Article

A Novel Study of Fuzzy Bi-Ideals in Ordered Semirings

Ghulam Muhiuddin ${ }^{1, *}{ }^{(D)}$, Nabilah Abughazalah ${ }^{2}$ © ${ }^{(D)}$ Ahsan Mahboob ${ }^{3}$ and Deena Al-Kadi ${ }^{4}$
1 Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
2 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
3 Department of Mathematics, Madanapalle Institute of Technology \& Science, Madanapalle 517325, India
4 Department of Mathematics and Statistic, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
* Correspondence: chishtygm@gmail.com

Abstract

In this study, by generalizing the notion of fuzzy bi-ideals of ordered semirings, the notion of $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals is established. We prove that $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy biideals are fuzzy bi-ideals but that the converse is not true, and an example is provided to support this proof. A condition is given under which fuzzy bi-ideals of ordered semirings coincide with $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals. An equivalent condition and certain correspondences between bi-ideals and $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals are presented. Moreover, the $\left(\kappa^{*}, \kappa\right)$-lower part of $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals is described and depicted in terms of several classes of ordered semirings. Furthermore, it is shown that the ordered semiring is bi-simple if and only if it is $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-simple.

Keywords: $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals; regular ordered semirings; intra-regular ordered semirings
MSC: 16Y60; 08A72

Citation: Muhiuddin, M.; Abughazalah, N.; Mahboob, A.; Al-Kadi, D. A Novel Study of Fuzzy Bi-Ideals in Ordered Semirings.
Axioms 2023, 12, 626. https://
doi.org/10.3390/axioms12070626
Academic Editor: Boldizsár
Tüű-Szabó
Received: 18 May 2023
Revised: 7 June 2023
Accepted: 20 June 2023
Published: 24 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

The concept of an "ordered semiring" was first used by Gan and Jiang [1] in connection to a semiring with a compatible partial order relation. They also proposed the idea of ideals in ordered semirings. Good et al. [2] developed the concept of bi-ideals in semigroups. Following that, Lajos et al. [3] established bi-ideals in associative rings. Bi-ideals of ordered semirings were described and characterized in terms of regularity, and the relationship between bi-ideals and quasi-ideals was characterized by Palakawong et al. [4]. Senarat et al. [5] developed the terms-ordered k-bi-ideal, strong-prime-ordered k-bi-ideal, and prime-ordered k-bi-ideal in ordered semirings. By expanding on the idea of bi-ideals of ordered semirings, Davvaz et al. [6] introduced the concept of bi-hyperideals in ordered semi-hyperrings. The notions of (m, n)-bi-hyperideals and Prime (m, n)-bi-hyperideals were established and inter-related properties were considered by Omidi and Davvaz [7]. The characterization of ordered h-regular semirings was considered by Anjum et al. [8]. In [9], Patchakhieo and Pibaljommee characterized ordered k-regular semirings using ordered k-ideals. The ordered intra-k-regular semirings have been introduced and defined in different ways by Ayutthaya and Pibaljommee [10]. Omidi and Davvaz [7] considered the concepts of (m, n)-bi-hyperideals and Prime (m, n)-bi-hyperideals and established interrelated features. Anjum et al. [8] proposed characterizing ordered h-regular semirings. By using ordered k-ideals, Patchakhieo and Pibaljommee described ordered k-regular semirings in [9]. The ordered intra-k-regular semirings have been presented and characterized in various ways by Ayutthaya and Pibaljommee [10].

Fuzzy sets to semirings were initially discussed by Ahsan et al. in [11] and Kuroki [12] applied the idea to semigroups. Mandal [13] pioneered the study of ideals and interior ideals in ordered semirings, as well as their characterizations in the sense of regularity.

He developed the concepts of fuzzy bi-ideals and fuzzy quasi-ideals in ordered semirings in [14]. Gao et al. [15] presented semisimple fuzzy ordered semirings and weakly regular fuzzy ordered semirings in terms of different kinds of fuzzy ideals. Saba et al. [16] initiated the study of ordered semirings based on single-valued neutrosophic sets. Several characterizations of regular and intra-regular ordered semigroups in terms of $(\in, \in \vee q)$ fuzzy generalized bi-ideals were presented by Jun et al. [17], who also proposed the idea of (α, β)-fuzzy generalized bi-ideal in ordered semigroups. Similar semiring concepts, such as $(\epsilon, \in \vee q)$-fuzzy bi-ideals on semirings, were investigated by Hedayati [18]. Additionally, other ideas connected to our research in several domains have been examined in [19-25].

In this study, we describe a novel form of fuzzy ideal in ordered semirings. The concept of $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideal is presented. We show that any fuzzy bi-ideal is the $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideal, but the converse assertion is invalid, and an example is shown. A criterion for an $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideal to be a fuzzy bi-ideal is given. Furthermore, some correspondences between bi-ideal and $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideal are included. Furthermore, regularly ordered semirings are described in terms of $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals and their $\left(\kappa^{*}, \kappa\right)$-lower parts. The structure of the paper is as follows: Section 2 highlights some of the ideas and properties of ordered semirings, ideals, fuzzy subsets, and fuzzy subsemirings that are necessary to generate our key results. Section 3 focuses on the concept of the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideal of ordered semirings. Section 4 examines the $\left(\kappa^{*}, \kappa\right)$-lower part of the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideal. Section 5 contains instructions for some potential future research work.

2. Preliminaries

An ordered semiring $(\mathrm{Y},+, \cdot \leq)$ is a semiring with compatible order relation " \leq ", i.e., $\wp \leq \varrho \Rightarrow \wp \tau \leq \varrho \tau, \tau \wp \leq \tau \varrho$ and $\wp+\tau \leq \varrho+\tau, \tau+\wp \leq \tau+\varrho, \forall \wp, \varrho, \tau \in \mathrm{Y}$.

If $\wp+\varrho=\varrho+\wp, \forall \wp, \varrho \in \mathrm{Y}$, then Y is said to be additively commutative. An element $0 \in \mathrm{Y}$ is an absorbing zero if $0 \wp=0=\wp 0$ and $\wp+0=\wp=0+\wp, \forall \wp \in \mathrm{Y}$.

For $P \subseteq \mathrm{Y}$, we define $(P]=\{\wp \in \mathrm{Y} \mid \wp \leq \varrho$ for some $\wp \in P\}$. For $(\varnothing \neq) P, Q \subseteq \mathrm{Y}, P Q$ is defined as $\{\wp \varrho \mid \wp \in P$ and $\varrho \in Q\}$.

A subset $(\varnothing \neq) \Sigma$ of Y is said to be a sub-semiring if $\Sigma \Sigma \subseteq \Sigma$ and $\Sigma+\Sigma \subseteq \Sigma$. Additionally, Σ refers to the left (resp. right) ideal of Y if $\Sigma+\Sigma \subseteq \Sigma$ and $\mathrm{Y} \Sigma \subseteq \Sigma$ (resp. $\Sigma \mathrm{Y} \subseteq \Sigma$), and $(\Sigma] \subseteq \Sigma$. If it is both the left and right ideals of Y , it is referred to as an ideal. A sub-semiring P of Y is called a bi-ideal (in brief, $B I$) of Y if $P Y P \subseteq P$ and $(P] \subseteq P$.

A mapping $\widetilde{\lambda}^{f}: \underset{\sim}{Y} \rightarrow[0,1]$ is said to be fuzzy set (in brief, $\bar{\sim} S$) of Y. For the $F S s \tilde{\lambda}^{f}$ and $\widetilde{£}^{f}$ of $\mathrm{Y}, \widetilde{\lambda}^{f} \cap \widetilde{£}^{f}, \widetilde{\lambda}^{f} \cup \widetilde{£}^{f}, \widetilde{\lambda}^{f}+\widetilde{€}^{f}$ and $\widetilde{\lambda}^{f} \circ \widetilde{£}^{f}$ are described as:

$$
\begin{aligned}
& \left(\widetilde{\lambda}^{f} \cap \widetilde{£}^{f}\right)(\wp)=\widetilde{\lambda}^{f}(\wp) \wedge \widetilde{£}^{f}(\wp)=\min \left\{\widetilde{\lambda}^{f}(\wp), \widetilde{£}^{f}(\wp)\right\}, \\
& \left(\widetilde{\lambda}^{f} \cup \widetilde{£}^{f}\right)(\wp)=\widetilde{\lambda}^{f}(\wp) \vee \widetilde{£}^{f}(\wp)=\max \left\{\widetilde{\lambda}^{f}(\wp), \widetilde{£}^{f}(\wp)\right\}, \\
& \left(\tilde{\lambda}^{f}+\widetilde{£}^{f}\right)(\wp)=\left\{\begin{array}{l}
\bigvee \widetilde{\lambda}^{f}(\varrho) \wedge \widetilde{£}^{f}(\varkappa), \\
\wp \leq \varrho+\varkappa \\
0, \quad \text { if } \wp \text { can not be written as } \wp \leq \varrho+\varkappa,
\end{array}\right.
\end{aligned}
$$

and

$$
\left(\widetilde{\lambda}^{f} \circ \widetilde{£}^{f}\right)(\wp)=\left\{\begin{array}{l}
\bigvee{ }_{\wp \leq \varrho \varkappa} \tilde{\lambda}^{f}(\varrho) \wedge \widetilde{£}^{f}(\varkappa), \\
0, \quad \text { if } \wp \text { cannot be written as } \wp \leq \varrho \varkappa .
\end{array}\right.
$$

For $\Omega \subseteq \mathrm{Y}$, the characteristic function χ_{Ω}^{f} is defined as:

$$
\chi_{\Omega}^{f}(\wp)= \begin{cases}1, & \text { if } \wp \in \Omega ; \\ 0, & \text { if } \wp \notin \Omega\end{cases}
$$

Define \preceq on the set $\mathcal{F}(\mathrm{Y})$ of all FS s of Y by

$$
\widetilde{\lambda}^{f} \preceq \widetilde{£}^{f} \Leftrightarrow \widetilde{\lambda}^{f}(\wp) \leq \widetilde{£}^{f}(\wp), \forall \wp \in \mathrm{Y} .
$$

If $\widetilde{\lambda}^{f}, \widetilde{£}^{f} \in \mathcal{F}(\mathrm{Y})$ such that $\widetilde{\lambda}^{f} \preceq \widetilde{£}^{f}$, then $\forall \widetilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y}), \widetilde{\lambda}^{f} \circ \widetilde{\lambda}^{f} \preceq \widetilde{£}^{f} \circ \widetilde{\lambda}^{f}$ and $\tilde{\lambda}^{f} \circ \widetilde{\lambda}^{f} \preceq \tilde{\lambda}^{f} \circ \widetilde{€}^{f}$. We represent by $\overline{1}^{-}$the $F S$ of Y given by $1^{f}: \mathrm{Y} \rightarrow[0,1] \mid r \mapsto 1^{f}(r)=1$.

