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Abstract: Infectious diseases continue to be a significant threat to human health and civilization,
and finding effective methods to combat them is crucial. In this paper, we investigate the impact of
awareness campaigns and optimal control techniques on infectious diseases without proper vaccines.
Specifically, we develop an SIRS-type mathematical model that incorporates awareness campaigns
through media and treatment for disease transmission dynamics and control. The model displays
two equilibria, a disease-free equilibrium and an endemic equilibrium, and exhibits Hopf bifurcation
when the bifurcation parameter exceeds its critical value, causing a switch in the stability of the
system. We also propose an optimal control problem that minimizes the cost of control measures
while achieving a desired level of disease control. By applying the minimum principle to the optimal
control problem, we obtain analytical and numerical results that show how the infection rate of
the disease affects the stability of the system and how awareness campaigns and treatment can
maintain the stability of the system. This study highlights the importance of awareness campaigns
in controlling infectious diseases and demonstrates the effectiveness of optimal control theory in
achieving disease control with minimal cost.

Keywords: mathematical model; basic reproduction number; stability theory; forward bifurcation;
minimum principle; numerical simulations

MSC: 49K15; 37L10

1. Introduction

Infectious diseases remain a significant public health threat in the modern era despite
remarkable advances in science and technology. Microbes such as bacteria, viruses, para-
sites, and fungi can easily spread from person to person or between humans and animals
through various means, including food, water, air, and soil. Deadly infectious diseases
include Human Immunodeficiency Virus (HIV), Tuberculosis (TB), and Hepatitis B Virus
(HBV). Additionally, diarrhea is a common problem caused by contaminated food or water
that can lead to dehydration and death, particularly in low-income countries. According to
the World Health Organization, around 17% of deaths worldwide are due to contagious
diseases, and HIV/AIDS and TB accounted for 1.5 million deaths in 2019. In the same year,
diarrhea was responsible for nearly 300,000 deaths. The recent pandemic caused by SARS
CoV-2 has caused around 6.4 million deaths in 2022, making it another deadly infectious
disease. Effective prevention and control strategies for infectious diseases are urgently
needed to reduce their impact on public health [1–3].
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Infectious diseases can have devastating consequences for individuals and commu-
nities. To stop the spread of such diseases, basic awareness knowledge is crucial among
the population. Health education on different measures can bring the desired change in
human behavior, playing a key role in such awareness campaigns [4,5]. An awareness
method requires proper technicality and devices to teach the message to the population.
The essential elements of such an awareness campaign are prevention by using specific
measures, early detection of the problem, and correct treatment under medical supervision.
Reaching out to people through different media channels such as social media, mass media,
seminars, workshops, and health camps can disseminate the message of disease prevention
and control, tailored to the rural or urban setting of the population [6].

Media campaigns can have a significant impact on controlling the spread of infectious
diseases. By educating the public about the signs and symptoms of an infection, how it
spreads, and what measures can be taken to reduce the risk of transmission, media cam-
paigns can help to reduce the number of new cases and prevent outbreaks from becoming
widespread [7,8]. For instance, social media platforms can provide accurate and up-to-date
information to the public to dispel myths and avoid the spread of misinformation. Public
service announcements (PSAs) on television and radio that educate people about infectious
diseases and how to protect themselves and others can also be effective. By educating
the public about the importance of handwashing, wearing masks, and maintaining social
distancing to prevent the spread of infection, media campaigns can encourage people to
take preventive measures [9,10].

In addition, an awareness campaign can promote the importance of vaccination and
encourage people to vaccinate in order to reduce their risk of getting sick [11]. Designing
and distributing posters and flyers with information about infectious diseases and how
to prevent their spread in public places, such as hospitals, schools, shopping malls, and
other high-traffic areas, can also be useful [12]. By educating the public about the signs and
symptoms of infectious diseases, an awareness campaign can encourage people to seek
medical attention if they suspect they may have been exposed. This leads to early detection
and treatment, reducing the severity of the illness and preventing its spread to others [13].

It is essential to note that all awareness campaigns should align with the latest guid-
ance from public health authorities and medical professionals to ensure the accuracy and
effectiveness of the information being shared. Therefore, media campaigns can be a power-
ful tool to increase awareness, provide accurate information, and encourage individuals to
take preventive measures to stop the spread of infectious diseases.

The impact of media awareness on epidemic outbreaks has been analyzed through
model-based mathematical studies [14–19]. These studies examine the disease dynamics of
a well-mixed population, where a portion of the susceptible and infected populations are
aware of the disease. In these models, aware susceptible individuals are also vulnerable to
disease infection but at a lower rate than unaware susceptible individuals.

