

Article A Novel Study of Fuzzy Bi-Ideals in Ordered Semirings

Ghulam Muhiuddin ^{1,*}, Nabilah Abughazalah ², Ahsan Mahboob ³ and Deena Al-Kadi ⁴

- ¹ Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
- ² Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- ³ Department of Mathematics, Madanapalle Institute of Technology & Science, Madanapalle 517325, India ⁴ Department of Mathematics and Statistic College of Science, Tail University.
- ⁴ Department of Mathematics and Statistic, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- * Correspondence: chishtygm@gmail.com

Abstract: In this study, by generalizing the notion of fuzzy bi-ideals of ordered semirings, the notion of $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals is established. We prove that $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals are fuzzy bi-ideals but that the converse is not true, and an example is provided to support this proof. A condition is given under which fuzzy bi-ideals of ordered semirings coincide with $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals. An equivalent condition and certain correspondences between bi-ideals and $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals are presented. Moreover, the (κ^*, κ) -lower part of $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals is described and depicted in terms of several classes of ordered semirings. Furthermore, it is shown that the ordered semiring is bi-simple if and only if it is $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-simple.

Keywords: $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals; regular ordered semirings; intra-regular ordered semirings

MSC: 16Y60; 08A72

Citation: Muhiuddin, M.; Abughazalah, N.; Mahboob, A.; Al-Kadi, D. A Novel Study of Fuzzy Bi-Ideals in Ordered Semirings. *Axioms* **2023**, *12*, 626. https:// doi.org/10.3390/axioms12070626

Academic Editor: Boldizsár Tüű-Szabó

Received: 18 May 2023 Revised: 7 June 2023 Accepted: 20 June 2023 Published: 24 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

The concept of an "ordered semiring" was first used by Gan and Jiang [1] in connection to a semiring with a compatible partial order relation. They also proposed the idea of ideals in ordered semirings. Good et al. [2] developed the concept of bi-ideals in semigroups. Following that, Lajos et al. [3] established bi-ideals in associative rings. Bi-ideals of ordered semirings were described and characterized in terms of regularity, and the relationship between bi-ideals and quasi-ideals was characterized by Palakawong et al. [4]. Senarat et al. [5] developed the terms-ordered k-bi-ideal, strong-prime-ordered k-bi-ideal, and prime-ordered k-bi-ideal in ordered semirings. By expanding on the idea of bi-ideals of ordered semirings, Davvaz et al. [6] introduced the concept of bi-hyperideals in ordered semi-hyperrings. The notions of (m, n)-bi-hyperideals and Prime (m, n)-bi-hyperideals were established and inter-related properties were considered by Omidi and Davvaz [7]. The characterization of ordered h-regular semirings was considered by Anjum et al. [8]. In [9], Patchakhieo and Pibaljommee characterized ordered k-regular semirings using ordered k-ideals. The ordered intra-k-regular semirings have been introduced and defined in different ways by Ayutthaya and Pibaljommee [10]. Omidi and Davvaz [7] considered the concepts of (m, n)-bi-hyperideals and Prime (m, n)-bi-hyperideals and established interrelated features. Anjum et al. [8] proposed characterizing ordered h-regular semirings. By using ordered k-ideals, Patchakhieo and Pibaljommee described ordered k-regular semirings in [9]. The ordered intra-k-regular semirings have been presented and characterized in various ways by Ayutthaya and Pibaljommee [10].

Fuzzy sets to semirings were initially discussed by Ahsan et al. in [11] and Kuroki [12] applied the idea to semigroups. Mandal [13] pioneered the study of ideals and interior ideals in ordered semirings, as well as their characterizations in the sense of regularity.