Let $P, Q \subseteq Y$. Then $P \subseteq Q \Leftrightarrow \chi_{P}^{f} \preceq \chi_{Q}^{f} ; \chi_{P}^{f} \cap \chi_{Q}^{f}=\chi_{P \cap Q}^{f} ; \chi_{P}^{f} \circ \chi_{Q}^{f}=\chi_{(P Q]}$.
A FS $\widetilde{\lambda}^{f}$ is called a:

1. Fuzzy subsemiring of Y if $\widetilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho)$ and $\widetilde{\lambda}^{f}(\wp+\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho)$, $\forall \wp, \varrho \in \mathrm{Y}$.
2. Fuzzy left (resp. right) ideal (in brief, $F L(R) I)$ of Y if $\wp \leq \varrho \Rightarrow \tilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(\rho)$, $\tilde{\lambda}^{f}(\wp+\varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho)$ and $\tilde{\lambda}^{f}(\wp \varrho) \geq \tilde{\lambda}^{f}(\varrho)\left(\right.$ resp. $\left.\tilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp)\right), \forall \wp, \varrho \in \mathrm{Y}$.
3. Fuzzy ideal of Y if $\widetilde{\lambda}^{f}$ is both fuzzy right and left ideals of Y .
4. Fuzzy bi-ideal (in brief, FBI) if it is fuzzy subsemiring and $\wp \leq \varrho \Rightarrow \widetilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(\varrho)$ and $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho), \forall \wp, t, \varrho, \in \mathrm{Y}$.
5. $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-Fuzzy Bi-Ideals of Ordered Semirings

In this section, the concept of $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals of Y is introduced.
Let $\wp \in \mathrm{Y}$ and $\iota \in(0,1]$. The ordered fuzzy point (OFP) $\wp \iota$ of Y is defined by

$$
\wp_{l}(\varkappa)= \begin{cases}l, & \text { if } \varkappa \in(\wp] ; \\ 0, & \text { if } \varkappa \notin(\wp] .\end{cases}
$$

For $\tilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y}), \wp_{\iota} \in \tilde{\lambda}^{f}$ represents for $\wp_{\iota} \subseteq \tilde{\lambda}^{f}$. Thus $\wp_{\iota} \in \tilde{\lambda}^{f} \Leftrightarrow \tilde{\lambda}^{f}(\wp) \geq \iota$.
Definition 1. An OFP \wp ィ of Y is said to be $\left(\kappa^{*}, q\right)$-quasi-coincident with a FS $\tilde{\lambda}^{f}$ of Y for $\kappa^{*} \in(0,1]$, denoted as $\wp_{l}\left(\kappa^{*}, q\right) \widetilde{\lambda}^{f}$, and defined as:

$$
\tilde{\lambda}^{f}(\wp)+\iota>\kappa^{*} .
$$

For the OFP \wp_{l}, we define
(1) $\wp_{\iota}\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$, if $\tilde{\lambda}^{f}(\wp)+\iota+\kappa>\kappa^{*}$;
(2) $\wp_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$, if $\wp_{\iota} \in \tilde{\lambda}^{f}$ or $\wp_{\iota}\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$;
(3) $\wp_{l} \bar{\alpha} \widetilde{\lambda}^{f}$, if $\wp_{l} \alpha \widetilde{\lambda}^{f}$ does not hold for $\alpha \in\left\{\left(\kappa^{*}, q_{\kappa}\right), \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right\}$;
for $1 \geq \kappa^{*}>\kappa \geq 0$.
Definition 2. A FS $\widetilde{\lambda}^{f}$ of Y is said to be an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right.$)-fuzzy bi-ideal (in brief, $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI) of Y if:
(1) $\wp \leq \varrho, \varrho_{\iota} \in \tilde{\lambda}^{f} \Rightarrow \wp_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$,
(2) $\wp_{\iota} \in \widetilde{\lambda}^{f}$ and $\varrho_{\theta} \in \widetilde{\lambda}^{f} \Rightarrow(\wp+\varrho)_{\iota \wedge \theta} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$,
(3) $\wp_{\iota} \in \widetilde{\lambda}^{f}$ and $\varrho_{\theta} \in \widetilde{\lambda}^{f} \Rightarrow(\wp \varrho)_{\iota \wedge \theta} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$, and
(4) $t \in \mathrm{Y}, \wp_{\iota} \in \tilde{\lambda}^{f}, \varrho_{\iota} \in \lambda \Rightarrow(\wp t \varrho)_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$.
$\forall \iota, \theta \in(0,1]$ and $\wp, t, \varrho \in \mathrm{Y}$.
Example 1. On $\mathrm{Y}=\left\{\wp_{1}, \wp_{2}, \wp_{3}\right\}$, define the opertaions and order relation as

+	\wp_{1}	\wp_{2}	\wp_{3}		
\wp_{1}	\wp_{1}	\wp_{2}	\wp_{3}		
\wp_{2}	\wp_{2}	\wp_{2}	\wp_{2}		
\wp_{3}	\wp_{3}	\wp_{2}	\wp_{2}	\quad	\cdot
:---					
\wp_{1}	\wp_{2}				

Then $(\mathrm{Y},+, \cdot, \leq)$ is an ordered semiring. Define an $F S \widetilde{\lambda}^{f}$ of Y as

$$
\tilde{\lambda}^{f}(\varkappa)= \begin{cases}0.5, & \text { if } \varkappa=\wp_{1} ; \\ 0.4, & \text { if } \varkappa=\wp_{2} ; \\ 0.3, & \text { if } \varkappa=\wp_{3} .\end{cases}
$$

$\tilde{\lambda}^{f}$ is the $\left(\in, \in \vee\left(0.2, q_{0.6}\right)\right)$-FBI of Y and can be easily verified.
Lemma 1. Each FBI of Y is the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y .
Proof. Straightforward.
Remark 1. In general, the converse of Lemma 1 does not hold. It is illustrated by the following example:

Example 2. Define operations and ordered relations on $\mathrm{Y}=\left\{\wp_{1}, \wp_{2}, \wp_{3}\right\}$ as follows:

+	\wp_{1}	\wp_{2}	\wp_{3}
\wp_{1}	\wp_{1}	\wp_{2}	\wp_{3}
\wp_{2}	\wp_{2}	\wp_{2}	\wp_{3}
\wp_{3}	\wp_{3}	\wp_{3}	\wp_{3}
$\leq:=\left\{\left(\wp_{1}, \wp_{1}\right),\left(\wp_{2}\right.\right.$,			

\cdot	\wp_{1}	\wp_{2}	\wp_{3}
\wp_{1}	\wp_{1}	\wp_{1}	\wp_{1}
\wp_{2}	\wp_{1}	\wp_{2}	\wp_{2}
\wp_{3}	\wp_{1}	\wp_{2}	\wp_{2}

Then, $(\mathrm{Y},+, \cdot, \leq)$ is an ordered semiring. Define the FS $\widetilde{\lambda}^{f}$ of Y as

$$
\tilde{\lambda}^{f}(\varkappa)= \begin{cases}0.6, & \text { if } \varkappa=\wp_{1} ; \\ 0.5, & \text { if } \varkappa=\wp_{2} ; \\ 0.7, & \text { if } \varkappa=\wp_{3} .\end{cases}
$$

It can be easily verified that $\tilde{\lambda}^{f}$ is the $\left(\in, \in \vee\left(0.9, q_{0.1}\right)\right)$-fuzzy bi-deal of Y but not an FBI of Y as follows: $\wp_{1} \leq \wp_{3} \nRightarrow \widetilde{\lambda}^{f}\left(\wp_{1}\right) \geq \widetilde{\lambda}^{f}\left(\wp_{3}\right)$.