Another area of study focuses on the impact of information transmission on the
dynamics of sexually transmitted infections, assuming that the entire population is aware
of the risk, but only a certain proportion is able to respond by limiting their contact with
infected individuals [20]. Additionally, epidemic models have been developed that consider
the cumulative density of the awareness program as a separate variable [21,22].

This research also takes into account the assumption that infected individuals can
recover through awareness-induced treatment and join the aware human population. The
model incorporates both local awareness, through information from local people and
relatives, and global awareness, through radio and TV campaigns. The level of awareness,
M(t), decreases over time as aware individuals become unaware. Aware individuals are
assumed to become infected at a lower rate than unaware individuals.

Finally, optimal control theory has been applied to maximize awareness and minimize
disease control costs. These studies highlight the important role of media awareness in
controlling epidemic outbreaks and provide insights into how awareness campaigns can
be optimized to be more effective.
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Optimization techniques are a key tool for developing effective control strategies for
infectious diseases [23]. One important aspect of this is cost-effectiveness, where a cost
function is used to capture the economic and social costs of implementing control measures
and the health-related costs of the disease [24,25]. These costs can include things such as
the cost of treatment, lost productivity, and the cost of implementing control measures,
such as media campaigns [4].

To address this, an optimal control problem is proposed in this paper, which aims
to minimize costs by controlling both media campaign costs and treatment costs. The
proposed optimization problem is solved using techniques such as Pontryagin’s maxi-
mum principle, which helps to identify optimal control strategies that balance the costs
and benefits of different control measures while taking into account the level of public
awareness.

Numerical methods are then used to solve the optimization problem and identify
the optimal control strategies. This can help to develop effective and cost-efficient con-
trol measures that can be implemented to reduce the spread of infectious diseases. By
combining mathematical modeling with optimization techniques, we can develop evidence-
based strategies that take into account the complex interactions between the disease, the
population, and the various control measures that can be implemented.

The organization of this paper is as follows: Section 2 presents the model and its
underlying hypotheses. Section 3 offers the analytical findings, such as the equilibria,
stability analysis, and bifurcation analysis. In Section 4, the optimal control problem is
formulated. Section 5 presents the numerical simulations and discussions. Finally, in
Section 6, this paper concludes by highlighting the benefits and usefulness of the results.

2. The Mathematical Model

The mathematical model proposed in this study is based on several assumptions.
The model has five variables, where S(t) and I(t) represent the density of susceptible and
infected populations at time t, respectively.

The interactions between the model variables are shown in Figure 1. The disease is
transmitted from infected to susceptible individuals following a mass action functional
form. A media campaign increases ‘level of awareness’ denoted as M(t). Campaign can be
carried out to increase awareness in the unaware susceptible population. This campaign
divides the total susceptible population into two subclasses: the unaware susceptible
population Su and the aware susceptible population Sa. As awareness disseminates, people
change their behavior to alter their susceptibility. It is also assumed that infected individuals
recover through treatment at a rate r, and after recovery, a fraction p of recovered people
join the unaware susceptible class while the remaining fraction q =(1− p) join the aware
susceptible class at a rate γ.

Several parameters are used to describe the model. These include b, which is the
constant recruitment rate in the susceptible population; λ, the disease transmission rate; d,
the natural mortality rate of the population; δ, the disease-induced mortality rate of the
infected population; and r, the recovery rate. The disease spreads due to direct contact
between susceptible and infective individuals at a rate λ, and the transfer rate from aware
class to unaware class is denoted as β.

All newly recruited individuals are assumed to be unaware, and the rate of being
aware is proportional to the number of infected individuals reported by the media and/or
health organization. The depletion of the aware state is inversely proportional to the
number of cases. Unaware susceptible individuals become aware susceptible at the rate of
αM, where α is the maximum rate at which an unaware susceptible individual becomes
aware susceptible. On the other hand, aware susceptible individuals become unaware
susceptible at a rate of β/(1 + M) due to memory fading and/or carelessness. Level of
awareness increases when awareness programs are implemented proportionally with the
change in unaware infective individuals at a rate of η and cut down at a rate of θ due to
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their ineffectiveness. Level of awareness also increases from the awareness campaign by
global sources, such as radio, TV, etc. [21], at a constant rate ω.

Figure 1. Interactions between populations is shown.

The above assumptions lead to the following model:

dSu

dt
= b− αMSu − λSu I +

βSa

1 + M
− dSu + pγR,

dSa

dt
= αMSu −

βSa

1 + M
− dSa + qγR,

dI
dt

= λSu I − (d + δ)I − rMI,

dR
dt

= rMI − dR− γR,

dM
dt

= ω + η I − θM, (1)

with the initial conditions:

Su(0) > 0, Sa(0) > 0, I(0) > 0, R(0) > 0, M(0) > 0. (2)

For the analysis of model (1), the region of attraction is given by the set

B =

{
(Su, Sa, I, R, M) ∈ R5

+ : 0 ≤ Su + Sa + I + R ≤ b
d

, 0 ≤ M ≤ ωd + ηb
dθ

}
. (3)

Thus, all solutions of the model (1) are bounded in B for all t > 0.