He developed the concepts of fuzzy bi-ideals and fuzzy quasi-ideals in ordered semirings in [14]. Gao et al. [15] presented semisimple fuzzy ordered semirings and weakly regular fuzzy ordered semirings in terms of different kinds of fuzzy ideals. Saba et al. [16] initiated the study of ordered semirings based on single-valued neutrosophic sets. Several characterizations of regular and intra-regular ordered semigroups in terms of $(\in, \in \lor q)$ fuzzy generalized bi-ideals were presented by Jun et al. [17], who also proposed the idea of (α, β) -fuzzy generalized bi-ideal in ordered semigroups. Similar semiring concepts, such as $(\in, \in \lor q)$ -fuzzy bi-ideals on semirings, were investigated by Hedayati [18]. Additionally, other ideas connected to our research in several domains have been examined in [19–25].

In this study, we describe a novel form of fuzzy ideal in ordered semirings. The concept of $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideal is presented. We show that any fuzzy bi-ideal is the $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideal, but the converse assertion is invalid, and an example is shown. A criterion for an $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideal to be a fuzzy bi-ideal is given. Furthermore, some correspondences between bi-ideal and $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals are included. Furthermore, regularly ordered semirings are described in terms of $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals and their (κ^*, κ) -lower parts. The structure of the paper is as follows: Section 2 highlights some of the ideas and properties of ordered semirings, ideals, fuzzy subsets, and fuzzy subsemirings that are necessary to generate our key results. Section 3 focuses on the concept of the $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideal of ordered semirings. Section 4 examines the (κ^*, κ) -lower part of the $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideal. Section 5 contains instructions for some potential future research work.

2. Preliminaries

An ordered semiring $(Y, +, \cdot, \leq)$ is a semiring with compatible order relation " \leq ", i.e., $\wp \leq \varrho \Rightarrow \wp \tau \leq \varrho \tau, \tau \wp \leq \tau \varrho$ and $\wp + \tau \leq \varrho + \tau, \tau + \wp \leq \tau + \varrho, \forall \wp, \varrho, \tau \in Y$.

If $\wp + \varrho = \varrho + \wp$, $\forall \wp, \varrho \in Y$, then Y is said to be additively commutative. An element $0 \in Y$ is an absorbing zero if $0\wp = 0 = \wp 0$ and $\wp + 0 = \wp = 0 + \wp$, $\forall \wp \in Y$.

For $P \subseteq Y$, we define $(P] = \{ \wp \in Y \mid \wp \le \varrho \text{ for some } \wp \in P \}$. For $(\emptyset \neq)P, Q \subseteq Y, PQ$ is defined as $\{ \wp \varrho \mid \wp \in P \text{ and } \varrho \in Q \}$.

A subset $(\emptyset \neq)\Sigma$ of Y is said to be a *sub-semiring* if $\Sigma\Sigma \subseteq \Sigma$ and $\Sigma + \Sigma \subseteq \Sigma$. Additionally, Σ refers to the *left (resp. right)* ideal of Y if $\Sigma + \Sigma \subseteq \Sigma$ and $Y\Sigma \subseteq \Sigma$ (resp. $\Sigma Y \subseteq \Sigma$), and $(\Sigma] \subseteq \Sigma$. If it is both the left and right ideals of Y, it is referred to as an ideal. A sub-semiring *P* of Y is called a *bi-ideal* (in brief, *BI*) of Y if $PYP \subseteq P$ and $(P] \subseteq P$.

A mapping $\lambda^f : Y \to [0,1]$ is said to be fuzzy set (in brief, *FS*) of Y. For the *FSs* $\tilde{\lambda}^f$ and $\tilde{\ell}^f$ of Y, $\tilde{\lambda}^f \cap \tilde{\ell}^f, \tilde{\lambda}^f \cup \tilde{\ell}^f, \tilde{\lambda}^f + \tilde{\ell}^f$ and $\tilde{\lambda}^f \circ \tilde{\ell}^f$ are described as:

$$\begin{split} & (\widetilde{\lambda}^f \cap \widetilde{\mathcal{E}}^f)(\wp) = \widetilde{\lambda}^f(\wp) \wedge \widetilde{\mathcal{E}}^f(\wp) = \min\{\widetilde{\lambda}^f(\wp), \widetilde{\mathcal{E}}^f(\wp)\}, \\ & (\widetilde{\lambda}^f \cup \widetilde{\mathcal{E}}^f)(\wp) = \widetilde{\lambda}^f(\wp) \vee \widetilde{\mathcal{E}}^f(\wp) = \max\{\widetilde{\lambda}^f(\wp), \widetilde{\mathcal{E}}^f(\wp)\}, \end{split}$$

$$(\widetilde{\lambda}^f + \widetilde{E}^f)(\wp) = \begin{cases} \bigvee \widetilde{\lambda}^f(\varrho) \wedge \widetilde{E}^f(\varkappa), \\ \wp \le \varrho + \varkappa \\ 0, & \text{if } \wp \text{ can not be written as } \wp \le \varrho + \varkappa, \end{cases}$$

and

$$(\widetilde{\lambda}^{f} \circ \widetilde{E}^{f})(\wp) = \begin{cases} \bigvee \widetilde{\lambda}^{f}(\varrho) \wedge \widetilde{E}^{f}(\varkappa), & ,\\ \wp \leq \varrho \varkappa \\ 0, & \text{if } \wp \text{ cannot be written as } \wp \leq \varrho \varkappa. \end{cases},$$

For $\Omega \subseteq Y$, the *characteristic function* χ_{Ω}^{f} is defined as:

$$\chi^{f}_{\Omega}(\wp) = \begin{cases} 1, & \text{if } \wp \in \Omega; \\ 0, & \text{if } \wp \notin \Omega. \end{cases}$$

Define \leq on the set $\mathcal{F}(Y)$ of all FSs of Y by

$$\widetilde{\lambda}^{f} \preceq \widetilde{\mathcal{L}}^{f} \Leftrightarrow \widetilde{\lambda}^{f}(\wp) \leq \widetilde{\mathcal{L}}^{f}(\wp), \; \forall \; \wp \in \mathbf{Y}.$$

- If $\tilde{\lambda}^f$, $\tilde{t}^f \in \mathcal{F}(Y)$ such that $\tilde{\lambda}^f \preceq \tilde{t}^f$, then $\forall \tilde{\lambda}^f \in \mathcal{F}(Y)$, $\tilde{\lambda}^f \circ \tilde{\lambda}^f \preceq \tilde{t}^f \circ \tilde{\lambda}^f$ and $\tilde{\lambda}^f \circ \tilde{\lambda}^f \preceq \tilde{\lambda}^f \circ \tilde{t}^f$. We represent by 1^f the *FS* of Y given by $1^f : Y \to [0,1] | r \mapsto 1^f(r) = 1$. Let $P, Q \subseteq Y$. Then $P \subseteq Q \Leftrightarrow \chi_P^f \preceq \chi_Q^f$; $\chi_P^f \cap \chi_Q^f = \chi_{P \cap Q}^f$; $\chi_P^f \circ \chi_Q^f = \chi_{(PQ]}$. A FS $\tilde{\lambda}^f$ is called a:
- 1. Fuzzy subsemiring of Y if $\widetilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho)$ and $\widetilde{\lambda}^{f}(\wp + \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho)$, $\forall \wp, \varrho \in Y$.
- 2. Fuzzy left (resp. right) ideal (in brief, FL(R)I) of Y if $\wp \leq \varrho \Rightarrow \tilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(\varrho)$, $\tilde{\lambda}^{f}(\wp + \varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho)$ and $\tilde{\lambda}^{f}(\wp \varrho) \geq \tilde{\lambda}^{f}(\varrho)$ (resp. $\tilde{\lambda}^{f}(\wp \varrho) \geq \tilde{\lambda}^{f}(\wp)$), $\forall \wp, \varrho \in Y$.
- 3. *Fuzzy ideal* of Y if $\tilde{\lambda}^f$ is both fuzzy right and left ideals of Y.
- 4. *Fuzzy bi-ideal* (in brief, *FBI*) if it is fuzzy subsemiring and $\wp \leq \varrho \Rightarrow \tilde{\lambda}^f(\wp) \geq \tilde{\lambda}^f(\varrho)$ and $\tilde{\lambda}^f(\wp t \varrho) \geq \tilde{\lambda}^f(\wp) \wedge \tilde{\lambda}^f(\varrho), \forall \wp, t, \varrho, \in Y$.
- **3.** $(\in, \in \lor(\kappa^*, q_\kappa))$ -Fuzzy Bi-Ideals of Ordered Semirings

