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Abstract:
notion of (€, € V(x*, gx))-fuzzy bi-ideals is established. We prove that (€, € V(x*, gx))-fuzzy bi-
ideals are fuzzy bi-ideals but that the converse is not true, and an example is provided to support

In this study, by generalizing the notion of fuzzy bi-ideals of ordered semirings, the

this proof. A condition is given under which fuzzy bi-ideals of ordered semirings coincide with
(€, € V(x*,gx))-fuzzy bi-ideals. An equivalent condition and certain correspondences between
bi-ideals and (€, € V(x*,q«))-fuzzy bi-ideals are presented. Moreover, the (k*, x)-lower part of
(€, € V(x*,gx))-fuzzy bi-ideals is described and depicted in terms of several classes of ordered
semirings. Furthermore, it is shown that the ordered semiring is bi-simple if and only if it is
(€, € V(x*,qx))-fuzzy bi-simple.
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1. Introduction

The concept of an “ordered semiring” was first used by Gan and Jiang [1] in connection
to a semiring with a compatible partial order relation. They also proposed the idea of
ideals in ordered semirings. Good et al. [2] developed the concept of bi-ideals in semi-
groups. Following that, Lajos et al. [3] established bi-ideals in associative rings. Bi-ideals
of ordered semirings were described and characterized in terms of regularity, and the
relationship between bi-ideals and quasi-ideals was characterized by Palakawong et al. [4].
Senarat et al. [5] developed the terms-ordered k-bi-ideal, strong-prime-ordered k-bi-ideal,
and prime-ordered k-bi-ideal in ordered semirings. By expanding on the idea of bi-ideals
of ordered semirings, Davvaz et al. [6] introduced the concept of bi-hyperideals in ordered
semi-hyperrings. The notions of (m, n)-bi-hyperideals and Prime (m, n)-bi-hyperideals
were established and inter-related properties were considered by Omidi and Davvaz [7].
The characterization of ordered h-regular semirings was considered by Anjum et al. [8].
In [9], Patchakhieo and Pibaljommee characterized ordered k-regular semirings using
ordered k-ideals. The ordered intra-k-regular semirings have been introduced and defined
in different ways by Ayutthaya and Pibaljommee [10]. Omidi and Davvaz [7] considered
the concepts of (1, n)-bi-hyperideals and Prime (1, n)-bi-hyperideals and established inter-
related features. Anjum et al. [8] proposed characterizing ordered h-regular semirings. By
using ordered k-ideals, Patchakhieo and Pibaljommee described ordered k-regular semir-
ings in [9]. The ordered intra-k-regular semirings have been presented and characterized in
various ways by Ayutthaya and Pibaljommee [10].

Fuzzy sets to semirings were initially discussed by Ahsan et al. in [11] and Kuroki [12]
applied the idea to semigroups. Mandal [13] pioneered the study of ideals and interior
ideals in ordered semirings, as well as their characterizations in the sense of regularity.
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He developed the concepts of fuzzy bi-ideals and fuzzy quasi-ideals in ordered semirings
in [14]. Gao et al. [15] presented semisimple fuzzy ordered semirings and weakly regular
fuzzy ordered semirings in terms of different kinds of fuzzy ideals. Saba et al. [16]
initiated the study of ordered semirings based on single-valued neutrosophic sets. Several
characterizations of regular and intra-regular ordered semigroups in terms of (&, € Vq)-
fuzzy generalized bi-ideals were presented by Jun et al. [17], who also proposed the idea of
(a, B)-fuzzy generalized bi-ideal in ordered semigroups. Similar semiring concepts, such as
(€, € vq)-fuzzy bi-ideals on semirings, were investigated by Hedayati [18]. Additionally,
other ideas connected to our research in several domains have been examined in [19-25].

In this study, we describe a novel form of fuzzy ideal in ordered semirings. The con-
cept of (€, € V(x*,qx))-fuzzy bi-ideal is presented. We show that any fuzzy bi-ideal is the
(€,€ V(x*,qx))-fuzzy bi-ideal, but the converse assertion is invalid, and an example
is shown. A criterion for an (€, € V(x*,gx))-fuzzy bi-ideal to be a fuzzy bi-ideal is
given. Furthermore, some correspondences between bi-ideal and (€, € V(x*, i) )-fuzzy
bi-ideal are included. Furthermore, regularly ordered semirings are described in terms of
(€, € V(x*,qx))-fuzzy bi-ideals and their (x*, x)-lower parts. The structure of the paper
is as follows: Section 2 highlights some of the ideas and properties of ordered semirings,
ideals, fuzzy subsets, and fuzzy subsemirings that are necessary to generate our key results.
Section 3 focuses on the concept of the (€, € V(x*, gi))-fuzzy bi-ideal of ordered semirings.
Section 4 examines the (x*, x)-lower part of the (€, € V(x*, g« ))-fuzzy bi-ideal. Section 5
contains instructions for some potential future research work.

