method, possessing some additional advantages for integrating the well-known
non-linear Burgers’ equation given by

∂u
∂t

+ u
∂u
∂x

= v
∂2u
∂x2 , x ∈ (a, b), t ∈ (0, T] (1)

subject to the following initial and boundary conditions, respectively,

u(x, 0) = g(x), a < x < b (2)

and
u(a, t) = f1(t), 0 < t ≤ T (3)

u(b, t) = f2(t), 0 < t ≤ T, (4)

where u, x, t and v are the velocity, spatial coordinate, time and kinematic viscosity, respec-
tively, whereas f1(t), f2(t), g(x) are known functions. Equation (1) shows that convection-,
diffusion- and time-dependent terms are present in the equation.

Equation (1) was first introduced by H. Bateman in 1915 [6] and later in 1948 by a
Dutch physicist J M Burgers to mathematically model turbulence [7]. Burgers was an
active researcher in the field of fluid mechanics and to honour his contributions, this
equation was termed the Burgers’ equation. The first analytical treatment of the one-
dimensional Burgers’ equation was proposed by Bateman [6]. In general, for specific initial
and boundary conditions, the problem in eq1 can be treated analytically. More precisely, in
the gas dynamics Holf [8] and Cole [9] proved independently that for any initial condition
the problem can be reduced to form of a linear homogeneous heat equation that can be
treated analytically. Thus, the exact solution of Burgers’ equation can be written in the form
of a Fourier series which is difficult to handle analytically; therefore, it is important to have
stable and efficient numerical methods to deal with these types of problems. For a good
reference to the exact solution of the one-dimensional Burgers’ equation, one can consult
the survey by Benton et al. [10].

Many researchers have proposed numerical schemes to numerically solve (1). Zhang
et al. [11] discussed its numerical solution by applying two-step predictor–corrector method,
known as MacCormack method in combination with compact finite difference method for
spatial discretization. M. Sari et al. [12] numerically solved the one-dimensional Burgers’
equation using a sixth-order compact finite difference method in combination with low stor-
age third-order total variation diminishing Runge–Kutta scheme. Gao et al. [13] proposed
a numerical scheme by employing a high-accuracy mutli-quadratic quasi-interpolation to
approximate the spatial derivatives and a first-order accurate forward difference method for
the temporal derivative. For more details on existing numerical schemes to solve Burgers’
equation, one can consult [14–20] and the references cited therein. In the scientific literature,
other types of Burgers’ equation have been addressed, for instance, Hadhoud et al. [21]
proposed non-polynomial B-spline and shifted Jacobi spectral collocation methods for
solving time-fractional non-linear coupled Burgers’ equations, and the local fractional
two-dimensional Burgers-type equations was addressed in Yang et al. [22].

To obtain the numerical solution to Equation (1) using a compact finite difference
approach, researchers have used explicit Runge–Kutta-type or linear multi-step methods
for advancing the integration process in the time direction. Due to the small stability region
of explicit RK methods, a small step size is required to obtain a reliable approximation
to the true solution. This increases the computational cost and in some cases due to the
very small grid size, round off errors may arise resulting in an unrealistic solution. In
order to use linear multi-step methods, the user needs the starting values to begin the
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integration process. For this, the user needs to use appropriate codes as starters; for instance,
RK methods. To obtain a reliable approximation to the true solution of a given problem
with a large grid size, an implicit RK method could be sufficient. However, when using
implicit RK methods, the user needs to solve a system of equations at each step of the
integration due to the implicit nature of the code. To provide an alternative to these codes,
we propose a class of unconventional explicit unconditionally stable numerical codes to
accurately and efficiently integrate a given problem. Many authors have proposed these
type of methods [23–27]. In this regard, we first present the derivation of the family of
non-standard methods to integrate systems of ODEs arising in the semi-discretization of
initial-boundary values of a Burgers’ equation and analyse its basic characteristics, i.e.,
order of accuracy and linear stability analysis. Then, by considering this family of methods
and coupling them with a fourth-order compact finite difference scheme, a novel combined
compact numerical scheme is obtained to deal with the initial-boundary value problem
given in Equation (1).