2.1. Basic Properties of the Model

In this subsection, the basic properties of the system (1) such as existence and non-
negativity of solutions are discussed.

Because the right-hand side of (1) is locally Lipschitz, we deduce from the standard
theory of functional differential equations [26] that system (1) admits a unique solution.

The Su, Sa, I, R, M for the effect of awareness on the transmission dynamics of in-
fectious disease will be analyzed in a biologically and mathematically viable region as
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follows. This region should be feasible for all population. For this, the following theorem is
established.

Theorem 1. All solutions of system (1) with initial conditions in (2) are positive for all t > 0.

Proof. Let

T1 = sup{t > 0 : Hu(t) > 0, Ha(t) > 0, Hi(t) > 0, Vs(t) > 0, Vi(t) > 0, M(t) > 0}.

Because Hu(0) > 0, Ha(0) > 0, Hi(0) > 0, Vs(0) > 0, Vi(0) > 0, and M(0) > 0, then
T1 > 0. If T1 < ∞, then Hu, Ha, Hi, Vs, Vi, M are all equal to zero at T1.

It follows from the first equation of the system (1) that

dSu

dt
= b− αMSu − λSu I +

βSa

1 + M
− dSu + pγR.

That is,
dSu

dt
+ (αM + λI + d)Su =

(
b +

βSa

1 + M
+ pγR

)
Thus,

d
dt

{
Su(t) exp

[∫ t

0
(αM(ξ) + λI(ξ) + d)dξ

]}
=

(
b +

βSa

1 + M
+ pγR

)
exp

[∫ t

0
(αM(ξ) + λI(ξ) + d)dξ

]
.

Hence,

Su(T1) exp
[∫ t

0
(αM(ξ) + λI(ξ) + d)dξ

]
− Su(0)

=
∫ T1

0

{(
b +

βSa

1 + M
+ pγR

)
exp

[∫ t

0
(αM(ξ) + λI(ξ) + d)dξ

]}
dv

So that,

Su(T1) = Su(0) exp
[∫ t

0
(αM(ξ) + λI(ξ) + d)dξ

]
+ exp

[∫ t

0
(αM(ξ) + λI(ξ) + d)dξ

]
×
∫ T1

0

{(
b +

βSa

1 + M
+ pγR

)
exp

[∫ t

0
[αM(ξ) + λI(ξ) + d]dξ

]}
dv > 0

Following the same procedure, it can be shown that the rest of the model populations
are positive for all t > 0. Thus, R5

+ = {(Su, Sa, I, R, M)|Su ≥ 0, Sa ≥ 0, I ≥ 0, R ≥ 0} is an
invariant under the flow of the system (1).

2.2. The Basic Reproduction Number

We follow the method established in the paper by Heffernan et al. [27] for calculating
R0. We consider the next generation matrix G which comprises two parts, namely, F and V,
where

F =

[
∂Fi(E0)

∂xj

]
=

 λS̄u 0

rM̄ 0



V =

[
∂Vi(E0)

∂xj

]
=

 (d + δ) + rM̄ 0

0 γ + d
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where Fi are the new infections, while Vi transfers infections from one compartment to
another. E0 is the disease-free equilibrium. We obtain R0 = λS̄u

(d+δ)+rM̄ and it is the dominant

eigenvalue of the matrix G = FV−1.

3. Dynamics of the System

The system (1) is a set of nonlinear ordinary differential equations. In order to under-
stand the dynamics of the system, we can analyze its steady states, which are the values of
the variables at which they do not change with time.

3.1. Existence of Equilibria

The system has two equilibria. Namely, the disease-free steady state E0 is always
existing and is given by E0(S̄u, S̄a, 0, 0, M̄), where

M̄ =
ω

θ
,

S̄u =
bθ(dω + βθ + dθ)

d(αω2 + αωθ + dωθ + βθ2 + dθ2)
, (4)

Sa =
αbω(ω + θ)

d(αω2 + αωθ + dωθ + βθ2 + dθ2)
,

and the endemic equilibrium point E∗(S∗u, S∗a , I∗, R∗, M∗) where

I∗ =
(θM∗ −ω)

η
, R∗ =

rM∗ I∗

d + δ
, S∗u =

rM∗ + (d + δ)

λ
,

S∗a =
(αS∗u M∗ + qγR∗)(1 + M∗)