2. Preliminaries

An ordered semiring (Y, +, -, <) is a semiring with compatible order relation “ < ”, i.e.,
pPp<o=pT<o,Tp<Toand p+T< 0+ T, 7T+ <T+09, Vp0oTEY.

fp+o=0+p Ve o0ecY, thenY issaid to be additively commutative. An element
0 € Yis an absorbing zeroif 0p =0 =pl0and p+0=p=0+p,Vp €Y.

For P C 'Y, we define (P] = {p € Y| p < o for some p € P}.For (& #)P,Q C Y, PQ
is defined as {po | p € Pand ¢ € Q}.

A subset (2 #)Z of Y is said to be a sub-semiring if ©¥. C ¥ and £ + X C X. Addition-
ally, X refers to the left (resp. right) ideal of Yif ¥ + X C X and YX C X (resp. LY C X), and
(2] C X. If itis both the left and right ideals of Y, it is referred to as an ideal. A sub-semiring
P of Y is called a bi-ideal (in brief, BI) of Y if PYP C P and (P] C P.

A mapping A/ : Y — [0,1] is said to be fuzzy set (in brief, FS) of Y. For the FSs A/ and
£f of Y, AN Zf, AU Zf, A +£f and Af o £/ are described as:

A NE)(p) = M (p) A%f(p) = min{}M (p), £ (p)},

(MU ) (p) =M (p) v E (p) = max{M (p), £/ ()},

U V. M(e) A (),
W +7)(p) = { o<
0, if pcan not be written as p < 0+ s,

and
V(o) AEF o), ,
@ to><p>={ o DN

0, if p cannotbe written as p < gsr. ,

For Q) C 'Y, the characteristic function x{) is defined as:

f |1, if pe )
Xﬂ(p)_{ 0, ifp¢Q.

Define < on the set F(Y) of all FSs of Y by

M=2E e M) <Hp), vpeY.
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If Xfi £f € F(Y) such that M < £, then VA e F(Y), oA < £ oAf and
M oA < Af o £f. We represent by 1/ the FS of Y given by 1/ : Y — [0,1]|r + 1/(r) = 1.

Let P,Q C Y. Then P C Q & x} = xbi Xp N Xh = Xhnoi X © X = X(p0)-
A FS A is called a:

1. Fuzzy subsemiring of Y if Af (po) > A (p) A A (0) and A (p + 0) > A (p) A Af(0),
Vpo€eY.

2. Fuzzy left (resp. right) ideal (in brief, FL(R)I) of Y if p < o0 = AM(p) > A (o),
M(p+0) = M(p) ANM (o) and M (po) > M (o) (resp. M (po) > M (0)),V p,0 €Y.

3. Fuzzyideal of Y if A/ is both fuzzy right and left ideals of Y.

4. Fuzzy bi-ideal (in brief, FBI) if it is fuzzy subsemiring and p < 0 = Af(p) > Af(0)

and A (pto) > A (p) AA(0),V g, t,0,€ Y.

3. (€, € V(x*,gx))-Fuzzy Bi-Ideals of Ordered Semirings

In this section, the concept of (€, € V(x*, g ))-fuzzy bi-ideals of Y is introduced.
Let p € Yand ¢ € (0,1]. The ordered fuzzy point (OFP) p, of Y is defined by

[, ifsee (p];
p‘<%)_{o, ifzg(g].

For Af € F(Y), p, € Af represents for p, C Af. Thus p, € A & AMf(p) > 1.

Definition 1. An OFP @, of Y is said to be (x*,q)-quasi-coincident with a FS M of Y for
k* € (0,1], denoted as p,(x*,q)Af, and defined as:

M(p)+1> «*.

For the OFP p,, we define

(1) ou(x*, g0 if Af () + 14+ > &%

(2) o€ \/(K*,qK)Xf, ifp, € M or p,(K*,qK)Xf;

(3)  @alf, if puaAS does not hold for « € {(k*,qyx), € V(k*,qx) };
forl>x*>x>0.