Theorem 1. An FS $\tilde{\lambda}^{f}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of $\mathrm{Y} \Leftrightarrow$
(1) $\wp \leq \varrho \Rightarrow \widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$
(2) $\widetilde{\lambda}^{f}(\wp+\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$,
(3) $\tilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, and
(4) $\tilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$,
$\forall \wp, t, \varrho \in \mathrm{Y}$.
Proof. (\Rightarrow) Let $\wp, \varrho \in \mathrm{Y}$ such that $\wp \leq \varrho$. If $\widetilde{\lambda}^{f}(\wp)<\widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, then $\exists \iota \in(0,1]$ such that $\widetilde{\lambda}^{f}(\wp)<\iota \leq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{\tilde{\lambda}^{2}}$. So $s_{\iota} \in \tilde{\lambda}^{f}$, but $(\wp)_{\iota} \overline{\in \vee\left(\kappa^{*}, q_{\kappa}\right)} \widetilde{\lambda}^{f}$, which is a contradiction. Therefore $\widetilde{\lambda}^{f}(\wp) \geq \min \left\{\widetilde{\lambda}^{f}(\varrho), \frac{\kappa^{*}-\kappa}{2}\right\}$. Next, if $\tilde{\lambda}^{f}(\wp+\varrho)<\tilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, for some $\wp, \varrho \in \mathrm{Y}$, then $\tilde{\lambda}^{f}(\wp+\varrho)<\iota \leq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, for some $\iota \in(0,1]$. Thus, $\wp_{\iota}, \varrho_{\iota} \in \widetilde{\lambda}^{f}$, but $(\wp+\varrho)_{\iota} \overline{\in \vee\left(\kappa^{*}, q_{k}\right)} \widetilde{\lambda}^{f}$, which is a contradiction. Therefore, $\widetilde{\lambda}^{f}(\wp+\varrho) \geq$ $\tilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Similarly, $\widetilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}, \forall \wp, \varrho \in$ Y. Again, if $\tilde{\lambda}^{f}(\wp t \varrho)<\tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, for some $\wp, t, \varrho \in \mathrm{Y}$, then $\tilde{\lambda}^{f}(\wp t \varrho)<\iota \leq \tilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2}$ for some $\iota \in(0,1]$. Thus, $\wp_{\iota}, \varrho_{\iota} \in \widetilde{\lambda}^{f}$, but $(\wp t \varrho)_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$, again a contradiction. Consequently, $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2}$.
(\Leftarrow) Take any $\wp, \varrho \in \mathrm{Y}$ and $\iota, \theta \in(0,1]$ such that $\wp \leq \varrho$ and $\varrho_{\theta} \in \widetilde{\lambda}^{f}$. Then, $\widetilde{\lambda}^{f}(\varrho) \geq \iota$, and it follows that $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2}$. If $\iota \leq \frac{\kappa^{*}-\kappa}{2}$, then $\widetilde{\lambda}^{f}(\wp) \geq \iota$ implies $\wp_{\iota} \in \tilde{\lambda}^{f}$. Again, if $\iota>\frac{\kappa^{*}-\kappa}{2}$, then $\widetilde{\lambda}^{f}(\wp) \geq \frac{\kappa^{*}-\kappa}{2}$. Thus, $\tilde{\lambda}^{f}(\wp)+\iota>\frac{\kappa^{*}-\kappa}{2}+\frac{\kappa^{*}-\kappa}{2}=\kappa^{*}-\kappa$, so $\wp_{\iota}\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$. Therefore, $\wp_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$. Again, take any $\wp_{\theta} \in \widetilde{\lambda}^{f}$ and $\varrho_{\theta} \in \widetilde{\lambda}^{f}$. Then, $\widetilde{\lambda}^{f}(\wp) \geq \iota$ and $\widetilde{\lambda}^{f}(\varrho) \geq \iota$. Therefore, $\widetilde{\lambda}^{f}(\wp+\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \theta \wedge \frac{\kappa^{*}-\kappa}{2}$ Now, if $\iota \wedge \theta \leq \frac{\kappa^{*}-\kappa}{2}$, then $\widetilde{\lambda}^{f}(\wp+\varrho) \geq \iota \wedge \theta$ implies $(\wp+\varrho)_{\iota \wedge \theta} \in \widetilde{\lambda}^{f}$. Again, if $\iota \wedge \theta>\frac{\kappa^{*}-\kappa}{2}$, then $\widetilde{\lambda}^{f}(\wp+\varrho) \geq \frac{\kappa^{*}-\kappa}{2}$. Therefore, $\widetilde{\lambda}^{f}(\wp+\varrho)+\iota \wedge \theta>\frac{\kappa^{*}-\kappa}{2}+\frac{\kappa^{*}-\kappa}{2}=\kappa^{*}-\kappa$ implies that $(\wp+\varrho)_{\iota \wedge \theta}\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$. Therefore, $(\wp+\varrho)_{\iota \wedge \theta} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$. Similarly, $(\wp \varrho)_{\iota \wedge \theta} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$ for any $\wp_{\theta} \in \bar{\lambda}^{f}$ and $\varrho_{\theta} \in \widetilde{\lambda}^{f}$. Further, take any $t \in \mathrm{Y}$ and $\wp_{\iota}, \varrho_{\iota} \in \widetilde{\lambda}^{f}, \forall \iota \in(0,1]$. Then $\widetilde{\lambda}^{f}(\wp) \geq \iota$ and $\tilde{\lambda}^{f}(\varrho) \geq \iota$. Therefore, $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{\frac{2}{\alpha}} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2}$. Now if $\iota \leq \frac{\kappa^{*}-\kappa}{2}$, then $\tilde{\lambda}^{f}(\wp t \varrho) \geq \iota$ implies $(\wp t \varrho) \iota \in \widetilde{\lambda}^{f}$. If $\iota>\frac{\kappa^{*}-\kappa}{2}$, then $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \frac{\kappa^{*}-\kappa}{2}$. Thus
$\tilde{\lambda}^{f}(\wp t \varrho)+\iota>\frac{\kappa^{*}-\kappa}{2}+\frac{\kappa^{*}-\kappa}{2}=\kappa^{*}-\kappa$ i.e., $(\wp t \varrho)_{\iota}\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$. Therefore, $(\wp t \varrho)_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$, as required.

Theorem 2. If $\widetilde{\lambda}^{f}(\in \mathcal{F}(\mathrm{Y}))$ is $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y with $\widetilde{\lambda}^{f}(\wp)<\frac{\kappa^{*}-\kappa}{2}, \forall \wp \in \mathrm{Y}$. Then $\tilde{\lambda}^{f}$ is an FBI of Y .

Proof. Suppose that $\wp, \varrho \in \mathrm{Y}$ such that $\wp \leq \varrho$. Since $\widetilde{\lambda}^{f}$ is $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)-F B I, \widetilde{\lambda}^{f}(\wp) \geq$ $\widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. By hypothesis, $\widetilde{\lambda}^{f}(\varrho)<\frac{\kappa^{*}-\kappa}{2}$; thus, it implies $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho)$. Again, for any $\wp, \varrho \in \mathrm{Y}$, we have

$$
\tilde{\lambda}^{f}(\wp+\varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}
$$

and

$$
\tilde{\lambda}^{f}(\wp \varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}
$$

Since $\tilde{\lambda}^{f}(\varrho)<\frac{\kappa^{*}-\kappa}{2}$ and $\tilde{\lambda}^{f}(\wp)<\frac{\kappa^{*}-\kappa}{2}$, so

$$
\widetilde{\lambda}^{f}(\wp+\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho)
$$

and

$$
\tilde{\lambda}^{f}(\wp \varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho)
$$

Finally, take any $\wp, t, \varrho \in \mathrm{Y}$. Since $\tilde{\lambda}^{f}$ is $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)-F B I$, by Theorem 1 and the hypothesis

$$
\tilde{\lambda}^{f}(\wp t \varrho) \geq \tilde{\lambda}^{f}(\wp), \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}=\tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho),
$$

as required.
Theorem 3. Let $(\varnothing \neq) \Omega \subseteq \mathrm{Y}$. Then Ω is a BI of $\mathrm{Y} \Leftrightarrow \chi_{\Omega^{\prime}}^{f}$ an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI.
Proof. Straightforward.
Theorem 4. An FS $\tilde{\lambda}^{f}$ is the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of $Y \Leftrightarrow U\left(\tilde{\lambda}^{f} ; \iota\right)(\neq \varnothing)\left(\iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]\right)$, a BI of Y.
$\underset{\sim}{\text { Proof. }}(\Rightarrow)$ Let $\wp \in \mathrm{Y}$ and $\varrho \in U\left(\tilde{\lambda}^{f} ; \iota\right)$ be such that $\wp \leq \varrho$. Then, $\tilde{\lambda}^{f}(\varrho) \geq \iota$. By Theorem 1, $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2}=\iota$. Therefore, $\wp \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$. Let $\wp, \varrho \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$, where $\iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]$. Then $\tilde{\lambda}^{f}(\wp) \geq \iota$ and $\tilde{\lambda}^{f}(\varrho) \geq \iota$. By Theorem $1, \tilde{\lambda}^{f}(\wp+\varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge$ $\widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2}=\iota$. Therefore, $\wp+\varrho \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$. Similarly, $\wp \varrho \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$ for $\wp, \varrho \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$. Let $\wp, \varrho \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$ and $t \in \mathrm{Y}$. Then, $\widetilde{\lambda}^{f}(\wp) \geq \iota$ and $\widetilde{\lambda}^{f}(\varrho) \geq \iota$. So, by Theorem 1, $\tilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \iota \wedge \frac{\kappa^{*}-\kappa}{2}=\iota$. Thus $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \iota$. Therefore $\wp t \varrho \in U\left(\tilde{\lambda}^{f} ; \iota\right)$. Hence $U\left(\tilde{\lambda}^{f} ; \iota\right)$ is a $B I$.
(\Leftarrow) Take any $\wp, \varrho \in \mathrm{Y}$ with $\wp \leq \varrho$. If $\widetilde{\lambda}^{f}(\wp)<\tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, then for some $\iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]$, $\widetilde{\lambda}^{f}(\wp)<\iota \leq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. So $\varrho \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$, but $\wp \notin U\left(\widetilde{\lambda}^{f} ; \iota\right)$, which is a contradiction. Thus $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}, \forall \wp, \varrho \in \mathrm{Y}$ with $\wp \leq \varrho$. Again, if $\tilde{\lambda}^{f}(\wp+\varrho)<\widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, for some $\wp, \varrho \in \mathrm{Y}$, then $\tilde{\lambda}^{f}(\wp+\varrho)<\iota \leq \tilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, for some $\iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]$. Thus, $\wp, \varrho \in U\left(\widetilde{\lambda}^{f} ; \iota\right)$, but $\wp+\varrho \notin U\left(\widetilde{\lambda}^{f} ; \iota\right)$, a contradiction. Therefore, $\widetilde{\lambda}^{f}(\wp+\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge$ $\widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}, \forall \wp, \varrho \in$ Y. Similarly, $\tilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}, \forall \wp, \varrho \in \mathcal{Y}$. Further, if $\tilde{\lambda}^{f}(\wp t \varrho)<\tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, for some $\wp, t, \varrho \in \mathrm{Y}$. Then, $\exists \iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]$ such that $\tilde{\lambda}^{f}(\wp t \varrho)<\iota \leq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$ implies $\wp_{\iota}, \varrho_{\iota} \in U\left(\tilde{\lambda}^{f} ; \iota\right)$, but $(\wp t \varrho)_{\iota} \notin U\left(\tilde{\lambda}^{f} ; \iota\right)$, again a contradiction. Therefore $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}, \forall \wp, \varrho \in \mathrm{Y}$, as required.