In this section, the concept of $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals of Y is introduced. Let $\wp \in Y$ and $\iota \in (0, 1]$. The *ordered fuzzy point* (OFP) \wp_ι of Y is defined by

$$\wp_{\iota}(\varkappa) = \begin{cases} \iota, & \text{if } \varkappa \in (\wp]; \\ 0, & \text{if } \varkappa \notin (\wp]. \end{cases}$$

For $\widetilde{\lambda}^f \in \mathcal{F}(\Upsilon)$, $\wp_t \in \widetilde{\lambda}^f$ represents for $\wp_t \subseteq \widetilde{\lambda}^f$. Thus $\wp_t \in \widetilde{\lambda}^f \Leftrightarrow \widetilde{\lambda}^f(\wp) \ge \iota$.

Definition 1. An OFP \wp_i of Y is said to be (κ^*, q) -quasi-coincident with a FS $\tilde{\lambda}^f$ of Y for $\kappa^* \in (0, 1]$, denoted as $\wp_i(\kappa^*, q)\tilde{\lambda}^f$, and defined as:

$$\tilde{\lambda}^f(\wp) + \iota > \kappa^*$$

For the OFP \wp_{ι} *, we define*

- (1) $\wp_{\iota}(\kappa^*, q_{\kappa})\widetilde{\lambda}^f$, if $\widetilde{\lambda}^f(\wp) + \iota + \kappa > \kappa^*$;
- (2) $\wp_{\iota} \in \lor(\kappa^*, q_{\kappa})\widetilde{\lambda}^f$, if $\wp_{\iota} \in \widetilde{\lambda}^f$ or $\wp_{\iota}(\kappa^*, q_{\kappa})\widetilde{\lambda}^f$;
- (3) $\wp_{\iota} \overline{\alpha} \widetilde{\lambda}^{f}$, if $\wp_{\iota} \alpha \widetilde{\lambda}^{f}$ does not hold for $\alpha \in \{(\kappa^{*}, q_{\kappa}), \in \lor (\kappa^{*}, q_{\kappa})\};$

for $1 \ge \kappa^* > \kappa \ge 0$.

Definition 2. A FS $\tilde{\lambda}^f$ of Y is said to be an $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideal (in brief, $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI) of Y if:

- (1) $\wp \leq \varrho, \varrho_{\iota} \in \widetilde{\lambda}^{f} \Rightarrow \wp_{\iota} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f},$ (2) $\wp_{\iota} \in \widetilde{\lambda}^{f} \text{ and } \varrho_{\theta} \in \widetilde{\lambda}^{f} \Rightarrow (\wp + \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f},$ (3) $\wp_{\iota} \in \widetilde{\lambda}^{f} \text{ and } \varrho_{\theta} \in \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f} \Rightarrow (\wp \varrho)_{\iota \wedge \theta} \otimes (\wp \varrho)_{\iota \wedge \theta}$
- (4) $t \in Y, \, \wp_{\iota} \in \widetilde{\lambda}^{f}, \, \varrho_{\iota} \in \lambda \Rightarrow (\wp t \varrho)_{\iota} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}.$
- $\forall \iota, \theta \in (0, 1] \text{ and } \wp, t, \varrho \in Y.$

Example 1. On $Y = \{\wp_1, \wp_2, \wp_3\}$, define the opertaions and order relation as

