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Abstract: Recently, we have established and used the generalized Littlewood theorem concerning
contour integrals of the logarithm of analytical function to obtain new criteria equivalent to the
Riemann hypothesis. Later, the same theorem was applied to calculate certain infinite sums and
study the properties of zeroes of a few analytical functions. In this study, we apply this approach
to elliptic functions of Jacobi and Weierstrass. Numerous sums over inverse powers of zeroes and
poles are calculated, including some results for the Jacobi elliptic functions sn(z, k) and others under-
stood as functions of the index k. The consideration of the case of the derivative of the Weierstrass
rho-function, ℘z(z, τ), leads to quite easy and transparent proof of numerous equalities between
the sums over inverse powers of the lattice points m + nτ and “demi-lattice” points m + 1/2 + nτ,
m + (n + 1/2)τ, m + 1/2 + (n + 1/2)τ. We also prove theorems showing that, in most cases, funda-
mental parallelograms contain exactly one simple zero for the first derivative θ1′(z|τ) of the elliptic
theta-function and the Weierstrass ζ-function, and that far from the origin of coordinates such zeroes
of the ζ-function tend to the positions of the simple poles of this function.

Keywords: generalized Littlewood theorem; logarithm of an analytical function; elliptic functions;
zeroes and poles of analytical function; infinite sums

MSC: 30E20; 30C15; 33B20; 33B99

1. Introduction

The generalized Littlewood theorem concerning contour integrals of the logarithm of
analytic function is the following statement [1,2]:

Theorem 1. (The generalized Littlewood theorem). Let C denote the rectangle bounded by
the lines x = X1, x = X2, y = Y1, y = Y2, where X1 < X2, Y1 < Y2 and let f(z) be analytic and
non-zero on C and meromorphic inside it, and let also g(z) be analytic on C and meromorphic inside
it. Let F(z) = ln(f(z)) be the logarithm defined as follows: we start with a particular determination
of x = X2, and obtain the value at other points by continuous variation along y = const from
ln(X2 + iy). If, however, this path would cross a zero or pole of f(z), we take F(z) to be F(z± i0)
according to whether we approach the path from above or below. Let also F̃(z) = ln( f (z)) be the
logarithm defined by continuous variation along any smooth curve fully lying inside the contour
which avoids all poles and zeroes of f(z) and starts from the same particular determination on
x = X2. Suppose that the poles and zeroes of the functions f(z), g(z) do not coincide.
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Then,

∫
C

F(z)g(z)dz = 2πi

∑
ρg

res(g(ρg) · F̃(ρg))−∑
ρ0

f

X0
ρ+iY0

ρ∫
X1+iY0

ρ

g(z)dz + ∑
ρ

pole
f

Xpole
ρ +iYpole

ρ∫
X1+iYpole

ρ

g(z)dz

, (1)

where the sum is over all ρg which are poles of the function g(z) lying inside C, all ρ0
f = X0

ρ + Y0
ρ

which are zeroes of the function f(z) both counted taking into account their multiplicities (that
is the corresponding term is multiplied by m for a zero of the order m) and which lie inside C,
and all ρ

pol
f = Xpol

ρ + Ypol
ρ which are poles of the function f(z) counted taking into account their

multiplicities and which lie inside C. The assumption is that all relevant integrals on the right-hand
side of the equality exist.

The proof of this theorem [2] is very close to the proof of the standard Littlewood
theorem corresponding to the case g(z) = 1, see, e.g., [3]. The application of this theorem is
especially interesting for certain particular cases when the contour integral

∫
C

F(z)g(z)dz

disappears (tends to zero) if the contour tends to infinity, that is when X1, Y1 → −∞ ,
X2, Y2 → +∞ (more precisely, when we can find some sequence of the contours Cj tending
to infinity and such, that the contour integral tends to zero, see below). This means that
Equation (1) takes the form

∑
ρ0

f

X0
ρ+iY0

ρ∫
−∞+iY0

ρ

g(z)dz−∑
ρ

pol
f

Xpole
ρ +iYpole

ρ∫
−∞+iYpole

ρ

g(z)dz = ∑
ρg

res(g(ρg) · F(ρg)) (2)

Earlier, this approach was used by us to analyze some properties of the zeroes of the
Riemann zeta-function (see, e.g., [4] for a general discussion of this function)—in particular,
to establish a number of theorems equivalent to the Riemann hypothesis [1,2,5,6] (Some of
these results were recently included in the corresponding chapter of the Encyclopedia of
Mathematics and its Applications [7]). In Ref. [8], we discuss the use of the generalized Lit-
tlewood theorem to calculate many infinite sums over integers and to study the properties
of zeroes of some analytical functions, such as incomplete Riemann and gamma functions
and polygamma functions.

In the present paper, which is closely related to [8], we apply the same approach to
calculate certain sums over powers of zeroes for different elliptic functions, which are
studied because of their high importance in mathematics and physics, see, e.g., [9–15].
These functions are fertile ground for our approach based on the generalized Littlewood
theorem, and, to the best of the author’s knowledge, similar questions were never sys-
tematically studied. At the same time, such information can be really useful for a better
understanding of the general properties and behavior of elliptic functions, as this takes
place for many other analytic functions including not only the aforementioned Riemann
zeta-function, see references above, but also, e.g., degenerate hypergeometric function and
Bessel functions [16,17], polygamma and related functions [8,18], Hurwitz zeta-function [8],
and many others. Moreover, we may say that the elliptic functions are the natural “starting
point” and prototype for all such research because, in a sense, the logarithms of theta-
functions are simply defined via the sums over inverse powers of their zeroes, and the
Weierstrass zeta-function can also be defined via the sums over inverse powers of its poles
(minus 1/z term), see below.

2. Sums over Powers of Zeroes of Elliptic Theta-Functions

Whenever possible, for the references concerning standard formulae pertinent to
elliptical functions, we will mostly cite “encyclopedia-like” Ref. [9]. First, we need to give
the necessary definitions and specify a notation used, especially because, unfortunately,
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different notations and conventions still co-exist in the elliptic functions research field. We
define four theta-functions as follows

θ1(z, q) = θ1(z|τ) = 2
∞

∑
k=0

(−1)kq(k+1/2)2
sin((2k + 1)z) (3a)

θ2(z, q) = θ2(z|τ) = 2
∞

∑
k=0

q(k+1/2)2
cos((2k + 1)z) (3b)

θ3(z, q) = θ3(z|τ) = 1 + 2
∞

∑
k=0

qk2
cos(2kz) (3c)

θ4(z, q) = θ4(z|τ) = 1 + 2
∞

∑
k=0

(−1)kqk2
cos(2kz). (3d)

Here, q = eiπτ (it is named a nome), and Imτ > 0. As functions of z for any fixed τ,
they are entire and 2π-periodic, and they are quasiperiodic on the lattice formed by the
points zm,n = (m + nτ)π—the following relations hold:

θ1(z + (m + nτ)π|τ) = (−1)m+nq−n2
e−2inzθ1(z|τ), (4)

and similarly for other theta-functions.
These properties and those defined by asymptotic (the quasi-periodicity condition (4))

guarantee that for large |z| the theta-function is at most O(exp(C|z|2) with some constant
C; hence, we have the disappearance of the contour integrals

∫
Ci

1
(z−a)k ln(θj(z))dz for j = 1, 2,

3, 4 and k = 4, 5 . . . in the limit of infinitely large contours. The location of zeroes ρi, which
all are simple, for these functions, also is well known. Namely, the functions θj(z|τ) for j = 1,
2, 3, 4 have zeroes at the points (m + nτ)π, (m + 1/2 + nτ)π, (m + 1/2 + (n + 1/2)τ)π,
and (m + (n + 1/2)τ)π respectively [9]. Here and below, in the combination m + nτ both
m and n are positive or negative integers or zero: m, n ∈ Z. We will not always repeat
this statement.