Definition 2. A FS A of Y is said to be an (€,€ V(x*,qx))-fuzzy bi-ideal (in brief,
(€,€ V(x*,0))-FBD of Y if

1) p<oactM=p eVvig),

(2) g€ Mandgge M = (p+ 0o € V(x*,q0)M,
(3) o €Mand gy € A = (pa)ipe € V(x*,qc) A, and
(4) teY, p €M, 0 €r= (ptg) € V(K g0)M.
V1,0 € (0,1 and p,t,0 €Y.

Example 1. On'Y = {1, 02, 3}, define the opertaions and order relation as

+ \ P12 93 : \ P12 93
P1 | P10 P2 93 P1 | P10 P10 21
2 | P2 2 2 2 | P91 P2 92
03 | £3 2 2 03 | P11 P393

<:={(p1,01), (92, 02), (93, 93), (91, 92), (91, 93) }-
Then (Y, +,-, <) is an ordered semiring. Define an FS Af of Y as

N 0.5, ifx=p1;
MG =4 04, ifee=
0.3, if% = 3.
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M is the (€, € V(0.2,q04))-FBI of Y and can be easily verified.
Lemma 1. Each FBI of Y is the (€, € V/(x*,qx))-FBI of Y.
Proof. Straightforward. [J

Remark 1. In general, the converse of Lemma 1 does not hold. It is illustrated by the following
example:

Example 2. Define operations and ordered relations on Y = {1, o2, 93} as follows:

+ \ P12 93 : \ P12 93
P1 | P10 P2 93 P1 | P10 P10 21
£2 | 2 2 ©3 2| P11 P2 2
£3 | ¥3 93 ©3 03 | P11 P2 2

<:={(p1,01), (92, 92), (b, 03), (91, 92), (92, 3) }-
Then, (Y, +,-, <) is an ordered semiring. Define the FS Af of Y as

B 0.6, ifx=p1;
M) =4 05, ifx=py;
0.7, l'f% = (3.

It can be easily verified that A is the (€, € V(0.9,q0.1))-fuzzy bi-deal of Y but not an FBI of Y as
follows: 1 < p3 % M (p1) > M (p3).

Theorem 1. An FS Af isan (€, € V(x*,qx))-FBlof Y <
1) p<o=M(p) >N (o)AEFE

2) M(p+o) =M(p) AM(0) NS,

(3) M(pe) > M(p) AA (0) AEFE, and

(4) M(pte) > A (p) AM (o) A 555,

YV toe.

Proof. (=) Let p,0 € Y such that p < o. If Af(p) < Af (o) A E (0,1] such
that A/ (p) < ¢t < Af(0) A K*T*K Sos, € A, but (p),€ V(x*,qx)Af, which is a contradiction.
Therefore A/ (p) > min{Af (o), “57%}. Next, if Af(p +0) < A (p) AAM (o) A E
some ,0 € Y, then M (p +0) < 1 < AMf(p) A A (0) A 555, for some 1 € (0,1]. Thus,
©,0 € A, but ([p —I— Q) € V(K*,qK)/\f which is a Contradlctlon Therefore, Mp+o0) >
M(p) AA (o) A K Slmllarly, M(po) > M(p) AAM (o) A 0 € Y. Again, if

M(pto) < M(p) /\/\f( ) A K{",forsome p,toey, then/\f(ptg) <1< M(p)A K*T*K
for some ¢ € (0,1]. Thus, g, 0 € A, but (pto).€ \/(K*,q,c)/N\f, again a contradiction.
Consequently, Af (pto) > Af(p) A "*2*".

(<) Take any p,0 € Yand 1,6 € (0 1] such that p < ¢ and Q9 € Af. Then, AMf(g) >4,
and it follows that Af (p) > Af(0) A - = > LA K LI < K &, then Af(p) > ¢ implies
o € M. Again, if 1 > £, then M (p ) > K _K.Thus,/\f( )—i—l > KoK KK — g%,
so @, (x ,qK)Af Therefore, o € V(x ,qK)Xf Again, take any gy € A and 09 € Af. Then,
M(p) > land)\f( ) > 1. Therefore, Af (p +0) > M (p )/\)\f(g)/\"*z—_" > l/\GA%.
Now, if 1 A0 < K%, then Af (p + 0) > 1 A0 implies (p + 0),00 € Af. Again, if LA O > E5%,
then Af (p + ) > ¥, Therefore, Af (p +0) +1 A0 > ©7% + KK — x* _ i implies that
(9 + 0)ino(x*, gx)AS. Therefore, (9 +0).00 € V(k*,45)AL. Similarly, (90)ing € V (1, q) Af
for any pg € A/ and gy € A/. Further, take any ¢ € Y and g,,0, € Af, V1 € (0 1]. Then
M(p) > rand Af () > 1. Therefore, Af (pto) > A (p) A A (0) A K L >N " —£. Now if
1 < 2K then M (pto) > timplies (pto), € Af. If 1 > K7, then /\f(ptg) > v KX, Thus
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Xf(ptg) 4> "*2_" + K*z_" =x* —xie., (ptq),(;c*,q,{);\f. Therefore, (pto), € \/(K*,qK)Xf,
as required. [