β + d(1 + M∗)
,

and M∗ is the positive root of the following equation:

c0M3 + c1M2 + c2M + c3 = 0, (5)

where

c0 = −αd2ηr− d2λrθ − αdηγr− dγλqrθ,

c1 = −αd3η − d3ηr− d3λθ − αd2δη − αd2ηγ− αd2ηr− d2ηγr− d2δλθ − d2γλθ + d2λωr

−d2λrθ − αdδηγ− αdηγr− dδγλθ − bηdλrθ + dγλωqr− dγλqrθ,

c2 = −d4η − αd3η + d2γλω− d3δη − d3ηγ− d3ηr + d3λω− d3λθ − αd2δη

−αd2ηγ− d2δηγ + bd2ηλ− bηd2ηr− d2ηγr + d2δλω− bηd2λθ + d2γλω

−d2δλθ − d2γλθ + d2λωr− αdδηγ + bdηγλ− bηdηγr− bηdδλθ + dδγλω

−bηdγλθ − bηδγλθ − dδγλθ + bηdλωr + dγλωqr,

c3 = −d4η − bηd3η − d3δη − d3ηγ + d3λω− bηd2δη − bηd2ηγ− d2δηγ + bd2ηλ

+bηd2λω + d2δλω− bηdδηγ + bbηdηλ + bbηηγλ + bdηγλ + bηdδλω

+bηdγλω + bηδγλω + dδγλω.

It should be noted that because c0 < 0, the following cases can be distinguished: (i) if
c2 > 0 and c3 > 0, there exists a unique endemic equilibrium; (ii) if c1 < 0, c2 > 0, and
c3 < 0, then (5) has two positive roots, resulting in the possibility of two feasible endemic
equilibria; and (iii) if c1 > 0, c2 < 0, and c3 > 0, then (5) has three roots, leading to the
possibility of three feasible endemic equilibria. I∗ is positive when θM∗ > ω

θ .



Axioms 2023, 12, 608 7 of 18

3.2. Stability Analysis of E0

Theorem 2. For the system (1), the disease-free steady state E0 is stable if R0 < 1 and unstable if
R0 > 1.

Proof. The Jacobian matrix at the disease-free equilibrium E0 is

A(E0) =



−αM̄− d β
1+M̄ −λS̄u pγ − β

1+M̄

αM̄ − β
1+M̄ − d 0 qγ

β
1+M̄

0 0 λS̄u − rM̄− (d + δ) 0 0

0 0 rM̄ −d 0

0 0 η 0 −θ


,

At the disease-free steady state E0, the eigenvalues are ρ1 = −θ, ρ2 = −d which are
both negative. Additionally, ρ3 = λS̄u − rM̄ − (d + δ) is also negative when the basic
reproduction number R0 < 1. The remaining eigenvalues can be found by solving the
given equation:

ρ2 +

(
αM̄ + 2d +

β

1 + M̄

)
ρ +

[
(M̄ + d)

(
d +

β

1 + M̄
+ d
)]

= 0.

The expression for M̄ is provided in (4). Because the coefficients of (6) are positive,
the roots of (6) denoted by ρ4 and ρ5 are therefore negative or have negative real parts.
Therefore, the stability of E0 is guaranteed only when ρ3 < 0.

Remark 1. The detailed numerical calculations indicate that the interior equilibrium E∗ is feasible
when R0 > 1, i.e., when the disease-free equilibrium E0 is unstable. Moreover, at R0 = 1, the
system undergoes a forward transcritical bifurcation.

Therefore, based on the definition of R0 and the stability analysis of E0, we can state
the following theorem.

3.3. Stability of E∗ and Hopf Bifurcation

The Jacobian matrix J5×5 at the endemic equilibrium point E∗(S∗u, S∗a , I∗, R∗, M∗) is
determined for the stability analysis of this equilibrium point and is given below by

J(E∗) = [Jij]5×5 =



−αM∗ − λI∗ − d β
1+M∗ −λS∗u pγ − β

(1+M∗)2

αM∗ − β
1+M∗ − d 0 qγ

β

(1+M∗)2

λI∗ 0 λS∗u − rM∗ − (d + δ) 0 − rI∗

0 0 rM∗ −d− γ rI∗

0 0 η 0 −θ


,

The characteristic equation is given by

x5 + a1x4 + a2x3 + a3x2 + a4x + a5 = 0, (6)

where
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a1 = −(J11 + J22 + J33 + J44 + J55),

a2 = −J12 J21 − J13 J31 + J11(J22 + J33 + J44) + J22(J33 + J44)

+J33 J44 − J35 J53 + J55(J11 + J22 + J33 + J44),

a3 = J31(J13 J22 − J12 J23 − J14 J43) + J33(J12 J21 − J11 J22) + J44(J12 J21 −
J11 J22 + J13 J31 − J11 J33 − J22 J33) + J53(−J15 J31 + J11 J35 +