In light of the generalized Littlewood theorem, the aforementioned known loca-
tion of zeroes immediately defines the Taylor expansion of the theta-functions. We

have [9]: θ1(πz|τ) = πzθ1′(0|τ) exp(−
∞
∑

j=1

1
2j δ2jz2j), θ2(πz|τ) = θ2(0|τ) exp(−

∞
∑

j=1

1
2j α2jz2j),

θ3(πz|τ) = θ3(0|τ) exp(−
∞
∑

j=1

1
2j β2jz2j), θ4(πz|τ) = θ3(0|τ) exp(−

∞
∑

j=1

1
2j γ2jz2j) (that is

θ1(πz|τ) = πzθ1′(0|τ)(1− δ2
2 z2 − ( δ4

4 −
δ2

2
8 )z

4 + O(z6)), etc.), where:

δ2j(τ) =
∞

∑
n=−∞

∞

∑
m = −∞
|m|+ |n| 6= 0

1

(m + nτ)2j , (5a)

α2j(τ) =
∞

∑
n=−∞

∞

∑
m=−∞

1

(m + 1
2 + nτ)

2j , (5b)

β2j(τ) =
∞

∑
n=−∞

∞

∑
m=−∞

1

(m + 1
2 + (n + 1

2 )τ)
2j , (5c)

γ2j(τ) =
∞

∑
n=−∞

∞

∑
m=−∞

1

(m + (n + 1
2 )τ)

2j . (5d)

The order of summation is important for these sums if j = 1, see below. Here and below,
the prime sign for the function means the differentiation with respect to the first argument.
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From these formulae, we obtain the Taylor expansions of the logarithms in some
vicinity of zero, like, e.g.,

ln[θ1(πz|τ)/(πzθ1′(0|τ))] = −
∞

∑
j=1

1
2j

δ2jz2j, (6)

or ln[θ2(πz|τ)/(θ2(0|τ)] = −
∞
∑

j=1

1
2j α2jz2j, etc. It is also useful to note for the future that

δ2 = −
π2θ′′′1 (0|τ)
3θ1′(0|τ)

, (7)

which immediately follows from the Taylor series of θ1(πz|τ) given above.
Based on Taylor expansions of this type, and using the generalized Liitlewood theorem,

we immediately “solve” (actually there is nothing to solve, this is more a definition) the
problem of finding all sums ∑

ρi

1
(ρi−a)n , n ≥ 2, over zeroes of theta-functions, which we

illustrate with the function θ1(πz|τ):

Proposition 1. Let integer n ≥ 2 and a be an arbitrary complex number not coinciding with
m + nτ. Then

∞

∑
n=−∞

∞

∑
m=−∞

1
(m + nτ − a)n = − 1

(n− 1)!
dn

dzn (ln(θ1(πz|τ))|πz=a. (8)

For n = 2 the order of summation is important.

Proof. For n ≥ 3 this is the immediate direct consequence of Equation (2) given the
aforementioned asymptotic of ln θ1(πz|τ). For n = 2, we cannot use Equation (2), but

we can integrate Equation (8) with n = 3 from a = 0 to a to get
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ−a)2 =

− d2

dz2 ln(θ1(πz|τ))|πz=a + Const. The constant here is equal to zero, as shows the case a = 0:
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ)2 = − d2

dz2 ln(θ1(πz|τ))|z=0 = δ2(τ). This is just a definition with the

appropriate order of the summation. �

Remark 1. 1. Note that equations for the casen ≥ 4 can be obtained just by repetitive differentiation
of the equation for n = 3 with respect to a. This is valid for all similar equations occurring below,
and we will not repeat this anymore.

2. The case n = 2 deserves further discussion. We already said that the asymptotic of the
theta-function does not enable to claim that the integrals

∫
Ci

1
(z−a/π)3 ln(θj(πz|τ))dz tend to zero

when the contours Ci tend to infinity. On the other hand, the conditionally converged sums
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ−a)2 can be calculated, but the result depends on the order of summation: for

example, Eisenstein himself already showed that [19]

∞

∑
m=−∞

∞

∑
n = −∞

|m|+ |n| 6= 0

1

(m + nτ)2 = δ2(τ)−
2πi
τ

. (9)

This means that some sequence of the contours Cj tending to infinity, and such that

lim
∫
Ci

1
(z−a/π)3 ln(θj(πz|τ))dz, exists, do can be constructed, but this is not easy. Fortunately,

today we have quite recent results of Romik and Scherer [20]. They studied the importance of the
summation order for the Eisenstein series δ2 and Weierstrass ℘-function. In particular, from their



Axioms 2023, 12, 595 5 of 19

results, it follows that if the contours Cj are rectangles with the vertices ±j± i · h · j (here h is
an arbitrary real positive constant, integer j tends to infinity, and i =

√
−1), then the following

limit exists: limj→∞ ∑
(m, n) ∈ Cj
|m|+ |n| 6= 0

1
(m+nτ)2 = δ2(τ) − 4

τ tanh−1(hτ). (See [16] for original

formulation; here tanh−1(hτ) means the inverse function and not 1/tanh(hτ)). The case h→ 0

corresponds to the
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ)2 summation, while the case h→ ∞ corresponds to the

∞
∑

m=−∞

∞
∑

n=−∞

1
(m+nτ)2 summation order.

Remark 2. The Taylor expansions given above, albeit quite standard, are circular because they
contain the values of θ2(0, q), θ3(0, q), θ4(0, q) or θ1′(0, q) (note the Jacobi identity
θ1′(0, q) = θ2(0, q)θ3(0, q)θ4(0, q) [9]), which actually should be determined from the “real” Tay-
lor expansions. Fortunately, this question is not relevant for our central questing concerning the
sums over zeroes of the functions at hand, but unfortunately, there are no known ways to determine
these values apart from the direct use of the definitions given by Equation (3). For some particular
values of q (or τ) and functions θj(0, q), especially θ3(0, q), these values are known, for example,

θ3(0, e−π) = π1/4Γ−1(3/4), θ3(0, e−
√

3π) = π−1Γ3/2(4/3)2−2/3313/18, etc.; see [21–23] and
references cited therein, especially those on the Ramanujan lost notebook.

Note also that the numbers α2j, β2j, γ2j, δ2j are interrelated with each other in a known fashion,
and that all numbers δ2j can be expressed via δ2 and δ4 [9,12], see also below.

Finally, we also would like to note that, in light of Taylor expansions such as Equation (6),
theta-functions are truly the most “fundamental” object for the generalized Littlewood theorem
applications: their logarithms are expressed exactly via the sums over the powers of zeroes.

The question concerning the corresponding sums of the derivatives of the theta-
functions can be put forward and solved in the same fashion.

Proposition 1a. Let ρi be zeroes of the function dl

dzl θ1(z|τ) (j = 1, 2, 3, 4 and l = 1, 2, 3 . . . having
order ki, and a be an arbitrary complex number not coinciding with any ρi. Then for integer n ≥ 3

∑
ρi

ki

(ρi − a)n = − 1
(n− 1)!

dn

dzn (ln(
dl

dzl θj(z|τ))|z=a (10)

At least for the case l = 1, it is more interesting to consider the logarithmical derivative

of the theta-functions rather than their simple derivatives. We have d
dz ln θj(z|τ) =

θj ′(z|τ)
θj(z|τ)

so that this function has simple poles at the points coinciding with zeroes of θj(z|τ), which
location is well known, and zeroes coinciding with the zeroes of θj′(z|τ) function. At the
same time, the asymptotic of this logarithmic derivative, which is for large |z| is O(|z|),
enables to consider smaller powers of zeroes. We have the following proposition.