The rest of the article is organized as follows: Section 2 concerns the development of a
class of time marching numerical schemes and the basic characteristics. In Section 3, we
recall the fourth-order compact finite difference method used with an explicit numerical
time marching scheme presented in Section 4 as a combined numerical scheme. The Von
Neumann stability analysis of the scheme is carried out in Section 5. Section 6 discusses
the numerical experiments carried out by applying the combined numerical scheme, while
Section 7 draws some conclusions of the present work.

2. Development of the Explicit Numerical Schemes

The semi-discretization of Equation (1) with regard to the space variable results in a
system of first-order ODEs can be written as

U′ = F(t, U); U(t0) = U0, (5)

where t ∈ [t0, t f ], U : [t0, t f ] → Rm, F : [t0, t f ]× Rm → Rm. In order to develop the
numerical schemes, we consider the scalar case of the above system, u′ = f (t, u), u(t0) = u0
for m = 1.

Firstly, the interval [t0, t f ] was discretize into k subintervals of equal length as

tn = t0 + n∆t, where n = 0, 1, 2, . . . , k and ∆t =
t f−t0

k . We termed the step size
∆t and the approximate solution at tn as un. Let us assume the following approximation to
the true solution to the problem at point tn+1 = tn + ∆t as

un+1 ≈ u(tn)

1 + ∆t(α + β∆t)
(6)

where α and β are arbitrary constants. The type of methods was initially proposed by J.D.
Lambert [28]. A difference operator is linked with Equation (6)

L[u(t); ∆t] = u(tn + ∆t)(1 + ∆t(α + β∆t))− u(tn) = 0 (7)

Using the Taylor series to expand u(tn + ∆t) around the point tn, we obtain

L[u(t); ∆t] = (αu(tn) + ut(tn))∆t + (βu(tn) + αut(tn) +
1
2

utt(tn))(∆t)2 + O(∆t3) (8)

To obtain the first-order numerical schemes and avoid the second derivative, the
coefficient of ∆t in (8) must vanish. Equating the coefficient of ∆t equal to zero, we obtain α
given by

α =
−ut(tn)

u(tn)
,

provided that u(tn) 6= 0.
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Using α and taking β arbitrarily in Equation (6), a one-parameter family of numerical
schemes is obtained as

un+1
i =

(un)2
i

un
i − ∆t((ut)n

i − βun
i ∆t)

(9)

This is a new one-parameter class of explicit numerical schemes for solving the sys-
tem (5).

2.1. Special Cases

By putting different values for the free parameter β, we obtain a different numeri-
cal scheme.

1. If we let β = 0, the well-known method of Fatunla [29] is obtained as a special case

un+1
i =

(un)2
i

un
i − ∆t(ut)n

i
(10)

2. Let β = 1/10, we obtain

un+1
i =

(un)2
i

un
i − ∆t((ut)n

i −
1

10 un
i ∆t)

(11)

3. Let β = 1/2, we obtain

un+1
i =

(un)2
i

un
i − ∆t((ut)n

i −
1
2 un

i ∆t)
(12)

2.2. Basic Characteristics of the Numerical Scheme

This section concerns the basic characteristics [30–32] of the proposed scheme (9),
including the order of accuracy and linear stability analysis. Note from the derivation
that the scheme has first-order accuracy and its linear stability analysis was carried out by
applying it to the Dahlquist test equation given by

ut = λu, Re(λ) < 0

Theorem 1. The numerical scheme given in (9) is L-stable [33] for β ≥ 0.

Proof. Considering the proposed numerical scheme (9) and applying it to the Dahlquist
test equation, we obtain

un+1
i =

(un)2
i

un
i − ∆tλun

i + β∆t2un
i

(13)

which may be simplified as

un+1
i =

un
i

1− ∆tλ + β∆t2 .