J22 J35 + J35 J44)J53 + J55(J12 J21 +−J11 J22 + J13 J31)− J33 J44(J11 + J22)

−J44 J55(J11 + J22 + J33),

a4 = J31 J43(J14 J22 − J12 J24) + J31 J44(J12 J23 − J13 J22) + J33 J44(J11 J22 − J12 J21) +

J31 J53(J15 J22 − J12 J25) + J35 J53(J12 J21 − J11 J22) + J44 J53(J15 J31 − J11 J35)

−J31 J55(J22 J35 J44 + J14 J31 J45)J53 + J31 J55(J12 J23 − J13 J22) + J33 J55(J11 J22 − J12 J21) +

J14 J31 J43 J55 + J44 J55(−J12 J21 + J11 J22 − J13 J31) + J33 J44 J55(J11 + J22),

a5 = J31 J44 J53(J15 J22 + J12 J25) + (−J12 J21 + J11 J22)J35 J44 J53

+J31 J45 J53(J14 J22 − J12 J24) + J31 J43 J55(−J14 J22 + J12 J24)

+J31 J44 J55(J13 J22 − J12 J23)

+(J12 J21 − J11 J22)J33 J44 J55.

If the following conditions hold, all roots of the characteristic equation have a negative
real part according to the Routh–Hurwitz criterion:

a5 > 0, a1a2 − a3 > 0, a3(a1a2 − a3)− a1(a1a4 − a5) > 0

and (a1a2 − a3)(a3a4 − a2a5) + (a1a4 − a5)(a5 − a1a4) > 0. (7)

Thus, endemic equilibrium E∗ is stable if the conditions in (7) hold. The following
theorem ensures the occurrence of Hopf bifurcation at the endemic equilibrium.

Theorem 3. The stability of the interior equilibrium E∗ depends on whether the conditions in (7)
are satisfied. If the conditions are met, then E∗ is stable; otherwise, it becomes unstable. Moreover,
E∗ undergoes a Hopf bifurcation at the critical value θ∗ of the generic parameter θ if either of the
following conditions are satisfied:

i. φ(θ∗) = 0 and
dφ

dθ

∣∣∣
θ=θ∗

6= 0, where

φ(θ) = (a3 − a1a2)(a5a2 − a3a4)− (a5 − a1a4)
2,

with
ϕ =

a5 − a1a4

a3 − a1a2
> 0, a3 − a1 ϕ 6= 0,

ii. a5 = a1a4, a3 = a1a2, a4 < 0, a1a3 6= 0,[
a′1 ϕ2 + (a1a′2 − a′3)ϕ− (a1a′4 − a′5)

]∣∣∣
θ=θ∗

6= 0.

where a′j(j = 1, 2, . . . , 5) represent the derivatives of aj(j = 1, 2, . . . , 5) with respect to the
genic bifurcation parameter θ and

ϕ =
1
2

(
a2 +

√
a2

2 − 4a4

)
> 0.

Proof. We need the following lemma (lemma 2 of [28,29]) for proofing Theorem 3.
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Lemma 1. Suppose that the following conditions are satisfied:

(A3 − A1 A2)(A2 A5 − A3 A4)− (A5 − A1 A4)
2 > 0. (8)

and
A1 > 0, A1 A2 − A3 > 0, A3 − A1θ > 0. (9)

Then, the polynomial H(ξ) possesses at least one pair of purely imaginary roots ξ1,2 = ±i
√

θ, θ > 0
and the rest of the roots with negative real parts.

We now provide the proof of Theorem 3 below.
The first two conditions of the theorem are fulfilled from Lemma 1. We have to prove

the last condition only, which is the transversality condition.
Using the well-known Vieta formulas, given the coefficients of the following

polynomial,

H(ξ) = ξ5 + A1ξ4 + A2ξ3 + A3ξ2 + A4ξ + A5 (10)

from its roots, it follows that the function Ψ(ζ) of conditions (i) can be written in the form
of Orlando’s formula:

Ψ(ζ) = (ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)(ξ1 + ξ5)(ξ2 + ξ3)(ξ2 + ξ4)(ξ2 + ξ5)×
(ξ3 + ξ4)(ξ3 + ξ5)(ξ4 + ξ5). (11)

Assume that two roots ξ1 and ξ2 of (10) are in the form

ξ1,2 = χ(ζ)± iν(ζ). (12)

with χ(ζ∗) = 0 and ν(ζ∗) =
√

θ, while Re(ξ3,4,5) 6= 0. Then, we have

Φ(ζ) = 2χ[(χ + ξ3)
2 + ν][(χ + ξ4)

2 + ν](χ + ξ5)
2 + ν]×

(ξ3 + ξ4)(ξ3 + ξ5)(ξ4 + ξ5). (13)

with Φ(ζ∗) = 0.