Proposition 1b. Let ρ
zero,j
i be zeroes of the function θj′(z|τ) having order ki (j = 1, 2, 3, 4). Let

also ρ
pole,j
i be simple zeroes of the function θj(z|τ), and let a be an arbitrary complex number not

coinciding with any ρ
zero,j
i , ρ

pole,j
i . Then

limN→∞ ∑
|ρzero,j

i |<N,|ρpole,j
i |<N

(− ki

(ρ
zero,j
i − a)

2 +
1

(ρ
pole,j
i − a)

2 ) =
d2

dz2 ln
θ′j(z|τ)
θj(z|τ)

|z=a, (11)
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and for integer n ≥ 3

− ∑
ρ

zero,j
i

ki

(ρ
zero,j
i − a)

n + ∑
ρ

pole,j
i

1

(ρ
pole,j
i − a)

n =
dn

dzn ln
θ′j(z|τ)
θj(z|τ)

|z=a. (12)

Furthermore, Equation (11) can be reformulated as follows. Let us for any positive real h

define Slh,j(a) := ∑
(l−1)h≤Im(ρi)<lh

ki

(ρ
zero,j
i −a)

2 , l ∈ Z and let Sj(a) := limh→0
∞
∑

l=−∞
Slh,j(a). Then

for j = 1 S1(a) =
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ−a)2 − d2

dz2 ln θ′1(z|τ)
θ1(z|τ)

|z=a, where the order of summation is

important, and similarly for other theta-functions with the corresponding replacement in the term
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ−a)2 taking in account the location of zeroes of these functions.

In particular, for zeroes of the function θ1′(πz|τ), we have: S1(0) = 3
2 δ2, ∑

ρi

ki
ρ4

i
= 5δ4 + 2δ2

2 ,

∑
ρi

ki
ρ6

i
= 7δ6 + 6δ2δ4 + 2δ3

2 , etc. For zeroes of the function θ2′(πz|τ) we have: S2(0) = α2 − 2 α4
α2

,

∑
ρi

′ ki
ρ4

i
= α4 − 4 α6

α2
+ 2 α2

4
α2

2
, etc. Here, the prime sign means that zero at z = 0 should be excluded

during the summing). The same formulae hold for the functions θ3′(πz|τ), θ4′(πz|τ) but α2j
should be replaced via β2j, γ2j respectively.

Proof. For n = 3, 4, 5 . . . , the proposition immediately follows from Equation (2) applied

to the contour integrals
∫
Ci

1
(z−a)n+1 ln

θj ′(z|τ)
θj(z|τ)

dz. For applications at a = 0 we use Taylor

expansion (6) and similar. We have ln θ1(πz|τ) = ln(θ1′(πz|τ) + ln z −
∞
∑

j=1

1
2j δ2jz2j thus

z d
dz ln θ1(πz|τ) = l−

∞
∑

j=1
δ2jz2j, so that

ln[z d
dz ln θ1(πz|τ)] = −δ2z2 − δ4z4 − δ6z6 − 1

2 δ2
2z4 − δ2δ4z6 − 1

3 δ3
2z6 + O(z8) =

−δ2z2 − (δ4 +
1
2 δ2

2)z
4 − (δ6 + δ2δ4 +

1
3 δ3

2)z
6 + O(z8),

and the Proposition statements follow. For example, for n = 6 we have − 1
6 ∑

ρi

ki
ρ6

i
+ 1

6 δ6 =

−δ6 − δ2δ4 − 1
3 δ3

2 so that ∑
ρi

ki
ρ6

i
= 7δ6 + 6δ2δ4 + 2δ3

2 .

Similarly, ln θ2(πz|τ) = ln(θ2(πz|τ)−
∞
∑

j=1

1
2j α2jz2j thus d

dz ln θ2(πz|τ) = −
∞
∑

j=1
α2jz2j−1

and − 1
α2z

d
dz ln θ2(πz|τ) =

∞
∑

j=1

α2j
α2

z2j−2. This leads to ln(− 1
α2z

d
dz [ln θ2(πz|τ)]) = α4

α2
z2 +

( α6
α2
− α2

4
2α2

2
)z4 + O(z6), and the Proposition statements follow.

The case n = 2 requires more caution because, as we have already stated in Remark 1,
the result of the summation depends on the order of the summation. Thus, we select the
sequence of the contours Cj as stated in Remark 1. The value of the contour integrals tends
to zero anyway (it does so for any sequence of the contours tending to infinity), but with
this choice of Cj, we have the well-defined order of the summation. In the limit h→ 0 ,
we obtain for the sum over powers of zeroes the value of S(a) defined in the Proposition

statement, and for the sum over poles, the ordered sum
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ−a)2 , or similar

for other theta-functions. �

For clarity of presentation, let us now briefly state the main results of this section. We
see, that due to the Taylor expansion (6) and similar, logarithms of elliptic theta-functions
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can be defined via the sums of inverse powers of their zeroes, which, of course, makes the
task of the determination of these same sums with the help of the generalized Littlewood
Theorem 1 trivial (or “superfluous”). Nevertheless, in our opinion, the question does

not look so simple already for the “non-central” sums such as
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ−a)n —see

Equation (8) and similar. This theorem proves also to be quite useful to study similar sums
for derivatives, usual and logarithmical ones, of the elliptic theta-functions.

3. Sums over Powers of Zeroes of Weierstrass σ- and ζ-Function and Its Derivatives
3.1. Weierstrass σ-Function

Weierstrass σ-function is defined as [9]

σ(z|Λ) = z
∞

∏
ω∈Λ/{0}

(1− z
ω
) exp(

z
ω

+
z2

2ω2 ), (13)

where Λ is the lattice formed by points mω1 + nω2, m, n ∈ Z, and Im(ω2/ω1) > 0. We
have, by definition, ζ(z|Λ) = d

dz (ln σ(z|Λ)), ρ(z|Λ) = − dζ(z|Λ)
dz , ρz(z|Λ) = dρ(z|Λ)

dz . Below
we will use the notation σ(z|Λ), ζ(z|Λ), etc., if an arbitrary lattice is using; if ω1 = 1, we
shall write σ(z, τ), ζ(z, τ), etc., Sometimes, when this cannot lead to misunderstanding, we
omit τ and write simply σ(z), ζ(z).

From the definition it is clear that σ(z|Λ) function is an entire function having simple
zeroes at the lattice points, hence the question of the sums over its zeroes coincides with
the same question for the function θ1(

πz
ω1
|τ) with the appropriate ω1, τ.

3.2. Weierstrass ζ-Function

However, the question concerning the sums over powers of zeroes becomes quite
relevant for the function ζ(z|Λ). This function evidently has simple poles at the lattice
points, but it also has zeroes. For further analysis, let us select a lattice m + nτ (the general
case is just the rescaling). The following Laurent expansion is well known (and evident
from the definition) [9]:

ζ(z, τ) =
1
z
−

∞

∑
k=2

δ2k(τ)z2k−1, (14)

where δ2k(τ) are Eisenstein series defined above by Equation (5a). To simplify the notation,

below we will omit τ when writing δ2k(τ). Thus zζ(z, τ) = 1−
∞
∑

k=2
δ2kz2k and

ln(zζ(z, τ)) = −δ4z4 − δ6z6 − (δ8 +
1
2

δ2
4)z

8 + O(z10). (15)

The quasi-periodicity conditions read ζ(z + 2ωj, τ) = ζ(z, τ) + 2ζ(ωj, τ), j = 1, 2, 3
and ω3 = −ω1 − ω2 [9], which means that for large |z| the asymptotic of ln |ζ(z)| does
not exceed O(ln|z|). Correspondingly, the generalized Littlewood theorem can be applied
even to the integrals

∫
Ci

1
(z−a)2 ln ζ(z, τ)dz, which gives the following proposition (compare

with analogous statements for polygamma functions in [8]).