Example 3. Define the operations $(+, \cdot)$ and order relation \leq on $Y=\left\{\wp_{1}, \wp_{2}, \wp_{3}, \tau\right\}$ in the following ways:

+	\wp_{1}	\wp_{2}	\wp_{3}	\wp_{4}					
\wp_{1}	\wp_{1}	\wp_{2}	\wp_{3}	\wp_{4}		\cdot	\wp_{1}	\wp_{2}	\wp_{3}
\wp_{2}	\wp_{2}	\wp_{2}	\wp_{3}	\wp_{4}	\wp_{1}	\wp_{1}	\wp_{1}	\wp_{1}	\wp_{1}
\wp_{3}	\wp_{3}	\wp_{3}	\wp_{3}	\wp_{4}	\wp_{2}	\wp_{1}	\wp_{2}	\wp_{2}	\wp_{2}
\wp_{4}	\wp_{4}	\wp_{4}	\wp_{4}	\wp_{4}	\wp_{3}	\wp_{1}	\wp_{2}	\wp_{2}	\wp_{2}
$\leq:=\left\{\left(\wp_{1}, \wp_{1}\right),\left(\wp_{2}, \wp_{2}\right),\left(\wp_{3}, \wp_{3}\right),\left(\wp_{1}, \wp_{2}\right),\left(\wp_{2}, \wp_{3}\right),\left(\wp_{3}, c\right)\right\}$									

Then, $(\mathrm{Y},+, \cdot, \leq)$ is an ordered semiring. Now define an FS $\widetilde{\lambda}^{f}$ of Y as $\widetilde{\lambda}^{f}\left(\wp_{1}\right)=0.5$, $\widetilde{\lambda}^{f}\left(\wp_{2}\right)=0.4, \widetilde{\lambda}^{f}\left(\wp_{3}\right)=0.1$ and $\widetilde{\lambda}^{f}(\tau)=0.3$. Therefore,

$$
U\left(\tilde{\lambda}^{f} ; \iota\right)= \begin{cases}\mathrm{Y}, & \text { if } \wp_{1}<\iota \leq 0.1 ; \\ \left\{\wp_{1}, \wp_{2}, \tau\right\}, & \text { if } 0.1<\iota \leq 0.3 ; \\ \left\{\wp_{1}, \wp_{2}\right\}, & \text { if } 0.3<\iota \leq 0.4 ; \\ \left\{\wp_{1}\right\}, & \text { if } 0.4<\iota \leq 0.5 \\ \varnothing, & \text { if } 0.5<\iota \leq 1\end{cases}
$$

By Theorem 4, $\tilde{\lambda}^{f}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y as $U\left(\widetilde{\lambda}^{f} ; \iota\right)$ is a BI of $\mathrm{Y}, \forall \iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]$, with $\kappa^{*}=1$ and $\kappa=0$.

Definition 3. Let $\widetilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y})$. The set

$$
\left[\tilde{\lambda}^{f}\right]_{\iota}=\left\{\wp \in \mathrm{Y} \mid \wp_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}\right\}
$$

where $\iota \in(0,1]$, is said to be an $\left(\in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-level subset of $\widetilde{\lambda}^{f}$.
Theorem 5. Let $\tilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y})$ such that $\wp \leq \varrho$ implies $\tilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(\varrho)$. Then. $\tilde{\lambda}^{f}$ is an $(\in, \in$ $\left.\vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of $\mathrm{Y} \Leftrightarrow \forall \iota \in(0,1]$, the $\left(\in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-level subset $\left[\widetilde{\lambda}^{f}\right]_{\iota}$ of $\widetilde{\lambda}^{f}$ is a bi-deal of Y .

Proof. (\Rightarrow) Take any $\wp \in \mathrm{Y}$ and $\varrho \in[\widetilde{\lambda} f]_{\iota}$ such that $\wp \leq \varrho$. As $\varrho \in\left[\tilde{\lambda}^{f}\right]_{\iota}$, we have $\varrho_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$ implies $\widetilde{\lambda}^{f}(\varrho) \geq \iota$ or $\widetilde{\lambda}^{f}(\varrho)+\iota+\kappa>\kappa^{*}$. By hypothesis, we have $\tilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(\varrho) \geq \iota$ or $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \geq \kappa^{*}-\iota-\kappa$. Thus, $\wp_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right)^{\prime} \tilde{\lambda}^{f}$. Therefore, $\wp \in\left[\tilde{\lambda}^{f}\right]_{\iota}$. Next, take any $\wp, \varrho \in\left[\tilde{\lambda}^{f}\right]_{\iota}$. Then, $\wp_{\iota}, \varrho_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$; that is, $\widetilde{\lambda}^{f}(\wp) \geq \iota$ or $\widetilde{\lambda}^{f}(\wp)+\iota+\kappa>\kappa^{*}$ and $\widetilde{\lambda}^{f}(\varrho) \geq \iota$ or $\tilde{\lambda}^{f}(\varrho)+\iota+\kappa>\kappa^{*}$.
Case (i). Let $\tilde{\lambda}^{f}(\wp) \geq \iota$ and $\tilde{\lambda}^{f}(\varrho) \geq \iota$. If $\iota>\frac{\kappa^{*}-\kappa}{2}$; then,

$$
\begin{aligned}
\tilde{\lambda}^{f}(\wp+\varrho) & \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \iota \wedge \iota \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\frac{\kappa^{*}-\kappa}{2},
\end{aligned}
$$

and, so, $(\wp+\varrho)_{\iota}\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$. If $\iota \leq \frac{\kappa^{*}-\kappa}{2}$, then

$$
\begin{aligned}
\tilde{\lambda}^{f}(\wp+\varrho) & \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \iota \wedge \iota \wedge \frac{\kappa^{*}-\kappa}{2}=\iota
\end{aligned}
$$

and so $(\wp+\varrho)_{\iota} \in \widetilde{\lambda}^{f}$. Hence, $(\wp+\varrho)_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda} f$.
Case (ii). Let $\widetilde{\lambda}^{f}(\wp) \geq \iota$ and $\widetilde{\lambda}^{f}(\varrho)+\iota+\kappa>\kappa^{*}$. If $\iota>\frac{\kappa^{*}-\kappa}{2}$, then

$$
\begin{aligned}
\tilde{\lambda}^{f}(\wp+\varrho) & \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& >\left(\kappa^{*}-\iota-\kappa\right) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\kappa^{*}-\iota-\kappa
\end{aligned}
$$

that is, $\tilde{\lambda}^{f}(\wp+\varrho)+\iota+\kappa>\kappa^{*}$, and thus $(\wp+\varrho)_{\iota}\left(\kappa^{*}, q_{\kappa}\right) \tilde{\lambda}^{f}$. If $\iota \leq \frac{\kappa^{*}-\kappa}{2}$, then

$$
\begin{aligned}
\tilde{\lambda}^{f}(\wp+\varrho) & \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \iota \wedge\left(\kappa^{*}-\iota-\kappa\right) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\iota
\end{aligned}
$$

and so $(\wp+\varrho)_{\iota} \in \widetilde{\lambda}^{f}$. Hence, $(\wp+\varrho)_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$.
Case (iii). Let $\widetilde{\lambda}^{f}(\wp)+\iota+\kappa>\kappa^{*}$ and $\widetilde{\lambda}^{f}(\varrho) \geq \iota$. Proof is analogous to case proof (ii).
Case (iv). Let $\tilde{\lambda}^{f}(\wp)+\iota+\kappa>\kappa^{*}$ and $\tilde{\lambda}^{f}(\varrho)+\iota+\kappa>\kappa^{*}$. Proof is analogous to previous two cases.