Differentiating Φ(ζ) with respect to ζ and putting ζ = ζ∗, we finally obtain

dΦ(ζ)

dζ
|ζ=ζ∗ =

{
2(ν2 + ξ2

3)(ν
2 + ξ2

4)(ν
2 + ξ2

5)×

(ξ3 + ξ4)(ξ3 + ξ5)(ξ4 + ξ5)
dχ(ζ)

dζ

}
|ζ=ζ∗ (14)

If the condition (9) is true, then the roots ξ3, ξ4, ξ5 have negative real parts at ζ = ζ∗

and only the last factor in (14) may possibly be zero.
Thus,

dχ(ζ)

dζ
|ζ=ζ∗ 6= 0⇔ dΦ(ζ)

dζ
|ζ=ζ∗ (15)

Therefore, the transversality condition is satisfied. Thus, Hopf bifurcation occurs at
ζ = ζ∗.

4. The Optimal Control Problem

In this section, the aim is to study the impact of an optimal treatment and awareness
campaign. For this, there are two control parameters, u1(t) (for treatment cost) and u2(t)
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(for the cost of awareness campaign). Based on the above assumptions, the above system (1)
would be

dSu

dt
= b− αMSu − λSu I +

βSa

1 + M
− dSu + pγR,

dSa

dt
= αMSu −

βSa

1 + M
− dSa + qγR

dI
dt

= λSu I − (d + δ)I − u1(t)rMI

dR
dt

= u1(t)rMI − dR− γR,

dM
dt

= (1− u2(t))ω + η I − θM, (16)

For later use, we rewrite the system (16) in the following form:

dxi
dt

= fi(t, x), (17)

where fi (i = 1, . . . , 5) are the right sides of system (16) and xj (j = 1, . . . , 5) are the state
variables corresponding to Su, Sa, I, R, M, respectively.

Our objective is to minimize the cost of the media campaign, treatment, and number
of infected cases. Therefore, we formulate the cost function as follows:

J[u1(t), u2(t)] =

t f∫
0

[Au2
1(t) + Bu2

2(t)− PM2 + QI2(t)]dt. (18)

t f is the final time. The parameters P > 0), Q > 0 are the weight constants on the benefit
of the costs and A > 0, B > 0 are the penalty multipliers.

Now, the objective is to find the optimal control pair u∗(t) = (u1(t), u2(t)) such that

J(u∗1 , u∗2) = min (J(u1, u2) : (u1, u2) ∈ U) where U = U1 ×U2,

where U1 = (u1(t) : u1 is measurable and 0 ≤ u1 ≤ 1, t ∈ [0, t f ]) and

U2 = (u2(t) : u2 is measurable and 0 ≤ u2 ≤ 1, t ∈ [0, t f ]).

Here, Pontryagin minimum principle [30] has been used to find the optimal control
pair (u∗1(t), u∗2(t)).

The necessary conditions for the optimal control problem can be obtained using
Pontryagin’s minimum principle, as presented in [30]. Applying this principle to the
system, we obtain the following theorem.

Theorem 4. Suppose the given optimal control pair u∗(t) = (u∗1(t), u∗2(t)) and the solution
(S∗u(t), S∗a (t), I∗(t), R∗(t), M∗(t)) of the corresponding system (16) minimize J(u∗) over U.
Then, by applying Pontryagin’s minimum principle in state, the following theorem holds: there exist
adjoint variables ξ1, ξ2, ξ3, ξ4, and ξ5 that satisfy the following equations:

dξ1

dt
= −(ξ1 J11 + ξ2 J21 + ξ3 J31),

dξ2

dt
= −(ξ1 J12 + ξ2 J22),

dξ3

dt
= −2PI − (ξ1 J13 + ξ2 J23 + ξ3 J33 + ξ4 J43 + ξ5 J53),

dξ4

dt
= −(ξ1 J14 + ξ2 J24 + ξ3 J34 + ξ4 J44 + ξ5 J54),

dξ5

dt
= 2QM− (ξ1 J15 + ξ2 J25 + ξ3 J35 + ξ4 J45 + ξ5 J55). (19)
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along with the boundary conditions, ξi(t f ) = 0, i = 1, . . . , 5.