Proposition 2. Let ρ
pole
i = m + nτ be simple poles of ζ(z, τ), m, n ∈ Z, and ρzero

j be zeroes of the

function ζ(z, τ) having order kj. Let a be an arbitrary complex number not equal to any ρ
pole
i or

ρzero
j . Then,

limN→∞ ∑
|ρzero

i |<N,|ρpole
j |<N

(− ki
ρzero

j − a
+

1

ρ
pole
i − a

) =
d
dz

ln ζ(z, τ)|z=a. (16)



Axioms 2023, 12, 595 8 of 19

This proposition attests “how many” there are zeroes of the Weierstrass zeta-function:
they are able to “compensate” the formal sums ∑ ∑ 1

m+nτ−a over 2D lattice. Qualitative

behavior of such zeroes became clear if we will look into the limit of the function ζ(z, τ)

when τ → i∞ : ζ(z) = π cot(πz) + π2

3 z. For large |z| zeroes approach the lattice points
(and poles) m + nτ, see the theorems below.

In an analogous fashion, we have the following propositions.

Proposition 3. With the same notation as in the Proposition 2, we have:

limN→∞

∞

∑
|ρzero

i <N|,|ρpole
i <N|

(− ki

(ρzero
i − a)2 +

1

(ρ
pole
i − a)

2 ) =
d2

dz2 ln(ζ(z, τ))|z=a, (17)

and for n = 3, 4, . . .

−∑
ρzero

i

ki

(ρzero
i − a)

n + ∑
ρ

pole
j

1

(ρ
pole
j − a)

n =
1

(n− 1)!
dn

dzn (ln ζ(z, τ))|z=a. (18)

Furthermore, Equation (17) can be reformulated as follows. Let us for any positive real h

define Slh(a) := ∑
(l−1)h≤Im(ρi)<lh

ki
(ρzero

i −a)2 , l ∈ Z, and let S(a) := limh→0
∞
∑

l=−∞
Slh(a). Then

S(a) =
∞
∑

n=−∞

∞
∑

m=−∞

1
(m+nτ−a)2 − d2

dz2 ln ζ(z, τ)|z=a, where the order of summation is important.

In particular, S(0) = δ2, ∑
ρi

ki
(ρzero

i )4 = 5δ4, ∑
ρi

ki
(ρzero

i )6 = 7δ6, ∑
ρi

ki
(ρzero

i )8 = 9δ8 + 4δ2
4 , etc.

Proof. For n = 3, 4, 5 . . . , the proposition immediately follows from Equation (2) ap-
plied to the contour integrals

∫
Ci

1
(z−a)n+1 ln ζ(z, τ)dz. For application at a = 0 we use Tay-

lor expansion (15). For example, from the consideration of
∫
Ci

1
z9 ln(zζ(z, τ))dz, we have

− 1
8 ∑

ρi

ki
(ρzero

i )8 +
1
8 δ8 = −δ8 − 1

2 δ2
4 , whence ∑

ρi

ki
(ρzero

i )8 = 9δ8 + 4δ2
4 .

The case n = 2 requires more caution because, as we have already stated in Remark 1,
the result of the summation depends on the order of the summation. Further consideration
is exactly the same as during the proof of the Proposition 1b. �

The standard procedure of finding the subsequent terms in the expansion (15) from (14)
easily enables us to establish the formulae to find the sums over larger powers of zeroes.

Let us finish this discussion with the following theorems. For greater generality, we
formulate the first of them for solutions of the equation ζ(z, τ) = h where h is an arbitrary
complex number.

Theorem 2. Let CMN be a parallelogram with the vortices at the points 1, 2, 3, 4 having
the coordinates M + δ + Nτ + τδ, M + 1 + δ + Nτ + τδ, M + 1 + δ + (N + 1)τ + τδ and
M + δ + (N + 1)τ + τδ respectively; see Figure 1. Here, M, N ∈ Z, Imτ 6= 0, and δ is an arbi-
trary complex number with 0 <|δ|< 1 . Let us first the following take place: if both η1 := ζ(1/2, τ)
and η2 := ζ(τ/2, τ) are not equal to zero than Im(η2/η1) 6= 0; or either η1 = 0, or η2 = 0. Then:

(i) There exist such values of M0, N0 that for all |M| ≥ M0, |N| ≥ N0 each parallelogram CMN
contains one and only one simple root of the equation ζ(z, τ) = h, where h is an arbitrary
complex number. If both η1 6= 0 and η2 6= 0 but Im(η2/η1) = 0, then;

(ii) For any M we can find such value of N0, depending on M, that each parallelogram CM1 N
with |N| ≥ N0 and |M1| ≤ M contains one and only one simple root of the equation
ζ(z, τ) = h, and;
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(iii) For any N we can find such value of M0, depending on N, that each parallelogram CMN1 with
|M| ≥ M0 and |N1| ≤ N contains only one simple root of the equation ζ(z, τ) = h.
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Proof. First, we note that both η1, η2 cannot be simultaneously equal to zero because ζ(z, τ)
is not a double-periodic function. The theorem is a simple application of the argument
Principle, see, e.g., [3], which states that if the function f (z) is meromorphic inside and on
some contour C, and has no poles or zeroes on C, then 1

2πi
∫

CMN

f ′(z)
f (z) dz = Z− P, where Z is

the number of zeroes of the function f (z) inside the contour, and P is the number of poles
there. Both Z and P are counted considering their orders.

Let us estimate the contour integral
∫

CMN

(ζ(z,τ)−h)′
ζ(z,τ)−h dz=

∫
CMN

−℘(z,τ)
ζ(z,τ)−h dz, which we con-

sider separately for two pairs of opposite sides of the contour. For horizontal sides 1–2
and 3–4, see Figure 1, we have, due to the quasi-periodicity condition of the Weierstrass
zeta-function: ζ(z, τ)− h = ζ(z0, τ)− h + 2Nη1 + 2Mη2 and

ζ(z, τ) − h = ζ(z0, τ) − h + 2Nη1 + 2(M + 1)η2 respectively; here,z0 ∈ [δ, 1 + δ].
Function ℘(z, τ) is double-periodic, and the contour C00 is so chosen that on its border
there are no poles of this function, thus for our contour CMN, |℘(z, τ)| is bounded. There
are also no poles of the function ζ(z, τ) on the border of the contour C00; hence, both real
and imaginary parts of ζ(z0, τ)− h are bounded as well.

If η1 6= 0, η2 6= 0 and Im(η2/η1) 6= 0, the angle ϕ between the “vectors” (complex
numbers) η1, η2 is not equal to 0 or π, and we have |2Nη1 + 2Mη2| =√
|2Nη1 + 2M cos ϕη2|2 + 4M2 sin2 ϕ ≥ 2|M sin ϕ| and |2Nη1 + 2Mη2| =√
|2N cos ϕη1 + 2Mη2|2 + 4N2 sin2 ϕ ≥ 2|N sin ϕ|. Thus, independently on N this module

can be made as large as we please by the choice of sufficiently large M, and indepen-
dently on M this module can be made as large as we please by the choice of sufficiently
large N. The same is evidently valid for the modules of |ζ(z0, τ)− h + 2Nη1 + 2Mη2| and
|ζ(z0, τ)− h + 2Nη1 + 2(M + 1)η2|. Thus for sufficiently large M and N we can make the
joint contribution of the sides 1-2 and 3-4 to the value of 1

2π

∫
CMN

| −℘(z,τ)
ζ(z,τ)−h ||dz| less than, say

0.1 (Of course, |
∫

CMN

−℘(z,τ)
ζ(z,τ)−h dz| ≤

∫
CMN

| −℘(z,τ)
ζ(z,τ)−h ||dz|).
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Similarly, we can make the joint contribution of the sides 2-3 and 4-1 to the value of
1

2π

∫
CMN

| −℘(z,τ)
ζ(z,τ)−h |dz also less than 0.1. Thus, we see that the total value of the contour integral

is made less than 0.2, that is it is equal to zero. By construction, each our contour CMN con-
tains exactly one simple pole of the function ζ(z, τ)− h, viz. at the point M + 1 + (N + 1)τ,
hence due to the argument principle it contains exactly one simple zero of this function.