Theorem 2. If Af(€ F(Y))is (€, € V(x*,qx))-FBI of Y with A (p) < 5%,V o € Y. Then
M isan FBI of Y.

Proof. Suppose that p,¢ € Y such that p < ¢. Since M is (€, € V(x*,q¢))-FBI, M(p) >
M () A X, By hypothesis, Af (0) < ©5%; thus, it implies A/ (p) > Af (o). Again, for any
0,0 € Y, we have

M(p+0) 2 M(p) A1 (0) A 5
and *
M(po) = M (p) A (o) A .
Since Af (o) < % and M (p) < K*Z_K' S0
M(p+0) = M(p) A M (o)
and

M (pa) = M (p) AV (o).

Finally, take any p,t,0 € Y. Since M s (€,€ V(x*,qx))-FBI, by Theorem 1 and the
hypothesis
K" —x

M(pto) = M (p), M (0) A =M (p) A M (o),

as required. [
Theorem 3. Let (O #)Q C Y. Then QisaBlof Y < X{), an (€, € V(x*,qx))-FBL
Proof. Straightforward. [J

Theorem 4. An FS Af is the (€,€ V(x*,q¢))-FBIof Y & U(Af;1)(# @) (1 € (0, *5%]), a BI
of Y.

Proof. (=) Letp € Yand ¢ € U(AS; 1) be such that p < . Then, Af(0) > 1. By Theorem 1,
M(p) > M(o) A "*2—_" > 1A % = . Therefore, p € U(Af;1). Let p,0 € U(A;0),
where : € (0, K*Z_K]. Then A (p) > 1and Af(g) > 1. By Theorem 1, Af (p + 0) > Af(p) A
M(o) A "*T*” > LA K*g” = 1. Therefore, p 4+ ¢ € U(Af;1). Similarly, po € U(Af;1) for
p,0 € U(Xf,'l). Let p,0 € U(Xf,'l) and t € Y. Then, Xf(p) > ¢ and Xf(g) > 1. So,
by Theorem 1, Af(pto) > Af(p) AA () A 555 > 1 ALA S5 = 1. Thus M(pto) > &
Therefore pto € U(AS;1). Hence U(Af;1) is a BL.

(<) Takeany p, 0 € Y with p < 0. IfAf (p) < Af(0) A K*{K,then forsome: € (0, K*T*K],
M(p) <1 < Af(0) AN5%. So g € U(A;1), but p ¢ U(AS;1), whichis a contradiction. Thus
M(p) > M(0) N 555,V 9,0 € Y with o < o. Again, if M (9 + 0) < A (p) A A (o) A 555,
for some p,0 € Y, then A/ (p+0) < 1 < M (p) AA (o) A K*E",for some € (0, K*EK]. Thus,
0,0 € U(AM;1), but p + 0 ¢ U(Af;1), a contradiction. Therefore, Af (p 4+ 0) > A (p) A
M(0) AN 5%, ¥ p,0 € Y. Similarly, Af (pg) > Af(p) AA(0) A 5%,V p,0 € Y. Further,
if M (pto) < Af(p) A A () A E5E, for some p,t,0 € Y. Then, 31 € (0, %] such that
M(ptg) <1 < M(p) AM (o) A5~ implies g, 0, € U(A;1), but (pte), ¢ U(Af;1), again
a contradiction. Therefore Af (pto) > Af(p) A Af(0) A K*E £,V p,0€Y,asrequired. [

Example 3. Define the operations (+, -) and order relation < on' Y = {1, 92, 03, T} in the
following ways:
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+ | P1 P2 P34 : P12 P34
P1 | P1 P2 03 P4 P1 | P10 P10 P11
2 | 2 P2 03 4 2 | £1 P2 P2 2
P3| ©3 P33  P3 P4 P3| P1 P2 P2 P2
P4 | P4 P4 P4 P4 P4 | 1 P2 P2 P2

<:= {(p1, 01), (92, 92), (93, 93), (01, 92), (92, 93), (93, ) }

Then, (Y,+,+, <) is an ordered semiring. Now define an FS M of Y as M (p1) = 05,
M () = 0.4,Af (p3) = 0.1 and M (t) = 0.3. Therefore,

Y, ifp1 <1<01;
{p1, 02,7}, if0.1<:1<03;
U0 =1 {pLe},  if03<i1<04;
{¢1}, if0.4 <1 <05
@, if05 <1 <1.