Now consider the stability function

un+1
i
un

i
= Φ(z) =

(
1

(1 + β∆t2)− z

)
where z = λ∆t. For a stable numerical scheme, we must have

|Φ(z)| =
∣∣∣∣ 1
(1 + β∆t2)− z

∣∣∣∣ < 1. (14)
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It is easy to verify that for Re(z) < 0 and β ≥ 0, the numerical scheme (9) is A-
stable [33]. Further, we also note that

lim
Re(z)→−∞

|Φ(z)| → 0.

Hence, the proposed class of methods is also L-stable [33] for β ≥ 0.

3. Compact Finite Difference Method

Compact finite differences have additional advantages over conventional finite differ-
ences as they provide higher accuracy in the approximation with a smaller stencil size. In
the present article, we considered fourth-order compact finite differences in order to approx-
imate the spatial derivatives from Equation (1). Here we recall a fourth-order compact finite
difference method and for more details on this type of method, one can consult [34–37] and
the references cited therein.

The space variable a < x < b is discretized into N equal subintervals of equal length
∆x = xi+1 − xi, where i = 1, 2, 3, . . . N.

Consider a fourth-order compact finite difference scheme for discretizing the first
spacial derivative from (1) at the interior nodes i = 2, 3, 4, . . . N − 1.

1
4

u′i−1 + u′i +
1
4

u′i+1 =
3

4∆x
(ui+1 − ui−1) (15)

where the prime mark denotes the derivative with respect to the space variable and the fol-
lowing one-sided boundary scheme to obtain approximations at boundary points given by

u′1 + 3u′2 =
1

∆x

(
−17

6
u1 +

3
2

u2 +
3
2

u3 −
1
6

u4

)
(16)

for i = 1, and

u′N + 3u′N−1 =
1

∆x

(
17
6

uN −
3
2

uN−1 −
3
2

uN−2 +
1
6

uN−3

)
. (17)

for i = N.
The above equations can be written in matrix form

A1U′ = B1U

A1 =



1 3 0 0 · · · 0 0
1/4 1 1/4 0 · · · 0 0

0 1/4 1 1/4 · · · 0 0
...

. . . . . . . . . . . . 0 0
0 0 0 0 · · · 1/4 0
0 0 0 0 · · · 1 1/4
0 0 0 0 · · · 3 1


N×N

B1 =
1

2∆x



17/3 3 3 −1/3 0 · · · 0 0
−3/2 0 3/2 0 0 · · · 0 0

0 −3/2 0 3/2 0 · · · 0 0
...

. . . . . . . . . . . . . . . 0 0
0 0 0 · · · −3/2 0 3/2 0
0 0 0 · · · 0 −3/2 0 3/2
0 0 0 · · · 1/3 −3 −3 −17/3


N×N
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U =



U1
U2
U3
.
.
.

UN−1
UN


N×1

Solving the above system of equations, we can obtain approximations to the first-order
space derivatives at the discrete points of interest.

Similarly, in order to approximate the second spacial derivative appearing in the
equation, we consider the following fourth-order compact finite difference scheme given by:

1
10

u′′i−1 + u′′i +
1
10

u′′i+1 =
6

5(∆x)2 (ui+1 − 2ui + ui−1). (18)

For interior nodes i = 2, 3, . . . N − 1.
For boundary points we have:

u′′1 + 10u′′2 =
1

(∆x)2

(
145
12

u1 −
76
3

u2 +
29
2

u3 −
4
3

u4 +
1

12
u5

)
(19)

for i = 1, and

u′′N + 10u′′N−1 =
1

(∆x)2

(
145
12

uN −
76
3

uN−1 +
29
2

uN−2 −
4
3

uN−3 +
1

12
uN−4

)
(20)

for i = N.
The complete matrix system for a tri-diagonal fourth-order compact scheme to ap-

proximate the second derivative can be written as follows

A2U′′ = B2U

A2 =



1 10 0 0 · · · 0 0
1/10 1 1/10 0 · · · 0 0

0 1/10 1 1/10 · · · 0 0
...