If η1 = 0 or η2 = 0, then instead of |ζ(z0, τ) − h + 2Nη1 + 2Mη2|, we get simply
|ζ(z0, τ)− h + 2Mη2| or |ζ(z0, τ)− h + 2Nη1|; hence, all the abovesaid remains correct.

Now, let the ratio η1/η2 = a be real. Then we get |ζ(z0, τ) − h + (2Na + 2M)η2|,
so that we can find infinitely many pairs N, M with arbitrary large modules for which
|(2Na + 2M)η2| is very small—or simply equal to zero if a is rational. Thus, we need to
fix the value of N (or M)—and then, of course, we still can find the value of M0 (or N0)
such that for any |M| ≥ M0 and |N1| ≤ N (or |N| ≥ N0 and |M1| ≤ M), the value of
|ζ(z0, τ)− h + (2Na + 2M)η2| is as large as we please. This proves (ii) and (iii). Finally,
note that we used a simple extension of the argument principle: if zero is located exactly on
the contour, it contributes 1

2 to the contour integral value. This possibility is also excluded
by our consideration. �

Remark 3. Apparently, there is no fundamental reason why a ratio η1/η2 = a cannot be real.
However, this is easy to indicate an important case where it cannot indeed. This is the situation
when τ is purely imaginary—simply because than η1 is real while η2 is purely imaginary. The only
remaining possibility that η1 = 0 or η2 = 0 is excluded because according to the Legendre relation
−η1 + η2τ = πi [9], in such a case we would have correspondingly either η2 = πi/τ—hence real,
or η1 = −πi—hence purely imaginary.

A similar theorem can be even more easily proven for the roots of the equation
g(z) := ζ(z, τ) − Pn(z) = 0, where Pn(z) is an arbitrary polynomial of the n-th power
(n ≥ 2)—simply because then the asymptotic of g′(z)

g(z) = −℘(z,τ)−P′n(z)
ζ(z,τ)−Pn(z)

for large |z| is
O(1/|z|). We will not consider here this general case but will limit ourselves with the
following more interesting (in our opinion) case concerning the location of zeroes of the
derivatives of the theta-function θ1′(πz|τ).

Theorem 3. Let CMN be the same parallelogram as in Theorem 2. Let the following take
place: if both κ1 := ζ(1/2, τ) − ν/2 and κ2 := ζ(τ/2, τ) − ν/2 are not equal to zero then
Im(κ2/κ1) 6= 0; or either κ1 = 0, or κ2 = 0, but these two relations do not hold simultane-

ously; here ν = −π2

3
θ′′′1 (0|τ)
θ1′(0|τ)

= δ2(τ), where θ1(z|τ) is theta-function and δ2(τ) is defined in
Equation (5a). Then:

(i) There exist such values of M0, N0 that for all |M| ≥ M0, |N| ≥ N0 each parallelogram CMN
contains one and only one simple zero of the derivative θ1′(πz|τ). If both κ1 6= 0 and κ2 6= 0
but Im(κ2/κ1) = 0, then;

(ii) For any M we can find such value of N0, depending on M, that each parallelogram CM1 N
with |N| ≥ N0 and |M1| ≤ M contains one and only one simple zero of the derivative
θ1′(πz|τ), and;

(iii) For any N we can find such value of M0, depending on N, that each parallelogram CMN1 with
|M| ≥ M0 and |N1| ≤ N contains only one simple zero of the derivative θ1′(πz|τ).

Proof. The differentiation of Equation (6) gives πθ1′(πz|τ)
θ1(πz|τ) −

1
z = −

∞
∑

j=1
δ2j(τ)z2j−1 so that,

comparing this with the Taylor development (14), we have πθ1′(πz|τ)
θ1(πz|τ) = ζ(z, τ) − δ2(τ)z.

Thus, zeroes of the derivative of the first theta-function are the solutions of the equation

ζ(z, τ)− δ2(τ)z = 0. To simplify the notation below we use ν := δ2(τ) = −π2θ1′′′(0|τ)
3θ1′(0|τ)

(see

Equation (7)). To analyze these solutions, we consider the contour integral 1
2πi

∫
CMN

−℘(z,τ)−ν
ζ(z,τ)−νz dz
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in the same manner as during the proof of the Theorem 2. Again, we begin with the analysis
of the contribution of the sides 1-2 and 3-4. The nominator is similarly bounded, and in the
denominator we have for the side 1-2:

ζ(z, τ)− vz = ζ(z0, τ)− vz0 + 2Nη1 + 2Mη2−Nv−Mτv =ζ(z0, τ)− νz0 + 2N(η1−
ν/2) + 2M(η2 − τν/2), z0 ∈ [δ, 1 + δ]. If both numbers η1 − ν/2, η2 − τν/2 are not equal
to zero and Im[(η1 − ν/2)/(η2 − τν/2)] 6= 0, we repeat mutatis mutandi the proof of
Theorem 2, and similarly if one (but not both) of these numbers is equal to zero. For the
case when both these numbers are not equal to zero while Im[(η1− ν/2)/(η2− τν/2)] = 0,
the statements similar to the equivalent case of Theorem 2 are proven also similar to
Theorem 2. �

Now let us prove the following theorem which gives more precise results than Theo-
rems 2 and 3. We do not search for the most general conditions.

Theorem 4 Let CMN be the same parallelogram as in Theorem 2, and another notation also
follows this Theorem. Let both η1 := ζ(1/2, τ) and η2 := ζ(τ/2, τ) be not equal to zero and
Im(η2/η1) 6= 0. Then, there exist such values of M0, N0 that when |M| ≥ M0 and |N| ≥ N0,
and |M| or |N|, or both, tend to infinity, the value of |ρzero − ρpole| tend to zero.

If η2 = 0, then for any M0 there exists such value of N0, depending on M0, that for any
|M| ≤ M0 and |N| ≥ N0 the value of |ρzero − ρpole| tend to zero when N tends to infinity.

If η1 = 0, then for any N0 there exists such value of M0, depending on N0, that for any
|N| ≤ N0 and |M| ≥ M0 the value of |ρzero − ρpole| tend to zero when M tends to infinity.

Here ρpole, ρzero are simple pole and zero of the function ζ(z, τ) belonging to the parallelogram CMN.

Proof. Now we consider the contour integral 1
2πi

∫
CMN

z ζ′(z,τ)
ζ(z,τ) dz which, by the Cauchy

residue theorem and the properties of poles and zeroes of the function ζ(z, τ) established
in the Theorem 2, is equal to ρzero − ρpole. For the horizontal sides of the rectangle CMN we

have the following contribution to the contour integral value:
2∫

1
z ζ′(z,τ)

ζ(z,τ) dz−
4∫

3
z ζ′(z,τ)

ζ(z,τ) dz =

−
1+δ∫
δ

℘(z)[ z+M+Nτ
ζ(z,τ)+2Mη2+2Nη1

− z+M+(N+1)τ
ζ(z,τ)+2Mη2+(2N+2)η1

]dz. Here we used the periodicity and

quasi-periodicity conditions. This integral is evidently equal to

−
1+δ∫
δ

℘(z)[ 2η1z+2η1 M−ζ(z,τ)τ−2Mη2τ
(ζ(z,τ)+2Nη1+2Mη2)(ζ(z,τ)+2Mη2+(2N+2)η1)

]dz

= −
1+δ∫
δ

℘(z)[ 2η1z−2πiM−ζ(z,τ)τ
(ζ(z,τ)+2Nη1+2Mη2)(ζ(z,τ)+2Mη2+(2N+2)η1)

]dz, we used the condition

−η1 + η2τ = πi.
ζ(z, τ) is bounded, thus now if η1, η2 6= 0 and Im(η2/η1) 6= 0, we definitely can select

M0, N0 in such a manner that for all |M| ≥ M0, |N| ≥ N0 the module of the denominator
is strictly positive and larger than (2|M sin ϕ| − a)2 and (2|N sin ϕ| − a)2; see the proof
of the Theorem 2. Thus when |M| or |N|, or both, tend to infinity, the value of the
integral tends to zero because the value of the nominator module does not exceed b|M|
and ℘(z) is bounded. Here, a and b are some appropriate positive constants not depending
on |M| or |N|. This proves the main statement of the theorem, for the consideration
of the contribution of non-horizontal sides of the contour to the contour integral value is
estimated quite similarly.