Thus for all cases, we have $(\wp+\varrho)_{\iota} \in \vee\left(\kappa^{*}, q_{\kappa}\right) \widetilde{\lambda}^{f}$, and thus $\wp+\varrho \in\left[\tilde{\lambda}^{f}\right]_{\iota}$. Similarly, for any $t \in \mathrm{Y}$ and $\wp, \varrho \in\left[\widetilde{\lambda}^{f}\right]_{\iota}$, we have $\wp \varrho \in\left[\widetilde{\lambda}^{f}\right]_{\iota}$ and $\wp t \varrho \in\left[\widetilde{\lambda}^{f}\right]_{\iota}$. Hence, $\left[\tilde{\lambda}^{f}\right]_{l}$ is a BI of Y.
(\Leftarrow) Let $\widetilde{\lambda}^{f}(\wp)<\tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, for some $\wp, \varrho \in \mathrm{Y}$. Then, $\iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]$ such that $\tilde{\lambda}^{f}(\wp)<\iota \leq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Thus, it follows that $\varrho \in\left[\tilde{\lambda}^{f}\right]_{\iota}$ but $\wp \notin\left[\widetilde{\lambda}^{f}\right]_{\iota}$, which is a contradiction, and hence $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Let $\widetilde{\lambda}^{f}(\wp+\varrho)<\widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$ for some $\wp, \varrho \in \mathrm{Y}$. Then $\exists \iota \in\left(0, \frac{\kappa^{*}-\kappa}{2}\right]$ such that $\widetilde{\lambda}^{f}(\wp+\varrho)<\iota \leq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Thus, it follows that $\wp, \varrho \in\left[\widetilde{\lambda}^{f}\right]_{\iota}$ but $\wp+\varrho \notin\left[\widetilde{\lambda}^{f}\right]_{\iota}$, which is a contradiction. Therefore, $\widetilde{\lambda}^{f}(\wp+\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}, \forall \wp, \varrho \in \mathrm{Y}$. Similarly, $\widetilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge$ $\frac{\kappa^{*}-\kappa}{2}, \forall \wp, \varrho \in \mathrm{Y}$. Next, suppose that $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$ for some $\wp, t, \varrho \in$ $\underset{\sim}{\mathrm{N}}$. It follows that $\wp, \varrho \in\left[\widetilde{\lambda}^{f}\right]_{\iota}$ but $\wp t \varrho \notin\left[\widetilde{\lambda}^{f}\right]_{\iota}$ which is again a contradiction. Thus $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, as required.

4. Lower Part of $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI

The concept of the lower part of the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y is defined and characterized.
Definition 4. The $\left(\kappa^{*}, \kappa\right)$-lower part $\underline{\lambda_{\kappa}^{f^{\kappa}}}$ of $\widetilde{\lambda}^{f}$ is defined as

$$
\underline{\lambda^{f^{\kappa^{*}}}(\wp)=\tilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2}, ~}
$$

$\forall \wp \in \mathrm{Y}$ and $1 \geq \kappa^{*}>\kappa \geq 0$.
The $\left(\kappa^{*}, \kappa\right)$-lower part $\left.\left(\underline{\chi_{\kappa}^{f}}\right)_{\Omega}^{\kappa^{*}}\right)_{\Omega}$ of the characteristic function χ_{Ω}^{f} is defined for $\Omega \subseteq R$ as

$$
\left(\underline{\chi_{\kappa}^{f \kappa^{*}}}\right)_{\Omega}(\wp)= \begin{cases}\frac{\kappa^{*}-\kappa}{2}, & \text { if } \wp \in \Omega ; \\ 0, & \text { if } \wp \notin \Omega .\end{cases}
$$

Definition 5. Let $\widetilde{£}^{f}, \widetilde{\lambda}^{f} \in \mathcal{F}(Y)$. Define $\widetilde{£}^{f}(\cap)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}, \widetilde{£}^{f}(\cup)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}$, and $\widetilde{£}^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}$ as follows:

$$
\begin{aligned}
& \left(\widetilde{€}^{f}(\cap)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}\right)(\wp)=\left(\widetilde{€}^{f} \cap \widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \left(\widetilde{€}^{f}(\cup)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(\wp)=\left(\widetilde{€}^{f} \cup \widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \left(\widetilde{£}^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(\wp)=\left(\widetilde{€}^{f} \circ \widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \left(\widetilde{£}^{f}(+)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}\right)(\wp)=\left(\widetilde{€}^{f}+\widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2}
\end{aligned}
$$

$\forall \wp \in \mathrm{Y}$ and $1 \geq \kappa^{*}>\kappa \geq 0$.
Lemma 2. $\widetilde{£}^{f}, \widetilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y})$. Then,

(2) If $\widetilde{£^{f}} \subseteq \widetilde{\lambda}^{f}$, and $\widetilde{\lambda}^{f} \in \overline{\mathcal{F}(\mathrm{Y})}$, then $\widetilde{£}^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f} \subseteq \widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}$ and $\left.\widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{£}^{f} \subseteq \widetilde{\lambda}^{f} \circ\right)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}$;
(3) If $\widetilde{£}^{f} \subseteq \widetilde{\lambda}^{f}$, and $\widetilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y})$, then $\widetilde{£}^{f}(+)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f} \subseteq \widetilde{\lambda}^{f}(+)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}$ and $\lambda(+)_{\kappa}^{\kappa^{*}} \widetilde{£}^{f} \subseteq \lambda(+)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}$;
(4) $\widetilde{£}^{f}(\cap)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}=\frac{£_{\kappa}^{f^{\kappa^{*}}} \cap \frac{\lambda^{\kappa^{\kappa}}}{\kappa^{\kappa}} \text {; }}{\kappa^{\kappa^{*}}}$;
(5) $\widetilde{£}^{f}(\cup)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}=\overline{£^{f_{\kappa}^{\kappa^{*}}}} \cup \overline{\lambda_{\kappa}^{\kappa^{\kappa^{*}}}}$;
(6) $\tilde{£}^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}=\overline{£^{f_{\kappa}^{\kappa^{*}}}} \circ \overline{\lambda_{f_{\kappa}^{\kappa^{*}}}}$;
(7) $\widetilde{£}^{f}(+)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}=\underline{£^{f} \kappa_{\kappa}^{*}}+\underline{\lambda_{\kappa}^{f^{\kappa^{*}}}}$.

Proof. Straightforward.
Lemma 3. Let $\Sigma, \Omega \subseteq \mathrm{Y}$. Then,
(1) $\chi_{\Sigma}(+)_{\kappa}^{\kappa^{*}} \chi_{\Omega}=\left(\underline{\chi_{\kappa}^{\kappa^{*}}}\right)_{\Sigma+\Omega}$;
(2) $\chi_{\Sigma}(\cap)_{\kappa}^{\kappa^{*}} \chi_{\Omega}=\left(\underline{\chi_{\kappa}^{\kappa^{*}}}\right)_{\Sigma \cap \Omega}$;
(3) $\chi_{\Sigma}(\cup)_{\kappa}^{\kappa^{*}} \chi_{\Omega}=\left(\underline{\chi_{\kappa}^{\kappa^{*}}}\right) \Sigma \cup \Omega$;
(4) $\chi_{\Sigma}(\circ)_{\kappa}^{\kappa^{*}} \chi_{\Omega}=\left(\underline{\chi_{\kappa}^{\kappa^{*}}}\right)_{(\Sigma \Omega]}$.

Proof. Straightforward.
Lemma 4. If $\tilde{\lambda}^{f}$ is the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y , then $\underline{\lambda_{\kappa}^{\kappa^{*}}}$ is an FBI of Y .
Proof. Let $\wp, \varrho \in \mathrm{Y}$ be such that $\wp \leq \varrho$. Then, $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Thus, it implies $\tilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, and, so, $\left(\underline{\left.\lambda^{f^{\kappa^{*}}}\right)}(\wp) \geq\left(\underline{\lambda_{\kappa}^{\kappa^{*}}}\right)(\varrho)\right.$. Next suppose that $\wp, \varrho \in \mathrm{Y}$. Since $\tilde{\lambda}^{f}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of $\mathrm{Y} \widetilde{\lambda}^{f}(\wp+\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. It follows that $\widetilde{\lambda}^{f}(\wp+\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \wedge \frac{\kappa^{*}-\kappa}{2}$, and hence, $\left(\underline{\lambda^{f^{\kappa^{*}}}}\right)(\wp+\varrho) \geq\left(\underline{\lambda^{f} \kappa^{\kappa^{*}}}\right)(\wp) \wedge$ $\left(\underline{\lambda_{\kappa}^{\kappa^{\kappa^{*}}}}\right)(\varrho)$. Similarly, $\left(\underline{\lambda_{\kappa}^{\kappa^{\kappa}}}\right)(\wp \varrho) \geq\left(\lambda^{\lambda_{\kappa}^{\kappa^{*}}}\right)(\wp) \wedge\left(\underline{\lambda_{\kappa}^{f^{*}}}\right)(\varrho), \forall \wp, \varrho \in \mathrm{Y}$. Let $\wp, t, \varrho \in \mathrm{Y}$; we have $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Then $\widetilde{\lambda}^{f}(\wp \varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, and so $\left(\underline{\lambda^{f^{\kappa^{*}}}}\right)(\wp t \varrho) \geq\left(\underline{\lambda^{f^{\kappa^{*}}}}\right)(\wp) \wedge\left(\underline{\lambda^{f^{\kappa^{*}}}}\right)(\varrho)$. Therefore, $\underline{\lambda_{\kappa}^{\kappa^{*}}}$ is an FBI of Y.