. . . . . . . . . . . . 0 0
0 0 0 0 · · · 1/10 0
0 0 0 0 · · · 1 1/10
0 0 0 0 · · · 10 1


N×N

B2 =
1

(∆x)2



145/12 −76/3 29/2 −4/3 1/12 0 · · · 0 0
6/5 −12/5 6/5 0 0 0 · · · 0 0

0 6/5 −12/5 6/5 0 0 · · · 0 0
...

. . . . . . . . . . . . . . . . . . 0 0
0 0 0 0 · · · 6/5 −12/5 6/5 0
0 0 0 0 0 · · · 6/5 −12/5 6/5
0 0 0 · · · 1/12 −4/3 29/2 −76/3 145/12


N×N
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U =



U1
U2
U3
.
.
.

UN−1
UN


N×1

Solving the above system of equations, one can obtain an approximation to the second-
order space derivatives from the equation at the discrete points of interest.

4. The Proposed Combined Numerical Scheme and Its Accuracy

The proposed combined numerical scheme for solving Equation (1) can be written as

un+1
i =

(un
i )

2

un
i + β(∆t)2un

i − ∆t(−un
i (u

n
x)i + v(un

xx)i)
. (21)

Note that in the numerical scheme, we used

(un
t )i = −un

i (u
n
x)i + v(un

xx)i

In order to implement the combined numerical scheme, the spatial derivatives are
approximated using fourth-order compact finite difference methods and the non-standard
numerical scheme (9) will act as a time marching scheme.

In this way, the proposed combined numerical scheme has first-order accuracy in time
and fourth-order accuracy in space.

5. Von Neumann Stability Analysis

In this section, we carried out Von Neumann stability analysis on the proposed nu-
merical scheme (21).

Theorem 2. The proposed combined numerical scheme (21) is unconditionally stable for β ≥ 0.

Proof. Considering the linearized form of Equation (1) with Q = max |un
i |, Equation (1)

can be rewritten as
ut = −Qux + vuxx (22)

and the combined numerical numerical scheme becomes

un+1
i =

(un
i )

2

un
i − ∆t(−Qux + vuxx) + β(∆t)2un

i
(23)

Note that for approximating the first space derivative using fourth-order compact
scheme, the matrices A and B are triangular and both possesses the property

A = αu′i−1 + u′i + αu′i+1, B =
a
2
(ui+1 − ui−1)

where α = 1
3 , a = 3

2 .
Let un

i = ξneIwx i, I =
√
(− 1) be the solution to (23),

where wx = 2π∆x
lx

is the wave number.

Aun
i = αξneIwx(i−1) + ξneIwx i + αξneIwx(i+1)

This leads to
Aun

i = αξneIwx i(eIwx + e−Iwx ) + ξneIwx i
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which may be simplified as

Aun
i = αξneIwx i(2 cos wx) + ξneIwx i.

Thus,
Aun

i = ξneIwx i(2α cos wx + 1).

Now, consider B = a
2 (ui+1 − ui−1).

Bun
i =

a
2
(ξneIwx(i+1) − ξneIwx(i−1))

this becomes
Bun

i =
a
2

ξneIwx(i)(eIwx − e−Iwx )

which may be simplified as

Bun
i = ξneIwx(i)(aI sin wx).

Thus, the approximation of the first derivative is

ux =
I

∆x
A−1Bun

i .

Putting the values of A−1 and B, we obtain

(ux)i =
I(a sin wx)

∆x(2α cos wx + 1)
un

i

For approximating the second derivative, consider

α∗u′′i−1 + u′′i + α∗u′′i+1 = a∗(ui+1 − 2ui + ui+1)

where
α∗ =

1
10

a∗ =
6
5

A∗un
i = α∗u′′i−1 + u′′i + α∗u′′i+1

Similarly,

A∗un
i = ξneIwx i(2a∗ cos wx + 1), B∗un

i = a∗(ξneIwx(i+1) − 2ξneIwx i + ξneIwx(i−1))

B∗un
i = a∗ξneIwx i(eIwx − 2 + e−Iwx )

B∗un
i = a∗ξneIwx i(2 cos wx − 2)