By Theorem 4, Af is an (€, € V(x*,qx))-FBI of Y as U(Af;1) isa Bl of Y, ¥ 1 € (O, %}, with
k*=1landx = 0.

Definition 3. Let Af € F(Y). The set
M), = {peY]|p Vg,
where 1 € (0,1], is said to be an (€ \V/ (k*, gy ) )-level subset of Af.

Theorem 5. Let A/ € F(Y) such that p < o implies A (p) > Ef(g). Then. Misan (€,¢
V(x*,qx))-FBIof Y < Y 1 € (0,1], the (€ V(x*,qy))-level subset [Af], of Af is a bi-deal of Y.

Proof. (=) Take any p € Y and ¢ € [Af], such that p < 0. As ¢ € [Af], we have
0. € V(x*,qc)Af implies Af(0) > 1 or Af(0) + ¢+« > «*. By hypothesis, we have
M(p) > M(0) > tor M(p) > AM(0) > ¥* —1—x. Thus, p, € V(k*,q,)AS. There-
fore, p € [Af],. Next, take any g, 0 € [Af],. Then, g, 0, € V(x*,qx)AS; thatis, Af (p) > 1 or
M(p)+1+x >x*and A (0) > tor A (o) + 14K > «*.

Case (i). Let Af(p) > rand Af(0) > & If t > K*z_"; then,

M(p+0) 2 M(p) AM (0) A
K" —x
>UINLA
K -k
=—

and, so, (p + 0),(x*, g )AS If 1 < K*EK, then

K*—x

M(p+e) = M(p) AV (o) A

K* —x
>UINLA

:[/
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and so (p 4 0), € Af. Hence, (p+ 0), € V(k*,g)AS.

Case (ii). Let A/ (p) > rand Af (o) + 1+ > x*. If 1 > K*EK, then

V(p+o) =M (p) AW (A"

K" —x
2

= M)A

K" —x

> (K" —1—K) A

=x*—1—x,

that is, /N\f(p +0)+ 1+« > «*, and thus (p + Q)l(K*,qK)Xf. Ifi < K*Z_K, then

K" —x

M(p+0) > M(p) AV (o) A

K* —x

2

>IN (K —1—K) A

and so (p +0), € Af. Hence, (p+ 0), € V(k*,g¢)AS.
Case (iii). Let Xf(p) +14+x > x* and Xf(q) > 1. Proof is analogous to case proof (ii).
Case (iv). Let Af (o) + 1+ x > «* and Af (o) + ¢+ x > x*. Proof is analogous to previous
two cases.

Thus for all cases, we have (p + 0), € V(k*,qx)Af, and thus p + ¢ € [Af],. Similarly,
forany t € Y and g, 0 € [Af],, we have po € [Af], and pto € [Af],. Hence, [Af],is a Bl of Y.

(<) Let M (p) < M (o) A K*{K, for some p,0 € Y. Then, : € (0, K*E"] such that
M(p) < 1t < M(0) A5, Thus, it follows that ¢ € [Af], but p ¢ [Af],, which is a
contradiction, and hence A/ (p) > Af(0) A "*2_". Let M (p+0) < M (p) AA(0) A K*z_"
for some p,0 € Y. Then 31 € (0, "*2_"] such that A/ (p +0) < ¢t < Af(p) AA (o) A K*z—_"
Thus, it follows that p,0 € [Af], but p + ¢ ¢ [A/],, which is a contradiction. Therefore,
M(p+0) > M(p) AM () A 555,V p,0 € Y. Similarly, M (pg) > M (p) A M () A
K*EK, V 0,0 € Y. Next, suppose that Af (pto) > Af(p) A Af(0) A K*T*K for some g, t,0 €
Y. Tt follows that p,0 € [Af], but pto ¢ [Af], which is again a contradiction. Thus
M(pto) > M (p) AA () A K*EK, as required. [J

4. Lower Part of (€, € V(x*,qy))-FBI
The concept of the lower part of the (€, € V(x*, g« ))-FBI of Y is defined and characterized.