+	\wp_1	\wp_2	<i>\begin{bmm}{p}{p}{3} \\ \end{bmm}{m}{3} \\ b</i>		•	\wp_1	<i>℘</i> 2	<i>℘</i> 3
\wp_1	\wp_1	\wp_2	\wp_3		\wp_1	\wp_1	\wp_1	\wp_1
\wp_2	<i></i> \$2	\wp_2	\wp_2		<i>℘</i> 2	\wp_1	<i></i> \$2	\wp_2
63	63	\wp_2	\wp_2		<i>℘</i> 3	\wp_1	63	63
$\leq:=\{(\wp_1,\wp_1),(\wp_2,\wp_2),(\wp_3,\wp_3),(\wp_1,\wp_2),(\wp_1,\wp_3)\}.$								

Then $(Y, +, \cdot, \leq)$ *is an ordered semiring. Define an FS* $\tilde{\lambda}^f$ *of* Y *as*

$$\widetilde{\lambda}^{f}(\varkappa) = \begin{cases} 0.5, & \text{if } \varkappa = \wp_{1}; \\ 0.4, & \text{if } \varkappa = \wp_{2}; \\ 0.3, & \text{if } \varkappa = \wp_{3}. \end{cases}$$

 λ^{f} is the $(\in, \in \lor(0.2, q_{0.6}))$ -FBI of Y and can be easily verified.

Lemma 1. *Each FBI of* Y *is the* $(\in, \in \lor(\kappa^*, q_\kappa))$ *-FBI of* Y.

Proof. Straightforward. \Box

Remark 1. *In general, the converse of Lemma 1 does not hold. It is illustrated by the following example:*

Example 2. Define operations and ordered relations on $Y = \{\wp_1, \wp_2, \wp_3\}$ as follows:

+	\wp_1	<i>℘</i> 2	63		•	\wp_1	\wp_2	\wp_3
\wp_1	\wp_1	<i>℘</i> 2	623		\wp_1	\wp_1	\wp_1	\wp_1
<i>℘</i> 2	<i>℘</i> 2	<i>℘</i> 2	623		\wp_2	\wp_1	<i>℘</i> 2	\wp_2
63	623	63	63		\wp_3	\wp_1	\wp_2	<i>\mathcal{P}</i> _2
$\leq := \{ (\wp_1, \wp_1), (\wp_2, \wp_2), (b, \wp_3), (\wp_1, \wp_2), (\wp_2, \wp_3) \}.$								

Then, $(Y, +, \cdot, \leq)$ *is an ordered semiring. Define the FS* $\tilde{\lambda}^f$ *of* Y *as*

$$\tilde{\lambda}^{f}(\varkappa) = \begin{cases} 0.6, & \text{if } \varkappa = \wp_{1}; \\ 0.5, & \text{if } \varkappa = \wp_{2}; \\ 0.7, & \text{if } \varkappa = \wp_{3}. \end{cases}$$

It can be easily verified that $\tilde{\lambda}^f$ is the $(\in, \in \lor (0.9, q_{0.1}))$ -fuzzy bi-deal of Y but not an FBI of Y as follows: $\wp_1 \leq \wp_3 \neq \tilde{\lambda}^f(\wp_1) \geq \tilde{\lambda}^f(\wp_3)$.

Theorem 1. An FS $\tilde{\lambda}^f$ is an $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of $\Upsilon \Leftrightarrow$

- (1) $\wp \le \varrho \Rightarrow \tilde{\lambda}^{f}(\wp) \ge \tilde{\lambda}^{f}(\varrho) \land \frac{\kappa^{*}-\kappa}{2}$ (2) $\tilde{\lambda}^{f}(\wp+\varrho) \ge \tilde{\lambda}^{f}(\wp) \land \tilde{\lambda}^{f}(\varrho) \land \frac{\kappa^{*}-\kappa}{2}$,
- (3) $\widetilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, and
- (4) $\widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{\overline{*}} \kappa}{2},$

```
\forall \wp, t, \varrho \in \mathbf{Y}.
```