B∗un
i = −4a∗ξneIwx i

(
1− cos wx

2

)
B∗un

i = −4a∗ξneIwx i(sin2 wx/2)

Thus, we have

(uxx)i =
1

(∆x)2 (A−1)∗B∗

(uxx)i =
−4a∗ sin2 wx/2
2α∗ cos wx + 1

un
i
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Putting the value of un
i in (23), we obtain

ξn+1eIwx i =
(ξneIwx i)2

ξneIwx i + β(∆t)2ξneIwx i − ∆t(−QI/∆xα
′
ξneIwx i + v/∆x2β

′
ξneIwx i)

ξn+1eIwx i =
ξneIwx i

1 + β(∆t)2 + IQα
′(∆t/∆x)− vs.(∆t/∆x2)β

′

ξn+1 =
ξn

1 + β(∆t)2 − v(∆t/∆x2)β
′ + IQα

′(∆t/∆x)

ξn+1

ξn =
1

1 + β(∆t)2 − v(∆t/∆x2)β
′ + IQα

′(∆t/∆x)

where

α
′
=

3
2 sin wx

2
3 cos wx + 1

, β
′
=
−24

5 sin2 wx/2
2

10 cos wx + 1

For the numerical scheme to be stable, we must have∣∣∣∣ ξn+1

ξn

∣∣∣∣ < 1.

Consider ∣∣∣∣ ξn+1

ξn

∣∣∣∣ = |Ψ(ξ)| =
∣∣∣∣ 1
(1 + β(∆t)2 − vk1 + IQk2

∣∣∣∣
where

k1 =
∆t

(∆x)2 β′, k2 =
∆t
∆x

α′

For scheme to be stable, the following condition must be satisfied∣∣∣∣ ξn+1

ξn

∣∣∣∣ = ∣∣∣∣ 1
Z1 + IZ2

∣∣∣∣
where

Z1 = 1 + β∆t2 − vk1 and Z2 = Qk2

considering

Z2
1 = 1 + β2∆t4 + v2k2

1 + 2β∆t2 − 2β∆t2vk1 − 2vk1, Z2
2 = Q2k2

2

Thus,

Z2
1 + Z2

2 = 1 + β2∆t4 + v2k2
1 + 2β∆t2 − 2β∆t2vk1 − 2vk1 + Q2k2

2

Here, β
′
< 0 and β ≥ 0. This leads to

Z2
1 + Z2

2 > 1

This implies that

|Ψ(ξ)| =
∣∣∣∣ ξn+1

ξn

∣∣∣∣ < 1.

Hence, the proposed combined numerical scheme (21) is unconditionally stable.

6. Numerical Experiments

In this section, we evaluated the performance of the proposed combined numerical
scheme (21) for solving the Burgers’ equation (1), subject to the following initial, boundary
conditions and exact solution [11].
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Test problem

Consider the problem
ut + uux = vuxx (24)

subject to the initial and boundary conditions given by

u(x, 0) =
2vπ sin(πx)
a + cos(πx)

, 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0, t > 0.

The exact solution of the problem is given by

u(x, t) =
2vπ sin(πx) exp−π2vt

a + cos(πx) exp−π2vt
. (25)

The Table 1 represents the different notations denote the numerical schemes considered
in this article.

Table 1. Notation for different schemes.

Scheme Notation

Proposed scheme New scheme

Non-standard Method (9) coupled with
fourth-order finite difference method Conventional scheme 1

Euler method coupled with compact finite
difference scheme Classical scheme

Fourth-order Runge–Kutta method coupled
with compact finite difference scheme Conventional scheme 2

In Table 2, the absolute errors are presented for T = 0.1 by applying the new scheme
for v = 0.01, a = 2, N = 20, ∆t = 0.0001 and β = 0.1. This demonstrates that the new
scheme accurately integrates the given problem.