Definition 4. The (x*, «)-lower part Af f of A is defined as

K —x

My (9) = V(o) A =5,

VeoeYandl > «* >x > 0.
The (ic*, )-lower part (x'% )¢ of the characteristic function X{) is defined for QO C R as

I _ = ifp e
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Definition 5. Let £/, Af € F(Y). Define £/ (N)<AS, £ (W) AL, and £/ (o)X Af as follows:

F(EV)() = @ nT)(0) n
F (O (p) = F UM ) (p) A "
EOF ) (p) = (F oM )(p) A "

K —x

B () M) (p) = E + ) (p) A
VeoeYand1l > «* >x > 0.

Lemma 2. £/,Af € F(Y). Then,

W () = £% and £ CE,

2) IfEf C M, and A € F(Y), then £ (o) Af C A (o) Af and A (o)< £/ C Afo)s"AS;
(3) Iftf C A, and Af € F(Y), then £f (+)SAf C A (4)S M and A(+)Ef C A(+)EAS;
@ P )K*Xf — &5 AN

5) EUEAM = 5 UM
6) EOEA = £ oAfF,
7 EFHEM = £ 4N

Proof. Straightforward. [

Lemma3. Let X, Q) C Y. Then,
1) x=(+)f xa= (Xx )s+0
2 x=(N) xs
3 x=(U)f xa= (x5
4 xs(0)f xa= (X&) =a)

Proof. Straightforward. [
Lemma 4. If A/ is the (€, € V(x*,qyx))-FBI of Y, then Aff is an FBI of Y.

Proof. Let p,0 € Y be such that p < 0. Then, Af(p) > Af(0) A % Thus, it implies
M)A % > M(o) A K*EK, and, so, (/\ff)(p) > (/\ff)(g). Next suppose that p,0 € Y.
Since A/ isan (€, € V(x*,qx))-FBI of Y Af (p + 0) > Af(p) A A (0) A K**K I follows that
Mg+ ) A S5 > V(o) AR(g) A 52 A £55, and hence, (V2 )(p-+0) > (M2 )(6)
(M)(0)- Similarly, (M )(p0) > (M3 )(9) A (V5 )(0),V 9,0 € Y. Let o, 1,0 € Y; we
have M (pto) > A/ () A M () A S5 Then M (po) A K5 > A () AR (o) A ¥7%, and
Cle) ()\ff)(ptg) ()\fK )(p) A (ﬁ)(g) Therefore,ﬁis anFBIof Y. O

Lemma 5. Let (© #)Q C S. Then, QisaBlof Y & (Xff)g, the (€, € V(x*,qx))-FBLof Y.

Proof. Let p,0 € Yand 1,0 € ( , 1] be such that @, € (Xff)g and gy € (ﬁ)g Then,
(&)Q(p) > 1> 0and Xf ) (0) > 6 > 0. Therefore, p,0 € Q. AsQisaBlofY,
p+QEQ.Thus(ﬁ)g(@+Q) KK TfwoAg < EK then(xf ) (p+0) > w,sowe
have(@+Q)IA9€(£)Q.IfIA6 (ﬁ)g(p+g)+1/\6>"*2”‘+%=
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K" —x. So (p+ Q)me(K*,qK)(ﬁ)o. Similarly, p, € (ﬁ)o and g € (ﬁ)n imply
(pq),/\g(x*,q,{)(ﬁ)g. Therefore, (p + 0),00 € \/(K*,q;c)(ﬁ)g. Let p,0,t € Y and
1 € (0,1] be such that g, 09 € (ﬁ)g Then, p,0 € Q, (ﬁ)g(@ >, (ﬁ)g(p) > 0.

> KK JfiNg < KK,
then (ﬁ)g(@t@) > 1 A 6. Therefore (pto),ng € (ﬁ)g Again, if 1N 6 > "*2*", then
(X )a(pte) +1A0 > E5F 4 28 = " — i S0 (pto)ine(k*,qx) (X' s ) Thus, (pto)ine €
V(x*, qx) (ﬁ)g, as required.