Proof. (\Rightarrow) Let $\wp, \varrho \in Y$ such that $\wp \leq \varrho$. If $\lambda^f(\wp) < \lambda^f(\varrho) \wedge \frac{\kappa^* - \kappa}{2}$, then $\exists \iota \in (0, 1]$ such that $\lambda^f(\wp) < \iota \leq \lambda^f(\varrho) \wedge \frac{\kappa^* - \kappa}{2}$. So $s_\iota \in \lambda^f$, but $(\wp)_\iota \in \nabla(\kappa^*, q_\kappa)\lambda^f$, which is a contradiction. Therefore $\lambda^f(\wp) \geq \min\{\lambda^f(\varrho), \frac{\kappa^* - \kappa}{2}\}$. Next, if $\lambda^f(\wp + \varrho) < \lambda^f(\wp) \wedge \lambda^f(\varrho) \wedge \frac{\kappa^* - \kappa}{2}$, for some $\wp, \varrho \in Y$, then $\lambda^f(\wp + \varrho) < \iota \leq \lambda^f(\wp) \wedge \lambda^f(\varrho) \wedge \kappa^* - \kappa}{2}$, for some $\iota \in (0, 1]$. Thus, $\wp_\iota, \varrho_\iota \in \lambda^f$, but $(\wp + \varrho)_\iota \in \nabla(\kappa^*, q_\kappa)\lambda^f$, which is a contradiction. Therefore, $\lambda^f(\wp + \varrho) \geq \lambda^f(\wp) \wedge \lambda^f(\varrho) \wedge \kappa^* - \kappa}{2}$. Similarly, $\lambda^f(\wp \varrho) \geq \lambda^f(\wp) \wedge \lambda^f(\varrho) \wedge \kappa^* - \kappa}{2}$, $\forall \wp, \varrho \in Y$. Again, if $\lambda^f(\wp t \varrho) < \lambda^f(\wp) \wedge \lambda^f(\varrho) \wedge \kappa^* - \kappa}{2}$, for some $\iota \in (0, 1]$. Thus, $\wp_\iota, \varrho_\iota \in \lambda^f$, but $(\wp t \varrho)_\iota \in \nabla(\kappa^*, q_\kappa)\lambda^f$, again a contradiction. Consequently, $\lambda^f(\wp t \varrho) \geq \lambda^f(\wp) \wedge \kappa^* - \kappa}{2}$.