Table 2. Comparison of the new scheme and analytical solution at time T = 0.1.

x New Scheme Analytical Solution Absolute Error

0.1 0.006535437 0.006535444 6.9111 × 10−9

0.2 0.013055323 0.013055335 1.1610 × 10−8

0.3 0.019493618 0.019493635 1.7438 × 10−8

0.4 0.025659224 0.025659249 2.4350 × 10−8

0.5 0.031107352 0.031107388 3.5979 × 10−8

0.6 0.034928598 0.034928657 5.8376 × 10−8

0.7 0.035495877 0.035495951 7.3684 × 10−8

0.8 0.030501374 0.030501344 2.9440 × 10−8

0.9 0.018166431 0.018166603 1.7209 × 10−7

Table 3 presents a comparison of the absolute errors produced by the new scheme and
conventional scheme 1 for T = 0.01, N = 10, β = 0.1, v = 0.01, a = 2 and ∆t = 0.0001. It is
evident from the data that the new scheme performs better in terms of accuracy.

As the new scheme has first-order accuracy in time, in Table 4 we present a comparison
of the numerical results obtained from the new scheme and classical scheme for the values
T = 10, ∆t = 0.001, N = 20, v = 0.01, a = 2 and β = 0. The numerical data given in Table 4
shows the good performance of the new scheme compared to classical scheme.
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Table 3. Conventional scheme 1 versus New scheme.

x Analytical Solution New Scheme Conventional Scheme 1

0.1 0.006574975 3.5868 × 10−8 5.4495 × 10−5

0.2 0.013138293 2.9319 × 10−9 1.6192 × 10−5

0.3 0.019628086 3.0742 × 10−10 2.6035 × 10−5

0.4 0.025875737 1.3496 × 10−9 4.5006 × 10−5

0.5 0.031384935 1.3626 × 10−8 8.4240 × 10−5

0.6 0.035297182 3.9701 × 10−8 1.5682 × 10−4

0.7 0.035944289 1.2138 × 10−7 2.5449 × 10−4

0.8 0.030958038 2.6570 × 10−7 2.8952 × 10−4

0.9 0.018475374 8.2195 × 10−7 7.2289 × 10−5

Table 4. Comparison of the new scheme with classical scheme at time T = 10.

x New Scheme Classical Scheme

0.1 5.8210 × 10−8 7.5676 × 10−4

0.2 1.0461 × 10−7 1.1922 × 10−3

0.3 1.3715 × 10−7 1.9371 × 10−3

0.4 1.5156 × 10−7 3.2075 × 10−3

0.5 1.4692 × 10−7 5.2629 × 10−3

0.6 1.2411 × 10−7 8.3853 × 10−3

0.7 8.0530 × 10−8 1.2810 × 10−2

0.8 7.4253 × 10−9 1.8601 × 10−2

0.9 9.5795 × 10−8 2.5500 × 10−2

Table 5 shows the rate of convergence (ROC) of the new scheme in the space direction
for the values a = 2, v = 0.01, T = 0.01, β = 0 and ∆t = 0.0001. Table 5 shows that the ROC
agrees with the theoretical order of convergence of the new scheme in the space direction.

Table 5. L∞-error and ROC.

N L∞-Error ROC

20 3.6026 × 10−7

40 1.9605 × 10−8 4.199
60 2.5497 × 10−9 5.030
80 5.1666 × 10−10 5.549

In Table 6, we have presented a comparison of the new scheme with existing ap-
proaches [16,38] in terms of L∞-error for values v = 0.005, a = 100, h = 1/N, ∆t = 0.01,
β = 0, and T = 1. The data given in Table 6 demonstrate the better performance of the new
scheme.

Table 6. Comparison with different approaches at time T = 1.

N New Scheme Jain [16] Kaysar [38]
L∞-Error L∞-Error L∞-Error

10 5.0953 × 10−9 1.215 × 10−7 1.2458 × 10−7

20 3.6769 × 10−9 3.062 × 10−8 3.3944 × 10−8

40 3.6422 × 10−9 7.644 × 10−9 1.1249 × 10−8
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Next, Table 7 displays the better performance of the new scheme in comparison
with an existing scheme [39] in terms of accuracy using values v = 0.2, a = 2, N = 40,
∆t = 0.0001, β = 0.1.