Since ) is a BI of Y, we have pto € Q. Thus, (Xff)g(ptq)

Let p € Yand ¢ € Q) such that p < o. Then (Xf::*>Q(Q) = K. Since (sz*)g is
an (€,€ V(x*,qx))-FBI of Y, and p < ¢, we have (E)Q(p) > (E)Q(g) A K*z_" = K*Z_K.
Thus, (fL"*)Q(@) = K*{K and so p € O. Let p,0 € Q. Then, ()(ff)g(p) = "*2*" and

(Dale) - s Since  (¢f)a is  an
(€,€ V(x*,q5))-FBI of Y, we have (x/; Ja(p +0) > (% )a(p) A (X5 )ale)
A K*EK — x*;x and also (ﬁ)ﬂ(@g) > (Xf: a(p) A (ﬁ)ﬂ(@) A K*EK _ K*EK‘ Thus,

it implies ()(ff)g(p+g) = 5% and (xX's )alpo) = XK. Therefore, p + 0, p0 € Q.
Let p,0 € Qand t € Y. Then (Xf:*)g(p) = 5% and ()(f:j)g(g) = ©2X Now,
(s alete) > (X ale) A (X Jale) A 55% = 55 Hence (Xfy )alpto) = 5%
Therefore pto € (). Hence, QisaBlofY. O

Theorem 6. Let A € F(Y). Then Af isan (€, € V(«x*,qx))-FBIof Y <
(1) MV =M

(2) M (M =AY,

(3) M ()1 (A < ML and

4) (VpeeY)p<ag=A(p) =M (o) AT~

Proof. (=) Suppose that A/ is an (€,€ V(x*,q«))-FBI of Y. If Af (+)f'Af = 0, then
A (—I—)f}wkf < Af. Suppose that A (—|—)£*/~\f # 0. Then, we have

K* —x
2

=V (MW AV (D))A
P<v+T

<V Muy+1)A

P<v+T

=M(p) A

M M) (0) = A +1)(g) A
3

K" —x
2

*

K —K

=My (0).
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Thus, A/ (+)K'Af < )\ff. Similarly, A/ (0)f"Af < )\ff. Again, (Af (o)1 (o)< Af) (p) =0,
then Af (0)5°1/ (o) Af =< A/* . Suppose that (Af (0)5"1/ (o) A1) (p) # 0. Then, we have

M )XV () M)(p)

— (W oV (o)A (p) A
Y ~ K —x ¥ —x
‘p\!yz{”(y“{{ZL{T“””’““T)}A . }}A .
:p\g/yzzzr{ifwmfum . }A =
<V OV Vi a T
P<yzz<vT
<M n ="
=Y (p).

Therefore, Af (o)< 1/ (o)X Af < AfE
(<) Let p, 0 € Y. Then, by hypothesis, we have
Mo+ =M, (p+0)
> (M (M) (e +a)

[V 0)aVm)a "*2"‘

p+o<v+T

> M (p) A M (9) A E,

Similarly, by hypothesis, Af (p0) > A (p) A Af () A 555,
We also have

M (pts) = My (pts)

K" —x

Mo lf(o)fxf)(pts) A

V W) n (T A | S
pte<pq

> M (p) A (1f ()5 M) (tg)

—~

—N

:Xf(p)/\{ \ 1f(u)/\7\f(v)}/\K*Z_K

(u,0)EAys

K* —x

> M(p) AV (5) AN (p) A

K* —x

= M) ANV (@) n=F5—,

as required. O

Theorem 7. The following statements are equivalent in Y:
(1) Yisregular.
2) My <A o1f (o)A forany (€, € V(k*,qx))-FBLof Y.
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Proof. Assume that A/ is an (€, € V(x*,qx))-FBI of Y. If p € Y, then, as Y is regular, 3
t € Y such that p < ptp. Now, we have

K" —x

(M oV (0)f M) (p) = (M 0 1/ (o) 5 M) (p) A

~{ V ¥en e At

p<pq
> M () A (1 (o) M) (tp)

~ V(e { V V() AR )} K*Z—K

tp<uv

> M(p) AV (5 AV () A

K* —x
2

— () p
M(p) A B

Thus, MY < Af 01/ (o)< AL,

(2) = (1). Let Bbe a Bl of Y. Then, by Lemma 5, ()(ff)B isan (€, € V(x*, qx))-FBI of
Y. Thus, by hypothesis, we have

(x5 )8 S xse)f x10)f x5 = (% )sip) € % ) mpim)-

So B C (Y, BRB]. Since Bis B, so (Y. BRB] C B. Thus B = (}_ BRB]. Hence, by ([9] Lemma
2.2),Yisregular. O

Theorem 8. The following statements are equivalent in Y:

(1) Y is reqular and intra-regular.
@) M =X ()X forany (€, € V(k*,q¢))-FBI of Y.