If, however, η2 = 0, we do not have the O(|M|2) behavior of the denominator. In
such a case, we need to limit the values of |M| and consider only |M| ≤ M0—then the
integral still tends to zero when |N| tends to infinity. If η1 = 0, we have a similar situation
when considering the contributions of the non-horizontal sides of the parallelogram. �
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Similar theorems can be formulated for the roots of the equation ζ(z) = h and the
values of the derivative θ1′(z|τ). We will not do this here. The mathematical meaning of all
these theorems is transparent: due to the quasi-periodicity conditions, for large |z| the
function ζ(z)”typically” has a large O(|z|) module (apart from some “degenerate” cases
which are clear from the Theorems), and thus the (relatively) small values of |ζ(z)| can be
attained only in some close vicinity of a simple pole.

3.3. Weierstrass ℘-Function and Its Derivatives

We have the same consideration for the Weierstrass ℘-function, which has poles of the
second order at the lattice points and Taylor expansion [9]

℘(z, τ) = − d
dz

ζ(z, τ) =
1
z2 +

∞

∑
k=2

(2k− 1)δ2kz2k−2 (19)

hence z2℘(z, τ) = 1 +
∞
∑

k=2
(2k− 1)δ2kz2k and

ln(z2℘(z, τ)) = 3δ4z4 + 5δ6z6 + (7δ8 −
9
2

δ2
4)z

8 + O(z10). (20)

This is a double periodic function, thus already the integrals
∫
Ci

1
(z−a)2 ln℘(z, τ)dz tend

to zero for infinitely large contours.
Note, that contrary to the zeroes of the Weierstrass ζ-function, where the author is

unaware of the detailed studies of zeroes, the question concerning the location of the zeroes
of the Weierstrass ℘-function received attention [24,25].

We have the following Proposition.

Proposition 4. Let ρ
pole
i = m + nτ, where m, n ∈ Z, be second order poles of the ℘(z, τ) function,

and ρzero
j be simple zeroes of this function; the latter can be written as ρzero

j = ±ρ0 + m + nτ,
where ρ0 belongs to the first fundamental parallelogram [24,25]. Let a be an arbitrary complex
number not equal to any pole or zero of the function ℘(z, τ). Than

limN→∞ ∑
|ρzero

i |<N,|ρpole
j |<N

(− 1
ρzero

j − a
+

2

ρ
pole
i − a

) =
d
dz

ln℘(z, τ)|z=a, (21)

limN→∞ ∑
|ρzero

i |<N,|ρpole
j |<N

(− 1

(ρzero
j − a)2 +

2

(ρ
pole
i − a)

2 ) =
d2

dz2 ln℘(z, τ)|z=a, (22)

and for n = 3, 4, 5 . . .

−∑
ρi

ki

(ρzero
i − a)

n + ∑
ρj

2

(ρ
pole
j − a)

n =
1

(n− 1)!
dn

dzn ln℘(a, τ). (23)

Furthermore, Equation (22) can be formulated as follows:

∞
∑

n=−∞

∞
∑

m=−∞
( 1
(m+nτ−ρo−a)2 +

1
(m+nτ+ρ0−a)2 ) =

n=∞
∑

n=−∞

m=∞
∑

m=−∞

2
(m+nτ−a)2 − d2

dz2 (ln℘(z, τ))|z=a

where the order of summation is important.
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In particular,
∞
∑

n=−∞

∞
∑

m=−∞
( 1
(m+nτ−ρ0)

2 +
1

(m+nτ+ρ0)
2 ) = 2δ2 (again, the order of summation

is important), ∑
ρi

1
(ρzero

i )4 = −10δ4, ∑
ρi

1
(ρzero

i )6 = −28δ6, ∑
ρi

1
(ρzero

i )8 = −54δ8 + 36δ2
4 , etc.

Proof. First, we note that all zeroes here are simple [24,25], so we omit coefficients ki.
Then the proof is absolutely similar to that of Propositions 2 and 3. For example, from
the consideration of

∫
Ci

1
z9 ln(z2℘(z, τ))dz, we have − 1

8 ∑
ρi

ki
(ρzero

i )8 +
2
8 δ8 = 7δ8 − 9

2 δ2
4 , whence

∑
ρi

1
(ρzero

i )8 = −54δ8 + 36δ2
4 . We have the term 2

8 δ8 rather than 1
8 δ8 in the l.h.s. here because

the function has the poles of the second order at the lattice points.
For n = 2 we apply the same sequence of the contours Cj as in Proposition 3. Now,

due to the fact that all zeroes of the function have the form ρzero
j = ±ρ0 + m + nτ [24,25],

we need not the same construction of Slh as was used before, but can write the order of
summation as this is done in the Proposition statement. �

The standard procedure of finding the subsequent terms in the expansion (20) from (19)
easily enables us to establish the formulae to find the sums over larger powers of zeroes.

In the same fashion, by finding the Laurent expansions of the derivatives dn

dzn ζ(z, τ)
starting from Equation (14) and then forming the corresponding Laurent expansions of
dk

dzk ln[ dn

dzn ζ(z, τ)], the questions concerning the sum of zeroes of these derivatives can
be elucidated.

We do not analyze this situation in full here and limit ourselves with the case of
n = 2, that is the case of ℘′(z, τ) = ℘z(z, τ) function. Due to the well-known
d2

dz2 ζ(z, τ) = −℘′(z) = −2
√
(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) [9], where e1 = ℘(1/2),

e2 = ℘(τ/2), e3 = ℘(1/2 + τ/2), we see that this function has a special status: it has
poles of the third order at the lattice points m + nτ and simple zeroes at the points of
the “demi-lattices” m + 1/2 + nτ, m + 1/2 + (n + 1/2)τ and m + (n + 1/2)τ. Clearly,

from Equation (19) ℘′(z, τ) = − 2
z3 +

∞
∑

k=0
(2k + 3)(2k + 2)δ2k+4z2k+1, ln(− z3

2 ℘′(z, τ)) =

ln(1−
∞
∑

k=0
(2k + 3)(k + 1)δ2k+4z2k+4)—and its Taylor expansion can be used for the search

of the corresponding sums and, in such a manner, the relations between α2j, β2j, γ2j and

δ2j. Already from ln(− z3

2 ℘′(z, τ)) = −3δ4z4 − 10δ6z6 − (21δ8 +
9
2 δ2

4)z
8 + O(z10), applying

Equation (2), we obtain
3δ2 = α2 + β2 + γ2, (24a)

15δ4 = α4 + β4 + γ4, (24b)

63δ6 = α6 + β6 + γ6, (24c)

and
171δ8 + 36δ2

4 = α8 + β8 + γ8. (24d)

see Equation (5) for definitions.

Remark 4. Certainly, all equations for the sums obtained above can be differentiated with respect to
τ. This does not seem very interesting due to tyhe complicated and not so explicit dependence of
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the involved functions on τ. For completeness, we present here the result of the differentiation of
Equation (24a)—non-trivial statement if Reτ 6= 0:

3
∞
∑

n=−∞

∞
∑

m = −∞
|m|+ |n| 6= 0

n
(m+nτ)3 =

∞
∑

n=−∞

∞
∑

m=−∞

n
(m+ 1

2+nτ)
3 +

∞
∑

n=−∞

∞
∑

m=−∞

n+1/2
(m+ 1

2+(n+ 1
2 )τ)

3

+
∞
∑

n=−∞

∞
∑

m=−∞

n+1/2
(m+(n+ 1

2 )τ)
3 .