Proof. The Hamiltonian for the optimal control problem can be taken as

H = Au2
1(t) + B(1− u2(t))2 − PM2(t) + QI2 +

6

∑
i=1

ξi fi, i = 1, 2, . . . , 6. (20)

According to the maximum principle [30], the unconstrained optimal control pair
u∗ = (u∗1(t), u∗2(t)) satisfies

∂H
∂u∗

= 0, u∗ = (u∗1 , u∗2). (21)

Thus, from (21), we have

u∗1(t) =
(ξi3− ξ4)rMI

2A
, (22)

u∗2(t) =
2B + ξ5ω

2B
. (23)

Due to the boundedness of the optimal control parameters, we have the following
forms of the optimal control pair:

u∗1(t) = max(0, min(1,
(ξi3− ξ4)rMI

2A
)), (24)

u∗2(t) = max(0, min(1,
2B + ξ5ω

2B
)). (25)

According to minimum principle [30], we have the following relation for determining
the adjoint system:

dξi
dt

= −∂H
∂xi

, i = 1, 2, 3, 4, 5, (26)

where xi ≡ (Su, Sa, I, R, M) and the necessary condition satisfying the optimal control pair
u∗(t) is

H(xi(t), u∗(t), ξi(t), t) = min
u∈U

(H(xi(t), u(t), ξi(t), t)), i = 1, 2, 3, 4, 5, 6. (27)

So, the adjoint system (19) corresponding to the system (16) can be obtained by
Equation (26). The boundary conditions for the adjoint system (19) are ξi(t f ) = 0, (i = 1, . . . , 6)
as the salvage function in the objective functional (18) is assumed to be zero.

5. Numerical Simulation

This section presents the numerical simulations conducted to investigate the system
dynamics. The goal is to examine the impact of increasing the infection rate on the system’s
behavior using simulations with and without control, in order to verify the theoretical
findings.

Forward bifurcation is shown in Figure 2. This figure shows that the disease-free
equilibrium E0 is stable for R0 < 1 and unstable for R0. Consequently, a transcritical
forward bifurcation occurs at R0 = 1. The region of stability of E0 is shown in the α− ω
and λ−ω parameter planes in Figure 3a,b respectively. When the awareness rates are high
or the infection rate is low, E0 is stable as the value of R0 is below unity. On the boundary of
the stable and unstable region, the value of R0 is unity. That means the forward bifurcation
points lie on this boundary.
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I

Figure 2. Forward bifurcation is shown. λ is varied in the interval (0, 0.0005) and the rest of the
parameter values are taken from Table 1.

Table 1. List of parameters used for numerical simulations.

Parameter Definition Reference Value
(day−1)

b Constant recruitment rate [12] 12
λ Disease transmission rate [22,31] 0.0005
α Contact rate between unaware [12] 0.002

susceptible with media
ω Rate of media campaigns by global sources [21,22] 0.03
d Susceptible class natural death rate [12,32] 0.01
δ Additional death rate due to infection [32] 0.007
β Rate at which aware human becomes unaware [22] 0.0025
r Rate of recovery of infected human [12] 0.01
γ Rate at which recovered class becomes [12] 0.0015

susceptible after immunity loss
p Portion of recovered class becoming [12] 0.3

susceptible unaware class
η Rate of awareness programs by local sources [12] 0.25
θ Depletion rate of awareness program [12,22] 0.015

Figure 4a–e show the solution trajectories for two different values of λ. For lower
values of λ, the model populations oscillate initially and then converge to the endemic
equilibrium E∗. However, when λ exceeds a certain threshold value λ∗ = 0.000495,
all populations exhibit periodic oscillations, indicating that they bifurcate into periodic
solutions. Figure 4f shows a stable (supercritical) limit cycle is observed for λ = 0.0005.
The bifurcation diagram for the maximum and minimum values of the periodic solutions
is shown in Figure 5, where we observe that the stability switch occurs at λ = λ∗.

Figure 3. Stability of E0 in (a) α−ω, (b) λ−ω parameter planes. Other parameter values are taken
from Table 1.
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Figure 4. (a–e): Time series solution of the system (1) is plotted for λ = 0.0001 (red line) and
λ = 0.0005 (blue line). Parameter values are as given in Table 1. (f): Limit cycle is shown in Su − I− R
plane.

We also explore the bifurcation of ω in Figure 6 for a fixed value of λ = 0.001 for
which periodic oscillations exist. As we increase the value of ω, the unstable endemic state
becomes stable when ω exceeds a threshold value ω∗ = 0.149.
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Figure 5. (a–e): Hopf bifurcation taking λ as main parameter. Values of the parameters are same as
Figure 4.
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Figure 6. (a–e): Hopf bifurcation taking global awareness rate ω as the bifurcating parameter. Here,
λ = 0.001 and the rest of the parameters’ values are same as Figure 5.