Proof. (=) Suppose that A/ is an (€, € V(x*,qx))-FBI of Y. As Y is regular and intra-
regular, a < axa and a < ya?z. Therefore, a < (axya)(ayxa). We have

K" —x
2

=V V) AM (@A

P<pq

> M (axya) A M (ayxa) A

W ©EF M) (p) =V +A)(p) A

*—x

K" —x

K" —x

> M(a) A

Thus )\ff < M (o)A . Since A isan (€, € V(x*,qx))-FBI, so Af (o)F'Af < )\ff. Hence
MY = M (o)A

2) = (1). Let Bbe a Bl of Y. Then, by Lemma 5, )(fK* gisan (€,€ V(x*, gy))-FBI of
y K q
Y. Thus by hypothesis, we have

e . e e
() S X B0 A5 = (i ) e € (k) s nay-

Therefore, B C (Y. BB]. Since B is BI, so (},BB] C B. Thus B = () BB]. Hence, by
([9]Theorem 3.12), Y is regular. O
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Definition 6. Let t € Y and Af € F(Y). Define the following T; of Y as

K* —x

2}'

7 = {p € YIM (p) = M (0) A

Lemma 6. Let Af be the (€, € V(x*,qyx))-FBI of Y. Then Z; (¥ t € Y) is the Bl of Y.

Proof. Lett € Y. Ast € 7;, we have 7; # . Take any g, ¢ € Z;. Then, Xf(g) > M)A
f*z_K and M (o) Z )\f(t)*/\ % Since A/ is the (€,€ V(x*,qx))-FBI of Y, M (p + 0) >
M(r) AM (y) N EFE > 2K 50 o+ ¢ € T;. By a similar argument, po € Z;.

Next, take any T € Y and @, 0 € Z;. Then Af (p) > Af(¢) A "*2”‘ and Af(0) > Af(t) A
"*2_". By hypothesis, Af (p10) > Af(p) AA (0) A "*2_". Therefore, Af (pT0) > Af(a) A K*T_K
Thus pTo € Z;. Additionally, for any p € Y and ¢ € Z; such that p < g, we have p € Z;.
Hence, Z;isaBlof Y. O

Definition 7. An ordered semiring Y is called (€,€ V(x*,qx))-fuzzy bi-simple if every (€
,€ V(x*,qx))-FBI is constant. That is, ¥V p,0 € Y; we have My (p) = Af} (0), for each
(€,€ V(x*,qx))-FBI Af of Y.

Theorem 9. The ordered semiring Y is bi-simple < it is (€, € V(x*, qx) )-fuzzy bi-simple.

Proof. (=) Let A/ be the (€,€ V(x*,qx))-FBI of Y and p, 0 € Y. By Lemma 6, Z,, is an left
ideal of Y. As Y is bi-simple, Z, = R. So ¢ € Y. Thus, Af(0) > A/ (p) A K*z_". Therefore,

Lf(g) =AM (o) A K*T_K > M (p) A K*Z_K = Lf(p) Similarly, ﬁ(g) < Lz*(p) Thus,
Lﬁ*(p) = Lf(g), as required.

(«<=) Assume that I is the proper Bl of Y. By Lemma 5, (Lf)l is the (€, € V(x*,qx))-
FBI of Y. As Y is (€,€ V(k*, qx))-fuzzy bi-simple, Lf(p) = Lf(@)/ Vp,0€Y. Let
p € Iand q € Y. Then, ﬁ(p) = ﬁ(q) As p € I, we have ﬁ(p) = KX Therefore,
ﬁ (9) = ©5%, which implies that g € I. Thus, I = Y, and hence Y is bi-simple. [

5. Conclusions

The notion of the (€, € V(x*, g« ))-fuzzy bi-ideal, which is broader than the existing
terminology, was introduced in this work. A condition is provided under which fuzzy
bi-ideals and (€, € V(x*, gx))-fuzzy bi-ideals coincide. Bi-ideals and (€, € V(x*, qx ) )-fuzzy
bi-ideals connections were taken into consideration. Regular and intra-regular ordered
semirings were described in terms of (€, € V(x*, gx))-fuzzy bi-ideals and their (xx, «)-
lower parts. Moreover, (€, € V(x*, gy ))-fuzzy bi-simple ordered semirings were defined
and characterized.
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