The order of summation is important here.

Let us now briefly state the main results of this section. Similarly to the elliptic theta-
functions, Weierstrass elliptic functions also, in a sense, can be defined via the sums over
inverse powers of their poles (not zeroes now)—compare, e.g., Equations (6) and (14), and
this circumstance brings certain similarities between the questions concerning the sums of
inverse powers of zeroes and poles of these two groups of elliptic functions. We also would
like to especially underline the results of Theorems 2–4 concerning the localization of simple
zeroes of the Weierstrass zeta-function, and very transparent proof of relations (24a)–(24d)
(many other relations of this type can be obtained) using the generalized Littlewood
Theorem 1.

4. Sums over Powers of Zeroes of Jacobi Elliptic Functions
4.1. Jacobi Elliptic Functions as Functions of z

Jacobi elliptical functions cn(z, k), sn(z, k), dn(z, k) and other in this raw are expressible
as certain ratios of the theta-functions [9–15]; hence, in a sense, the question of the sums
of powers of the zeroes (and poles) of these functions is reduced to the already discussed
question concerning zeroes of the theta-functions. Nevertheless, by historical and, first
of all, application reasons, Jacobi elliptical functions usually are considered the functions
of the so-called index k [9–15], so let us now briefly discuss this question from just the
corresponding angle of view.

The location of zeroes and poles of Jacobi elliptical functions with respect to the
fundamental lattice formed by the points z = 2mK + 2niK′, where n, m are positive or
negative integers or zero, is well known [9]. First of all, we note that the simple poles for
Jacobi elliptical functions sn(z, k), cn(z, k) and dn(z, k) (here we limit ourselves with these
three functions; consideration for other Jacobi elliptic functions is quite similar) are located
at the points z = 2mK + (2n + 1)iK′). Of course, this merely reflects the circumstance

that all these functions are expressible as Const · θj(η,q)
θ4(η,q) , where j = 1, 2, 3, η = πz

2K(k) and

q = exp(−πK′(k)
K(k) ), that is τ = iK′(k)

K(k) . Here

K(k) =
π

2

∞

∑
n=0

[
(2n− 1)!!
(2n)!!

]2

k2n =
π

2
·2 F1(

1
2

,
1
2

; 1, k2) (25)

and
K′(k) = K(

√
1− k2) (26)

with 2F1(
1
2 , 1

2 ; 1; k2) being a hypergeometric function, see, e.g., [12,26,27] for the discussion
of this function. The value K(k) is also named the complete elliptic integral of the first kind

and/or quarter period. Thus τ =
i·2F1(

1
2 , 1

2 ;1;1−k2)

2F1(
1
2 , 1

2 ;1;k)
). Inverse problem (so-called Jacobi inverse

problem) to express k as a function of τ (or q) gives more straightforward formulae [9]:

k =
θ2

2(0|τ)
θ2

3(0|τ)
, K(k) = 1

2 πθ2
3(0|τ), K′(k) = − iτ

2 πθ2
3(0|τ).

In particular, sn(z, k) = Const · θ1(η,q)
θ4(η,q) so that exactly the lattice points z = 2mK + 2niK′

are the points, where simple zeroes of the function sn(z, k) are located, and so on.
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The Taylor expansions of Jacobi elliptic functions at zero are well known [9,28].
We have:

sn(z, k)
z

= 1− (1 + k2)
z2

3!
+ (1 + 14k2 + k4)

z4

5!
− (1 + 135k2 + 135k4 + k6)

z6

7!
+ O(z8),

so that

ln
sn(z, k)

z
= −(1 + k2)

z2

3!
+ (

1 + 14k2 + k4

5!
− 1

2
(1 + k2)

2

36
)z4 + O(z6)

and ln sn(z,k)
z = −(1 + k2) z2

6 + (−7+22k2−7k4

720 )z4 + O(z6). Thus, we immediately, starting

from
∫
C

1
z3 ln sn(z,k)

z dz and using Equation (2), get

∞

∑
m=−∞

′
∞

∑
n=−∞

(
1

[(2mK + (2n + 1)iK′]2
− 1

(2mK + 2niK′)2

)
= −1 + k2

3
. (27)

Here and below, the prime sign after the summing sign means that the term
(2mK + 2niK′)−2 corresponding to n = m = 0 should be omitted.

Starting from
∫
C

1
z5 ln sn(z,k)

z dz, we get
∞
∑

m=−∞

′ ∞
∑

n=−∞

(
1

[2mK+(2n+1)iK′]4
− 1

(2mK+2niK′)4

)
=

− 7+22k2−7k4

180 , and so force. For powers larger than two, here and below, the sums can
be separated:

∞

∑
m=−∞

∞

∑
n=−∞

(
1

[2mK + (2n + 1)iK′]4

)
−

∞

∑
m=−∞

′
∞

∑
n=−∞

1

(2mK + 2niK′)4 = −7 + 22k2 − 7k4

180
, (28)

and so on. For the sums involving inverse squares, such a separation requires a well-defined
order of the summation, similar to the cases discussed above.

Function cn(z, k) has simple zeroes at the points z = (2m + 1)K + 2niK′ and Taylor
expansion [9] cn(z, k) = 1− z2

2! + (1 + 4k2 + k4) z4

4! − (1 + 44k2 + 16k4) z6

6! +O(z8), and thus

ln(cn(z, k)) = − z2

2! + ( 1+4k2+k4

24 − 1
2

1
4 )z

4 + O(z6), that is

ln(cn(z, k)) = − z2

2!
+ (
−2 + 4k2 + k4

24
)z4 + O(z6).

We have

∞

∑
m=−∞

∞

∑
n=−∞

(
1

[2mK + (2n + 1)iK′]2
− 1

[(2m + 1)K + 2niK′)]2

)
= −1. (29)

Note independence on k here.
Further,

∞

∑
m=−∞

∞

∑
n=−∞

(
1

[2mK + (2n + 1)iK′]4
− 1

[(2m + 1)K + 2niK′)]4

)
=
−2 + 4k2 + k4

6
, (30)

and so forth.
Function dn(z, k) has simple zeroes at points z = (2m + 1)K + (2n + 1)iK′ and Taylor

expansion [9]:
dn(z, k) = 1− k2 z2

2! + k2(4+ k2) z4

4! − k2(16+ 44k2 + k4) z6

6! +O(z8), thus ln(dn(z, k)) =

−k2 z2

2! + ( k2(4+k2)
24 − 1

2
k4

4 )z
4 + O(z6), and ln(dn(z, k)) = −k2 z2

2! +
2k2−k4

12 z4 + O(z6).
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We have

∞

∑
m=−∞

∞

∑
n=−∞

(
1

[2mK + (2n + 1)iK′]2
− 1

[(2m + 1)K + (2n + 1)iK′)]2

)
= −k2 (31)

and

∞

∑
m=−∞

∞

∑
n=−∞

(
1

[2mK + (2n + 1)iK′]4
− 1

[(2m + 1)K + (2n + 1)iK′)]4

)
=

2k2 − k4

3
. (32)

Of course, “non-central” sums over poles and zeroes of these functions such as
∞
∑

n=−∞

∞
∑

m=−∞
( 1
[2mK+(2n+1)iK′−a]2

− 1
[2mK+2niK′−a]2

) = d2

dz2 ln(sn(z, k))|z=a, or even

∞
∑

n=−∞

∞
∑

m=−∞
( 1

2mK+(2n+1)iK′−a −
1

2mK+2niK′−a ) = d
dz ln(sn(z, k))|z=a, where a does not coin-

cides with any pole or zero of the sn(z, k) function, can be also found. This is also evident that
the sums over powers of poles and zeroes of the derivatives of the Jacobi elliptic functions can
be studied in a similar way. For example, d

dz sn(z, k) = 1− (1 + k2) z2

2! + (1 + 14k2 + k4) z4

4! +

O(z6), hence ln( d
dz sn(z, k)) = −(1+ k2) z2

2! + (1+ 14k2 + k4) z4

24 −
(1+k2)

2

8 z4 +O(z6) =−(1+
k2) z2

2! +
−1+4k2−k4

12 z4 + O(z6) and, in particular, ∑
ρl

( 2
ρ4

l,pole
− 1

ρ4
l,zero

) = −1+4k2−k4

3 , where ρl,zero

are zeroes of the derivative d
dz sn(z, k) having orfer kl and ρl,pole = 2mK + (2n + 1)iK′ are

second order poles of this derivative. The order of summation is unimportant here, and the
sums involving poles and zeroes can be separated.