Lemma 5. Let $(\varnothing \neq) \Omega \subseteq$ S. Then, Ω is a BI of $\mathrm{Y} \Leftrightarrow\left(\underline{\chi_{\kappa}^{\kappa^{*}}}\right)_{\Omega}$, the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y .
 $\left(\underline{\chi_{\kappa}^{f^{\kappa^{*}}}}\right)_{\Omega}(\wp) \geq \iota>0$ and $\left(\underline{\chi_{\kappa}^{f} \kappa^{*}}\right)_{\Omega}(\varrho) \geq \theta>0$. Therefore, $\wp, \varrho \in \Omega$. As Ω is a BI of Y,
 have $(\wp+\varrho)_{\iota \wedge \theta} \in\left(\underline{\chi^{f} \kappa_{\kappa}^{\kappa}}\right)_{\Omega}$. If $\iota \wedge \theta>\frac{\kappa^{*}-\kappa}{2}$, then $\left(\underline{\chi^{f} \kappa_{\kappa}^{\kappa^{*}}}\right)_{\Omega}(\wp+\varrho)+\iota \wedge \theta>\frac{\kappa^{*}-\kappa}{2}+\frac{\kappa^{*}-\kappa}{2}=$
$\kappa^{*}-\kappa$. So $(\wp+\varrho)_{\iota \wedge \theta}\left(\kappa^{*}, q_{\kappa}\right)\left(\underline{\chi}_{\kappa}^{f^{\kappa^{*}}}\right)_{\Omega}$. Similarly, $\wp_{\iota} \in\left(\chi^{\chi^{f} \kappa_{\kappa}^{*}}\right)_{\Omega}$ and $\varrho_{\theta} \in\left(\chi^{\left.\chi^{\kappa^{\kappa^{*}}}\right)_{\Omega} \text { imply }}\right.$ $(\wp \varrho)_{\iota \wedge \theta}\left(\kappa^{*}, q_{\kappa}\right)\left(\underline{\chi_{\kappa}^{f}}\right)_{\Omega}^{\kappa^{*}}$. Therefore, $(\wp+\varrho)_{\iota \wedge \theta} \in \vee\left(\kappa^{*}, q_{\kappa}\right)\left(\underline{\chi^{f} \kappa_{\kappa}^{*}}\right)_{\Omega}$. Let $\wp, \varrho, t \in \mathrm{Y}$ and $\iota \in(0,1]$ be such that $\wp_{\iota}, \varrho_{\theta} \in\left(\chi_{\kappa}^{f^{\kappa^{*}}}\right)_{\Omega}$. Then, $\wp, \varrho \in \Omega,\left(\underline{\left.\chi_{\kappa}^{f}\right)_{\Omega}}\right)_{\Omega}(\wp) \geq \iota,\left(\chi_{\kappa}^{f_{\kappa}^{\kappa^{*}}}\right)_{\Omega}(\wp) \geq \theta$. Since Ω is a BI of Y, we have $\wp t \varrho \in \Omega$. Thus, $\left(\underline{\left.\chi^{f^{\kappa^{*}}}\right)_{\Omega}(\wp t \varrho)} \geq \frac{\kappa^{*}-\kappa}{2}\right.$. If $\iota \wedge \theta \leq \frac{\kappa^{*}-\kappa}{2}$, then $\left(\underline{\chi_{\kappa}^{f}}{ }_{\kappa}^{\kappa^{*}}\right)_{\Omega}(\wp t \varrho) \geq \iota \wedge \theta$. Therefore $(\wp t \varrho)_{\iota \wedge \theta} \in\left(\underline{\chi_{\kappa}^{f}}\right)_{\Omega}$. Again, if $\iota \wedge \theta>\frac{\kappa^{*}-\kappa}{2}$, then $\left(\underline{\chi^{f} \kappa^{\kappa^{*}}}\right)_{\Omega}(\wp t \varrho)+\iota \wedge \theta>\frac{\kappa^{*}-\kappa}{2}+\frac{\kappa^{*}-\kappa}{2}=\kappa^{*}-\kappa$. So $(\wp t \varrho)_{\iota \wedge \theta}\left(\kappa^{*}, q_{\kappa}\right)\left(\underline{\chi^{\prime} \kappa^{\kappa}}\right)_{\Omega}$. Thus, $(\wp t \varrho)_{\iota \wedge \theta} \in$ $\vee\left(\kappa^{*}, q_{\kappa}\right)\left(\underline{\chi^{f} \kappa_{\kappa}^{\kappa^{*}}}\right) \Omega$, as required.

Let $\wp \in \mathrm{Y}$ and $\varrho \in \Omega$ such that $\wp \leq \varrho$. Then $\left.\left(\underline{\chi_{\kappa}^{f}}\right)_{\Omega}^{\kappa^{*}}\right)_{\Omega}(\varrho)=\frac{\kappa^{*}-\kappa}{2}$. Since $\left(\underline{\chi^{f} \kappa_{\kappa}^{\kappa^{*}}}\right)_{\Omega}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y , and $\wp \leq \varrho$, we have $\left(\underline{\left.f_{\kappa}^{\kappa^{*}}\right)_{\Omega}}(\wp) \geq\left(\underline{f_{\kappa}^{\kappa^{*}}}\right)_{\Omega}(\varrho) \wedge \frac{\kappa^{*}-\bar{\kappa}}{2}=\frac{\kappa^{*}-\kappa}{2}\right.$. Thus, $\left(\underline{f_{\kappa}^{\kappa^{*}}}\right)_{\Omega}(\wp)=\frac{\kappa^{*}-\kappa}{2}$ and so $\wp \in \Omega$. Let $\wp, \varrho \in \Omega$. Then, $\left(\underline{\chi^{f} \kappa^{\kappa^{*}}}\right)_{\Omega}(\wp)=\frac{\kappa^{*}-\kappa}{2}$ and
 $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y , we have $\left(\underline{\chi_{\kappa}^{f \kappa^{*}}}\right)_{\Omega}(\wp+\varrho) \geq\left(\underline{\chi^{f} \kappa_{\kappa}^{\kappa^{*}}}\right)_{\Omega}(\wp) \wedge\left(\underline{\left.\chi^{\chi^{\kappa^{*}}}\right)_{\Omega}(\varrho)}\right.$
 it implies $\left(\underline{\chi^{f} \kappa_{\kappa}^{*}}\right)_{\Omega}(\wp+\varrho)=\frac{\kappa^{*}-\kappa}{2}$ and $\left(\underline{\chi_{\kappa}^{f^{*}}}\right)_{\Omega}(\wp \varrho)=\frac{\kappa^{*}-\kappa}{2}$. Therefore, $\wp+\varrho, \wp \varrho \in \Omega$. Let $\wp, \varrho \in \Omega$ and $t \in Y$. Then $\left(\underline{\chi^{f} \kappa_{\kappa}^{*}}\right)_{\Omega}(\wp)=\frac{\kappa^{*}-\kappa}{2}$ and $\left(\underline{\chi^{f} \kappa_{\kappa}^{\kappa^{*}}}\right)_{\Omega}(\varrho)=\frac{\kappa^{*}-\kappa}{2}$. Now, $\left(\chi^{\chi^{\kappa^{*}}}\right)_{\Omega}(\wp t \varrho) \geq\left(\chi_{\kappa}^{\chi^{\kappa^{*}}}\right)_{\Omega}(\wp) \wedge\left(\underline{\chi^{f} \kappa_{\kappa}^{*}}\right)_{\Omega}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}=\frac{\kappa^{*}-\kappa}{2}$. Hence $\left(\underline{\chi^{f} \kappa^{\kappa^{*}}}\right)_{\Omega}(\wp \vdash \varrho)=\frac{\kappa^{*}-\kappa}{2}$. Therefore $\wp t \varrho \in \Omega$. Hence, Ω is a BI of Y.

Theorem 6. Let $\tilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y})$. Then $\tilde{\lambda}^{f}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of $\mathrm{Y} \Leftrightarrow$
(1) $\tilde{\lambda}^{f}(+)_{k}^{k^{*}} \tilde{\lambda}^{f} \preceq \frac{\lambda_{\kappa}^{f^{\kappa^{*}}}}{f^{\kappa^{*}}}$
(2) $\tilde{\lambda}^{f}(\circ)_{k}^{k^{*}} \widetilde{\lambda}^{f} \preceq \lambda_{\lambda^{f^{\kappa^{*}}}}$,
(3) $\tilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} 1^{f}(\circ)_{k}^{k^{*}} \tilde{\lambda}^{f} \preceq \frac{\lambda_{\kappa}^{\kappa^{\kappa^{*}}}}{\tilde{\lambda}^{f}}$, and
(4) $(\forall \wp, \varrho \in \mathrm{Y}) \wp \leq \varrho \Rightarrow \overline{\widetilde{\lambda}^{f}}(\wp) \geq \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$.