Table 7. Comparison of the new scheme with an existing scheme at time T = 0.001.

x Ref. [39] New Scheme Analytical Solution

0.1 0.131412 0.1314115 0.1314115
0.2 0.262581 0.2625812 0.2625812
0.3 0.392263 0.3922623 0.3922623
0.4 0.516710 0.5167095 0.5167094
0.5 0.627081 0.6270796 0.6270795
0.6 0.705122 0.7051204 0.7051202
0.7 0.717882 0.7178823 0.7178822
0.8 0.618129 0.6181366 0.6181364
0.9 0.368802 0.3688139 0.3688137

Table 8 presents the numerical data concerning L∞-error and L2-error for different
values of v for N = 40, ∆t = 0.0001, β = 0.1 and T = 0.001. Table 8 shows that the
new scheme produces very accurate approximations to the true solution of the given
test problem.

Table 8. The maximum absolute error and L2-error at time T = 0.001.

v L∞-Error L2-Error

10−2 2.1957 × 10−9 2.6411 × 10−9

10−3 3.6515 × 10−11 1.5776 × 10−10

10−4 3.6287 × 10−12 1.5631 × 10−11

10−5 3.6262 × 10−13 1.5630 × 10−12

10−6 3.6259 × 10−14 1.5630 × 10−13

Table 9 shows a comparison between the absolute errors in the application of the new
scheme and conventional scheme 2. The numerical data support the better performance
of the new scheme. Note that the new scheme integrates the given problem with fewer
function evaluations than the conventional scheme 2.

Table 9. Comparison of the new scheme versus the conventional scheme 2 at time T = 1.

x New Scheme Conventional Scheme 2

0.1 1.2085 × 10−8 2.9888 × 10−6

0.2 4.5360 × 10−8 4.5472 × 10−7

0.3 7.1420 × 10−8 7.3049 × 10−8

0.4 8.1264 × 10−8 2.6644 × 10−8

0.5 5.7401 × 10−8 2.7691 × 10−8

0.6 2.4232 × 10−9 7.9754 × 10−7

0.7 9.8814 × 10−8 1.4353 × 10−5

0.8 6.7314 × 10−7 1.6892 × 10−4

0.9 3.1800 × 10−6 1.3817 × 10−3

L∞ 5.2245 × 10−6 7.9669 × 10−3

Table 10 shows the ROC of the new scheme in the time direction for values a = 2,
v = 0.01, T = 0.5, β = 0.1 and N = 20. Table 10 shows that the ROC agrees with the
theoretical order of convergence of the new scheme in the time direction.
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Table 10. L∞-error and ROC.

∆t L∞-Error ROC

0.5 7.3054 × 10−4

0.25 3.8230 × 10−4 0.94
0.125 1.9524 × 10−4 0.97

The Figure 1 shows the numerical and analytical solutions for different values of v
using values N = 40, β = 0.1 and ∆t = 0.0001. It is evident that the physical behaviour
of the numerical solution agrees with the physical behaviour of the analytical solution for
various values of parameter v.
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Figure 1. Numerical and analytical solutions to the problem for different values of v at T = 0.001.

The numerical solution is plotted against the exact solution for different values of T.
The Figure 2 shows that the physical behaviour of both solutions is similar. The plot is
drawn using the values N = 40, v = 0.001, β = 0.1 and ∆t = 0.01.
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Figure 2. Numerical versus analytical solutions for different values of T.

7. Conclusions

In this article, we considered a combined numerical scheme based on a family of non-
standard numerical schemes coupled with a compact finite difference method to solve the
one-dimensional Burgers’ equation. Firstly, a family of non-standard numerical schemes
was developed by considering a non-standard approximation to the true solution of a given
problem and then combining it with a fourth-order compact finite difference method to
obtain an efficient unconditionally stable numerical scheme. The basic characteristics of
the proposed numerical scheme were discussed and numerical experiments were carried
out by applying the proposed numerical scheme to the Burgers’ equation. The presented
numerical results indicate the good performance of the proposed numerical scheme.
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