Two circumstances finally can be noted. First, all these equalities can be differ-
entiated with respect to k, but this does not look too interesting due to the compli-
cated functions K(k) and K′(k). Second, they all contain the same sums over simple

poles
∞
∑

n=−∞

∞
∑

m=−∞

1
(2mK+(2n+1)iK′)2n , and thus this sum can be removed by subtracting the

related equalities.

4.2. Jacobi Elliptical Functions as Functions of the Index k

As a function of its index k, Jacobi elliptical functions are meromorphic on the whole
complex plane [28,29] and have an infinite number of poles and zeroes (not necessarily sim-

ple). Their location again can be understood from the factorization Const · θj(η,q)
θ4(η,q) , see above.

For example, zeroes of the sn(z, k) function coincide with the zeroes of θ1(
πz

2K(k) |τ): that is,
for z 6= 0 they are located at such points k, where K(k) = z

2(m+nτ)
= z

2(m+niK′(k)/K(k)) with
m and n positive or negative integers. Thus, we have 2mK + 2niK′ = z: this is an implicit
formula not easily usable given the hypergeometric function in Equations (25) and (26).

Analysis presented in [28], see especially Theorem 4.1 there, shows that for large |k|
the asymptotic of the logarithms of the theta-functions as functions of k certainly do not
exceed O(|k|). (Sf., for example, valid for positive real k > 1 sn(z, k2) = 1

k sn(zk, 1
k2 ) and

sn(z, 0) = sin z). Thus our approach can be applied to
∫
C

1
(k−a)n ln[sn(z, k)]dk and similar

integrals with n ≥ 3. The Taylor expansions in some vicinity of zero are also known [9]:

sn(z, k) = sin z− 1
4
(z− sin z cos z) cos z · k2 + O(k4), (33)

thus for sin(z) not equal to zero: sn(z, k)/ sin z = 1− 1
4 (z− sin z cos z) cot z · k2 + O(k4),

and we have the following Proposition:
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Proposition 6. Let for some fixed complex z 6= 0 and such that sin z 6= 0, ρi,zero denote zeros of
the function sn(z, k) understood as a function of k, and having an order li; and let for the same case
ρi,pole denote poles of the same function understood as a function of k, and having an order mi. Then:

limN→∞ ∑
|ρ|<N

(− li
ρi,zero

2 +
mi

ρi,pole
2 ) = −

1
2
(z− sin z cos z) cot z. (34)

This sum is equal to zero if cos z = 0. Simple numerical calculations show that for
z = 1.854i (see Figure 1 in [28]) it is roughly equal to 5.3496 + 3.6760i, and for z = 5 (see
Figure 1 in [29]) to 1.0756.

Further, cn(z, k) = cos z + 1
4 (z − sin z cos z) sin z · k2 + O(k4) [9] thus we have the

following proposition.

Proposition 7. Let for some fixed complex z 6= 0 and such that cos z 6= 0, ρi,zero denote zeros of
the function cn(z, k) understood as a function of k, and having an order li; and let for the same case
ρi,pole denote poles of the same function understood as a function of k, and having an order mi. Then:

limN→+∞ ∑
|ρ|<N

(− li
ρ2

i,zero
+

mi

ρ2
i,pole

) =
1
2
(z− sin z cos z) tan z. (35)

This sum is equal to zero if tan z = 0.
We also know dn(z, k) = 1− 1

2 sin2 z · k2 + O(k4) which gives the following formula.

Proposition 8. Let for some fixed complex z 6= 0 ρi,zero denote zeros of the function dn(z, k)
understood as a function of k, and having an order li; and let for the same case ρi,pole denote poles of
the same function understood as a function of k, and having an order mi. Then

limN→+∞ ∑
|ρ|<N

(− li
ρ2

i,zero
+

mi

ρ2
i,pole

) = − sin2 z. (36)

This sum is equal to zero if sin z = 0.
Of course, “non-central” sums over powers of zeroes of these functions also can be ob-

tained. For example, for zeroes and poles of the sn(z, k) function and arbitrary complex num-
ber a not coinciding with any of them, we have limn→∞ ∑

|ρ|<N
(− li

(ρi,zero−a)2 +
mi

(ρi,pole−a)2 ) =

2 d2

dk2 ln(sn(z, k))dk|k=a. It is quite probable that here and in Equations (34)–(36), the sums
over inverse squares of poles and zeroes can be separated with the proper ordering of
summation similar to the functions θj(z|τ), ζ(z, τ) and their derivatives. However, the
question is delicate, and we do not consider it now.

Analogous formulae for the sums over poles and zeroes with larger powers could
be established if further terms of the Taylor expansions of the type (20) are known. They
can be found, for example, by substituting the expansions in powers kn into the corre-
sponding differential equations, such as d2

dz2 sn(z, k) = −(1 + k2)sn(z, k) + 2k2sn3(z, k) [9],
which, however, turns out to be quite cumbersome. The sums over powers of poles and
zeroes of the derivatives of the Jacobi elliptic functions over parameter k can be studied in
a similar way.

5. Conclusions

We showed how the generalized Littlewood theorem concerning contour integrals of
the logarithm of analytical function can be applied to calculate different sums over poles
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and zeroes of elliptic functions; some more detailed conclusions are placed at the end of
Sections 2 and 3.

There is no doubt that numerous other applications of this approach will be found.
Of course, at the present stage of research, this is difficult to anticipate and even simply
to propose these future possible applications. However, the very broad use of elliptic
functions in physics does provide a strong hope for this. Nowadays, these applications are
not limited by classical mechanics, such as XIX-century physical pendulum problems or
relativistic corrections to planetary motion, but include also the description of the quantum
mechanical dynamics in a periodic potential, building the classical string solutions on the
sphere and analyzing their stability, etc. [10,15]; see especially the Chapters 5, 6 of the
book [15].

Finally, probably the following analogy will be useful or, at least, interesting. Another
analytic function, which, similarly to elliptic functions, has numerous applications in
physics, is Bessel function Jν(z), see, e.g., [16] for a detailed discussion of this function.
Zeroes jν,k of this function (more precisely, of the function z−ν Jν(z)), as well as the sums of
inverse powers of such zeroes, were studied already by Bessel (and even Euler, see [17]),

and in 1874, Rayleigh introduced a special function σn(ν) =
∞
∑

k=1

1
j2n
ν,k

, n ≥ 1 [30]. This

function proved to be really important not only for the theory of Bessel functions itself
(which is quite natural), but also, for example, to study heat conduction and diffusion
in a periodic fluid flow. It also gives an effective method for eigenvalue estimation in
certain quantum mechanical problems, and so forth; see [17] for references and discussions.
In a certain sense, elliptical functions do for the elliptic geometry the same job as Bessel
functions for the cylindrical one, so we dare to anticipate the certain importance of the
“elliptical analogues” of the Rayleigh function.
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