Proof. (\Rightarrow) Suppose that $\tilde{\lambda}^{f}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y. If $\tilde{\lambda}^{f}(+)_{k}^{k^{*}} \tilde{\lambda}^{f}=0$, then $\widetilde{\lambda}^{f}(+)_{k}^{k^{*}} \tilde{\lambda}^{f} \preceq \tilde{\lambda}^{f}$. Suppose that $\tilde{\lambda}^{f}(+)_{k}^{k^{*}} \tilde{\lambda}^{f} \neq 0$. Then, we have

$$
\begin{aligned}
\left(\widetilde{\lambda}^{f}(+)_{k}^{k^{*}} \widetilde{\lambda}^{f}\right)(\wp) & =\left(\widetilde{\lambda}^{f}+\widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\bigvee_{\wp \leq v+\tau}\left\{\widetilde{\lambda}^{f}(v) \wedge \widetilde{\lambda}^{f}(\tau)\right\} \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \leq \bigvee_{\wp \leq v+\tau} \widetilde{\lambda}^{f}(v+\tau) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\underline{\lambda^{f \kappa^{\kappa}}}(\wp) .
\end{aligned}
$$

 then $\tilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f} \preceq \underline{\lambda_{\kappa}^{\kappa^{*}}}$. Suppose that $\left(\widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(\wp) \neq 0$. Then, we have

$$
\begin{aligned}
& \left(\tilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}\right)(\wp) \\
& =\left(\widetilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\bigvee_{\wp \leq y z}\left\{\widetilde{\lambda}^{f}(y) \wedge\left\{\left\{\bigvee_{z \leq v \tau}\left\{1^{f}(v) \wedge \widetilde{\lambda}^{f}(\tau)\right\} \wedge \frac{\kappa^{*}-\kappa}{2}\right\}\right\} \wedge \frac{\kappa^{*}-\kappa}{2}\right. \\
& =\bigvee_{\wp \leq y z z \leq \nu \tau} \bigvee_{z \leq}\left\{\widetilde{\lambda}^{f}(y) \wedge \widetilde{\lambda}^{f}(\tau) \wedge \frac{\kappa^{*}-\kappa}{2}\right\} \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \leq \bigvee_{\wp \leq y z z \leq \nu \tau} \bigvee_{\lambda} \tilde{\lambda}^{f}(y v \tau) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \leq \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\underline{\lambda^{f}} \kappa_{\kappa}^{\kappa^{*}}(\wp) .
\end{aligned}
$$

Therefore, $\tilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f} \preceq \lambda_{\kappa}^{f^{\kappa^{*}}}$.
(\Leftarrow) Let $\wp, \varrho \in \mathrm{Y}$. Then, by hypothesis, we have

$$
\begin{aligned}
\tilde{\lambda}^{f}(\wp+\varrho) & \left.\geq \frac{\lambda^{f^{\kappa^{*}}}(\wp+\varrho)}{\widetilde{\lambda}^{f}}(+)_{k}^{k^{*}} \widetilde{\lambda}^{f}\right)(\wp+\varrho) \\
& =\left\{\bigvee_{\wp+\varrho \leq \nu+\tau}\left\{\widetilde{\lambda}^{f}(\nu) \wedge \widetilde{\lambda}^{f}(\tau)\right\} \wedge \frac{\kappa^{*}-\kappa}{2}\right. \\
& \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} .
\end{aligned}
$$

Similarly, by hypothesis, $\widetilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$.
We also have

$$
\begin{aligned}
\tilde{\lambda}^{f}(\wp t s) & \geq \underline{\lambda_{\kappa}^{f^{\kappa^{*}}}(\wp t s)} \\
& =\left(\widetilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}\right)(\wp t s) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\left\{\bigvee_{\wp t \rho \leq p q} \tilde{\lambda}^{f}(p) \wedge\left(1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}\right)(q)\right\} \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \widetilde{\lambda}^{f}(\wp) \wedge\left(1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(t \varrho) \\
& =\widetilde{\lambda}^{f}(\wp) \wedge\left\{\bigvee_{(u, v) \in A_{r s}}^{\bigvee} 1^{f}(u) \wedge \widetilde{\lambda}^{f}(v)\right\} \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \widetilde{\lambda}^{f}(\wp) \wedge 1^{f}(t) \wedge \tilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2},
\end{aligned}
$$

as required.
Theorem 7. The following statements are equivalent in Y :
(1) Y is regular.
(2) $\lambda_{\kappa}^{f^{\kappa^{*}}} \preceq \tilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}$ for any $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y .

Proof. Assume that $\tilde{\lambda}^{f}$ is an $\left(\in \in \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y. If $\wp \in \mathrm{Y}$, then, as Y is regular, \exists $t \in \mathrm{Y}$ such that $\wp \leq \wp t \wp$. Now, we have

$$
\begin{aligned}
\left(\widetilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(\wp) & =\left(\widetilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\left\{\bigvee_{\wp \leq p q} \widetilde{\lambda}^{f}(p) \wedge\left(1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}\right)(q)\right\} \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \widetilde{\lambda}^{f}(\wp) \wedge\left(1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}\right)(t \wp) \\
& =\widetilde{\lambda}^{f}(\wp) \wedge\left\{\bigvee_{t \wp \leq u v} 1^{f}(u) \wedge \widetilde{\lambda}^{f}(v)\right\} \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \widetilde{\lambda}^{f}(\wp) \wedge 1^{f}(t) \wedge \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2}
\end{aligned}
$$

Thus, $\lambda_{\kappa}^{f^{\kappa^{*}}} \preceq \lambda^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \lambda^{f}$.
$(2) \Rightarrow(1)$. Let B be a BI of Y. Then, by Lemma $5,\left(\underline{\chi_{\kappa}^{\kappa^{*}}}\right)_{B}$ is an $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y. Thus, by hypothesis, we have

$$
\left(\underline{\chi_{\kappa}^{f} \kappa^{\kappa^{*}}}\right)_{B} \subseteq \chi_{B}(\circ)_{k}^{k^{*}} \chi_{I}(\circ)_{k}^{k^{*}} \chi_{B}=\left(\underline{\chi_{\kappa}^{f^{\kappa^{*}}}}\right)_{(B I B]} \subseteq\left(\underline{\chi_{\kappa}^{f^{\kappa^{*}}}}\right)_{\left(\sum B I B\right]}
$$

So $B \subseteq\left(\sum B R B\right]$. Since B is $B I$, so $\left(\sum B R B\right] \subseteq B$. Thus $B=\left(\sum B R B\right]$. Hence, by ([9] Lemma 2.2), Y is regular.

Theorem 8. The following statements are equivalent in Y :
(1) Y is regular and intra-regular.
(2) $\lambda^{f_{\kappa}^{\kappa^{*}}}=\tilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f}$ for any $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y .

Proof. (\Rightarrow) Suppose that $\widetilde{\lambda}^{f}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y. As Y is regular and intraregular, $a \leq$ axa and $a \leq y a^{2} z$. Therefore, $a \leq(a x y a)(a y x a)$. We have

$$
\begin{aligned}
\left(\widetilde{\lambda}^{f}(\circ)_{k}^{k^{*}} \widetilde{\lambda}^{f}\right)(\wp) & =\left(\widetilde{\lambda}^{f}+\widetilde{\lambda}^{f}\right)(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\bigvee_{\wp \leq p q}\left\{\tilde{\lambda}^{f}(p) \wedge \widetilde{\lambda}^{f}(q)\right\} \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \widetilde{\lambda}^{f}(\text { axya }) \wedge \widetilde{\lambda}^{f}(a y x a) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& \geq \lambda^{f}(a) \wedge \frac{\kappa^{*}-\kappa}{2} \\
& =\underline{\lambda^{f}}(a) .
\end{aligned}
$$

Thus $\underline{\lambda^{f} \kappa^{\kappa^{*}}} \preceq \tilde{\lambda}^{f}(\circ)_{k}^{k^{*}} \widetilde{\lambda}^{f}$. Since $\widetilde{\lambda}^{f}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)-F B I$, so $\widetilde{\lambda}^{f}(\circ)_{k}^{k^{*}} \widetilde{\lambda}^{f} \preceq \underline{\lambda^{f} \kappa_{\kappa}^{\kappa^{*}}}$. Hence $\lambda^{f^{\kappa^{*}}}=\overline{\lambda^{f}}(\mathrm{o})_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f}$.
$(2) \Rightarrow(1)$. Let B be a BI of Y. Then, by Lemma $5,\left(\underline{\chi_{\kappa}^{f}}\right)_{B}^{\kappa^{*}}$ is an $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y. Thus by hypothesis, we have

$$
\left(\underline{\chi^{f} k_{k}^{k^{*}}}\right)_{B} \subseteq \chi^{f}{ }_{B}(\circ)_{k}^{k^{*}} \chi^{f}{ }_{B}=\left(\underline{\chi_{k}^{f}}{ }_{k}^{k^{*}}\right)_{(B B]} \subseteq\left(\underline{\left.\chi_{k}^{f}\right)^{k^{*}}}\right)_{(\Sigma B B]}
$$

Therefore, $B \subseteq\left(\sum B B\right]$. Since B is $B I$, so $\left(\sum B B\right] \subseteq B$. Thus $B=\left(\sum B B\right]$. Hence, by ([9]Theorem 3.12), Y is regular.

Definition 6. Let $t \in \mathrm{Y}$ and $\widetilde{\lambda}^{f} \in \mathcal{F}(\mathrm{Y})$. Define the following \mathcal{I}_{t} of Y as

$$
\mathcal{I}_{t}=\left\{\wp \in \mathrm{Y} \left\lvert\, \widetilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}\right.\right\} .
$$

Lemma 6. Let $\tilde{\lambda}^{f}$ be the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y . Then $\mathcal{I}_{t}(\forall t \in \mathrm{Y})$ is the BI of Y .
Proof. Let $t \in \mathrm{Y}$. As $t \in \mathcal{I}_{t}$, we have $\mathcal{I}_{t} \neq \varnothing$. Take any $\wp, \varrho \in \mathcal{I}_{t}$. Then, $\tilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(t) \wedge$ $\frac{\kappa^{*}-\kappa}{2}$ and $\widetilde{\lambda}^{f}(\varrho) \geq \widetilde{\lambda}^{f}(t) \wedge \frac{\kappa^{*}-\kappa}{2}$. Since $\widetilde{\lambda}^{f}$ is the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)-F B I$ of $Y, \widetilde{\lambda}^{f}(\wp+\varrho) \geq$ $\widetilde{\lambda}^{f}(r) \wedge \widetilde{\lambda}^{f}(y) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \frac{\kappa^{*}-\kappa}{2}$, so $\wp+\varrho \in \mathcal{I}_{t}$. By a similar argument, $\wp \varrho \in \mathcal{I}_{t}$.