Figure 7 shows the impact of local aware awareness η. The size of the epidemic
decreases accordingly as the rate of awareness increases.
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Figure 7. (a–e): Solution trajectories for two different values of the local awareness rate η.
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Numerical Solution of the Optimal Control Problem

We used MATLAB to perform the numerical simulations of the optimality system (i.e.,
system (16) together with system (19) and (24).

The state equations are solved iteratively using an initial guess for the control functions
over a desired time interval, employing the fourth-order Runge–Kutta scheme. The adjoint
equations are then solved backward in time using the current iteration solutions of the state
equations. The control functions are updated using a convex combination of the preceding
control functions, and the values from the characterization until the change between the
values of unknowns at the earlier iteration and the current iteration is negligible [33].

The numerical simulations of the optimal control problem are shown in Figures 8 and 9.
Figure 8a–e illustrate a comparison between the system with and without optimal control.
It is evident that optimal control plays a vital role in monitoring the system. The corre-
sponding optimal profiles of the control variables are plotted in Figure 9a,b. The optimal
profiles indicate that a high-density awareness campaign is required initially, and treatment
is necessary from a later time (after three weeks of disease outbreak).
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Figure 8. (a–e): Numerical solution of the system (16) with and without control.
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6. Discussion and Conclusions

The global outbreak of infectious diseases has brought about the urgent need for
effective control strategies that can reduce their spread while minimizing the economic and
social costs associated with control measures. In this study, a mathematical model has been
proposed for the prevalence of an infectious disease, taking into account the influence of
awareness programs, treatments, and optimal control. This model can help policymakers
and public health officials develop effective and cost-efficient control strategies for infec-
tious diseases by incorporating public awareness into the model and using optimization
techniques to produce cost-effective control strategies.

Specifically, the proposed awareness-based model is functional and can capture the
dynamics of malaria with awareness-based interventions, while the control-induced model
can minimize the cost of malaria management. The dynamics of disease propagation have
been studied using the proposed mathematical model both analytically and numerically.
The next-generation matrix has been used to derive the basic reproduction number R0.
An equilibria assessment shows two equilibria of the proposed model: disease free and
endemic. The disease-free equilibrium is stable forR0 < 1, and the endemic equilibrium
exists for R0 > 1 when the disease-free equilibrium becomes unstable. The endemic
equilibrium, existing when R0 > 1, is asymptotically stable for a lower infection rate.
When the infection rate λ crosses its critical value λ∗ = E∗ shows Hopf bifurcation.

To further improve the effectiveness and efficiency of control strategies, optimal
control theory has been applied to awareness-induced interventions for the cost-effective
administration of malaria. The proposed optimal system has been analytically solved using
the Pontryagin minimum principle and numerically solved using a specific scheme, which
is explained in detail in the study. Optimal profiles of the control variables have been
plotted, providing insight into the effect of controls on malaria disease development and
the cost sustained in their implementation numerically.

The optimality system consists of six ordinary differential equations (ODEs) from
the state and adjoint equations. The optimal solution has been established to be essential
and effective in infectious disease control, indicating the potential of this approach for
reducing the spread of contagious diseases and minimizing the economic and social costs
associated with control measures. Overall, the proposed mathematical model and optimal
control strategy can be valuable tools for policymakers and public health officials to develop
effective and cost-efficient control strategies for infectious diseases.

To conclude, this article emphasizes the importance of awareness campaigns in con-
trolling the spread of infectious diseases. By educating the public, promoting healthy
behaviors, and dispelling misinformation, an effective awareness campaign can help re-
duce the transmission rate of infectious diseases. Furthermore, the article highlights the
role of the World Health Organization in providing resources, guidelines, and tools for the
prevention, diagnosis, and treatment of infectious diseases.

The optimal control approach to infectious diseases with awareness-based controls
is a promising strategy that can help reduce the spread of contagious diseases while
minimizing the economic and social costs associated with implementing control measures.
By incorporating public awareness into the model and using optimization techniques
to develop cost-effective control strategies, policymakers and public health officials can
develop effective and cost-efficient control strategies for infectious diseases. The obtained
results from the control-induced model using the maximum principle can be helpful for
policymakers in proposing suitable control strategies against infectious diseases.

In a nutshell, this study suggests that awareness campaigns are crucial in controlling
infectious diseases, and optimal control theory, combined with media consciousness, is a
necessary strategy for infectious disease control. By using this approach, policymakers can
develop effective and cost-efficient control strategies that can minimize the economic and
social costs associated with controlling infectious diseases.

This study can be extended by including the latent class in the proposed model. A
direction and stability analysis of a Hopf bifurcating periodic solution is an important
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property of a dynamical system. This can be studied using the proposed model and normal
form theory. Considering a time delay due to the latent period or a time delay due to the
time required before arranging awareness campaigns, the model can also be extended. We
left these ideas as future directions of the present work.
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