Next, take any $\tau \in \mathrm{Y}$ and $\wp, \varrho \in \mathcal{I}_{t}$. Then $\widetilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(t) \wedge \frac{\kappa^{*}-\kappa}{2}$ and $\widetilde{\lambda}^{f}(\varrho) \geq \widetilde{\lambda}^{f}(t) \wedge$ $\frac{\kappa^{*}-\kappa}{2}$. By hypothesis, $\widetilde{\lambda}^{f}(\wp \tau \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Therefore, $\widetilde{\lambda}^{f}(\wp \tau \varrho) \geq \widetilde{\lambda}^{f}(a) \wedge \frac{\kappa^{*}-\kappa}{2}$. Thus $\wp \tau \varrho \in \mathcal{I}_{t}$. Additionally, for any $\wp \in \mathrm{Y}$ and $\varrho \in \mathcal{I}_{t}$ such that $\wp \leq \varrho$, we have $\wp \in \mathcal{I}_{t}$. Hence, \mathcal{I}_{t} is a $B I$ of Y .

Definition 7. An ordered semiring Y is called $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-simple if every $(\epsilon$,$\left.\in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI is constant. That is, $\forall \wp, \varrho \in \mathrm{Y}$; we have $\underline{\lambda_{\kappa}^{f^{*}}}(\wp)=\underline{\lambda_{\kappa}^{f^{*}}}(\varrho)$, for each $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)-F B I \tilde{\lambda}^{f}$ of Y .

Theorem 9. The ordered semiring Y is bi-simple \Leftrightarrow it is $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-simple.
Proof. (\Rightarrow) Let $\tilde{\lambda}^{f}$ be the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-FBI of Y and $\wp, \varrho \in \mathrm{Y}$. By Lemma $6, \mathcal{I}_{\wp}$ is an left ideal of Y. As Y is bi-simple, $\mathcal{I}_{\wp}=R$. So $\varrho \in \mathrm{Y}$. Thus, $\tilde{\lambda}^{f}(\varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2}$. Therefore,
 $\underline{\lambda_{\kappa}^{f^{\kappa^{*}}}}(\wp)=\underline{\lambda^{f_{\kappa}^{\kappa^{*}}}}(\varrho)$, as required.
(\Leftarrow) Assume that I is the proper BI of Y. By Lemma $5,\left(\underline{\lambda^{f} \kappa^{\kappa^{*}}}\right)_{I}$ is the $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$ FBI of Y. As Y is $\left(\epsilon, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-simple, $\underline{\lambda}_{\kappa}^{\kappa^{\kappa^{*}}}(\wp)=\underset{\lambda^{f^{\kappa^{*}}}}{\kappa^{*}}(\varrho), \forall \wp, \varrho \in \mathrm{Y}$. Let $p \in I$ and $q \in \mathrm{Y}$. Then, $\underline{\lambda^{\kappa^{\kappa^{*}}}}(p)=\underline{\lambda^{f^{\kappa^{*}}}}(q)$. As $p \in I$, we have $\underline{\lambda_{\kappa} \overline{\kappa^{*}}(p)}=\frac{\kappa^{*}-\kappa}{2}$. Therefore, $\underline{\lambda_{\kappa}^{f^{\kappa^{*}}}}(q)=\frac{\kappa^{*}-\kappa}{2}$, which implies that $q \in I$. Thus, $I=\mathrm{Y}$, and hence Y is bi-simple.

5. Conclusions

The notion of the $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideal, which is broader than the existing terminology, was introduced in this work. A condition is provided under which fuzzy bi-ideals and $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals coincide. Bi-ideals and $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals connections were taken into consideration. Regular and intra-regular ordered semirings were described in terms of $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-ideals and their $(\kappa *, \kappa)$ lower parts. Moreover, $\left(\in, \in \vee\left(\kappa^{*}, q_{\kappa}\right)\right)$-fuzzy bi-simple ordered semirings were defined and characterized.

Author Contributions: Conceptualization, G.M., N.A. and A.M.; methodology, G.M. and D.A.-K.; validation, N.A. and A.M.; formal analysis, A.M. and D.A.-K.; investigation, A.M.; writing-original draft preparation, G.M.; writing-review and editing, A.M. and D.A.-K. All authors have read and agreed to the published version of the manuscript.
Funding: This research was supported by the Researchers Supporting Project (PNURSP2023R87) at Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gan, A.P.; Jiang, Y.L. On ordered ideals in ordered semirings. J. Math. Res. Exp. 2011, 31, 989-996.

Good, R.A.; Hughes, D.R. Associated groups for a semigroup. Bull. Am. Math. Soc. 1952, 58, 624-625.
Lajos, S.; Szász, A. On the bi-ideals in associative rings. Proc. Jpn. Acad. 1970, 46, 505-507. [CrossRef]
Palakawong na Ayutthaya, P.; Pibaljommee, B. Characterizations of intra-regular ordered semirings by ordered quasi-ideals. Int. J. Math. Math. Sci. 2016, 2016, 4272451. [CrossRef]
5. Senarat, P.; Pibaljommee, B. Prime ordered k-bi-ideals in ordered semirings. Quasigroups Relat. Syst. 2017, 25, 121-132.
6. Davvaz, B.; Omidi, S. Basic notions and properties of ordered semihyperrings. Categ. Gen. Algebr. Struct. Appl. 2016, 4, 43-62.
7. Omidi, S.; Davvaz, B. Contribution to study special kinds of hyperideals in ordered semihyperrings. J. Taibah Univ. Sci. 2017, 11, 1083-1094. [CrossRef]
8. Anjum, R.; Ullah, S.; Chu, Y.M.; Munir, M.; Kausar, N.; Kadry, S. Characterizations of ordered h-regular semirings by ordered h-ideals. AIMS Math. 2020, 5, 5768-5790. [CrossRef]
9. Patchakhieo, S.; Pibaljommee, B. Characterizations of ordered k-regular semirings by ordered k-ideals. Asian-Eur. J. Math. 2017, 10, 1750020. [CrossRef]
10. Palakawong na Ayutthaya, P.; Pibaljommee, B. Characterizationsof ordered intra-k-regular semirings by ordered k-ideals. Commun. Korean Math. Soc. 2018, 3, 1-12.
11. Ahsan, J.; Saifullah, K.; Khan, F. Fuzzy semirings. Fuzzy Sets Syst. 1993, 60, 309-320. [CrossRef]
12. Kuroki, N. Fuzzy bi-ideals in semigroups. Comment. Math. Univ. St. Pauli 1979, 28, 17-21.
13. Mandal, D. Fuzzy ideals and fuzzy interior ideals in ordered semirings. Fuzzy Inf. Eng. 2014, 6, 101-114. [CrossRef]
14. Mandal, D. Fuzzy bi-ideals and fuzzy quasi-ideals in ordered semirings. Gulf J. Math. 2014, 2, 60-67. [CrossRef]
15. Gao, N.; Li, Q.; Huang, X.; Jiang, H. Fuzzy Orders and Pseudo-fuzzy Orders on Semirings. J. Intell. Fuzzy Syst. 2019, 36, 6443-6454. [CrossRef]
16. Al-Kaseasbeh, S.; Al Tahan, M.; Davvaz, B.; Hariri, M. Single valued neutrosophic (m,n)-ideals of ordered semirings. AIMS Math. 2022, 7, 1211-1223. [CrossRef]
17. Jun, Y.B.; Khan, A.; Shabir, M. Ordered semigroup characterized by their $(\epsilon, \in \vee q)$-fuzzy bi-ideals. Bull. Malays. Math. Soc. 2009, 32, 391-408.
18. Hedayati, H. Fuzzy ideals of semirings. Neural Comput. Appl. 2011, 20, 1219-1228. [CrossRef]
19. Cristea, I.; Mahboob, A.; Khan, N.M. A new type fuzzy quasi-ideals of Ordered Semigrouops. J. Mult.-Valued Log. Soft Comput. 2020, 34, 283-304.
20. Muhiuddin, G.; Mahboob, A.; Khan, N.M. A new type of fuzzy semiprime subsets in ordered semigroups. J. Intell. Fuzzy Syst. 2019, 37, 4195-4205. [CrossRef]
21. Muhiuddin, G.; Mahboob, A. Int-soft Ideals over the soft sets in ordered semigroups. AIMS Math. 2020, 5, 2412-2423. [CrossRef]
22. Muhiuddin, G.; Al-Kadi, D. Interval valued m-polar fuzzy BCK/BCI-algebras. Int. J. Comput. Intell. Syst. 2021, 14, 1014-1021. [CrossRef]
23. Muhiuddin, G.; Al-Kadi, D.; Mahboob, A.; Aljohani, A. Generalized fuzzy ideals of BCI-algebras based on interval valued m-polar fuzzy structures. Int. J. Comput. Intell. Syst. 2021, 14, 169. [CrossRef]
24. Qahtan, S.; Alsattar, H.A.; Zaidan, A.A.; Deveci, M.; Pamucar, D.; Martinez, L. A comparative study of evaluating and benchmarking sign language recognition system-based wearable sensory devices using a single fuzzy set. Knowl.-Based Syst. 2023, 269, 110519. [CrossRef]
25. Qahtan, S.; Alsattar, H.A.; Zaidan, A.A.; Deveci, M.; Pamucar, D.; Delen, D. Performance assessment of sustainable transportation in the shipping industry using a q-rung orthopair fuzzy rough sets-based decision-making methodology. Expert Syst. Appl. 2023, 223, 119958. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