 $(\Leftarrow) \text{ Take any } \wp, \varrho \in \text{Y and } \iota, \theta \in (0, 1] \text{ such that } \wp \leq \varrho \text{ and } \varrho_{\theta} \in \widetilde{\lambda}^{f}. \text{ Then, } \widetilde{\lambda}^{f}(\varrho) \geq \iota, \text{ and it follows that } \widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2}. \text{ If } \iota \leq \frac{\kappa^{*}-\kappa}{2}, \text{ then } \widetilde{\lambda}^{f}(\wp) \geq \iota \text{ implies } \wp_{\iota} \in \widetilde{\lambda}^{f}. \text{ Again, if } \iota > \frac{\kappa^{*}-\kappa}{2}, \text{ then } \widetilde{\lambda}^{f}(\wp) \geq \frac{\kappa^{*}-\kappa}{2}. \text{ Thus, } \widetilde{\lambda}^{f}(\wp) + \iota > \frac{\kappa^{*}-\kappa}{2} + \frac{\kappa^{*}-\kappa}{2} = \kappa^{*} - \kappa, \text{ so } \wp_{\iota}(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}. \text{ Therefore, } \wp_{\iota} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}. \text{ Again, take any } \wp_{\theta} \in \widetilde{\lambda}^{f} \text{ and } \varrho_{\theta} \in \widetilde{\lambda}^{f}. \text{ Then, } \widetilde{\lambda}^{f}(\wp) \geq \iota \text{ and } \widetilde{\lambda}^{f}(\varrho) \geq \iota. \text{ Therefore, } \widetilde{\lambda}^{f}(\wp + \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \theta \wedge \frac{\kappa^{*}-\kappa}{2}. \text{ Now, if } \iota \wedge \theta \leq \frac{\kappa^{*}-\kappa}{2}, \text{ then } \widetilde{\lambda}^{f}(\wp + \varrho) \geq \iota \wedge \theta \text{ implies } (\wp + \varrho)_{\iota \wedge \theta} \in \widetilde{\lambda}^{f}. \text{ Again, if } \iota \wedge \theta > \frac{\kappa^{*}-\kappa}{2}, \text{ then } \widetilde{\lambda}^{f}(\wp + \varrho) \geq \frac{\kappa^{*}-\kappa}{2}. \text{ Therefore, } (\wp + \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}. \text{ Similarly, } (\wp \varrho)_{\iota \wedge \theta} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f} \text{ for any } \wp_{\theta} \in \widetilde{\lambda}^{f} \text{ and } \varrho_{\theta} \in \widetilde{\lambda}^{f}. \text{ Further, take any } t \in \text{ Y and } \wp_{\iota}, \varrho_{\iota} \in \widetilde{\lambda}^{f}, \forall \iota \in (0, 1]. \text{ Therefore, } \widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} = \kappa^{*} - \kappa \text{ implies that } (\wp + \varrho)_{\iota \wedge \theta} \in \widetilde{\lambda}^{f} \text{ and } \varrho_{\theta} \in \widetilde{\lambda}^{f}. \text{ Further, take any } t \in \text{ Y and } \wp_{\iota}, \varrho_{\iota} \in \widetilde{\lambda}^{f}, \forall \iota \in (0, 1]. \text{ Then } \widetilde{\lambda}^{f}(\wp) \geq \iota \text{ and } \widetilde{\lambda}^{f}(\varrho) \geq \iota. \text{ Therefore, } \widetilde{\lambda}^{f}(\wp t \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2}. \text{ Now if } \iota \leq \frac{\kappa^{*}-\kappa}{2}, \text{ then } \widetilde{\lambda}^{f}(\wp t \varrho) \geq \iota \text{ implies } (\wp t \varrho)_{\iota} \in \widetilde{\lambda}^{f}. \text{ If } \iota > \frac{\kappa^{*}-\kappa}{2}, \text{ then } \widetilde{\lambda}^{f}(\wp t \varrho) \geq \iota \text{ implies } (\wp t \varrho)_{\iota} \in \widetilde{\lambda}^{f}. \text{ If } \iota > \frac{\kappa^{*}-\kappa}{2}. \text{ then } \widetilde{\lambda}^{f}(\wp t \varrho) \geq \iota \text{ implies } (\wp t \varrho)_{\iota} \in \widetilde{\lambda}^{f}. \text{ If } \iota > \frac{\kappa^{*}-\kappa}{2}, \text{ then } \widetilde{\lambda}^{f}(\wp t \varrho) \geq \iota \text{ implies } (\wp t \varrho)_{\iota} \in \widetilde{\lambda}^{f}. \text{ If } \iota > \frac{\kappa^{*}-\kappa}{2}. \text{ then } \widetilde{\lambda}^{f}(\wp t \varrho) \geq \iota \text{ implies } (\wp t \varrho)_{\iota} \in \widetilde{\lambda}^$

 $\widetilde{\lambda}^{f}(\wp t\varrho) + \iota > \frac{\kappa^{*}-\kappa}{2} + \frac{\kappa^{*}-\kappa}{2} = \kappa^{*} - \kappa \text{ i.e., } (\wp t\varrho)_{\iota}(\kappa^{*},q_{\kappa})\widetilde{\lambda}^{f}. \text{ Therefore, } (\wp t\varrho)_{\iota} \in \lor (\kappa^{*},q_{\kappa})\widetilde{\lambda}^{f}, \text{ as required.} \quad \Box$

Theorem 2. If $\tilde{\lambda}^f (\in \mathcal{F}(Y))$ is $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of Y with $\tilde{\lambda}^f(\wp) < \frac{\kappa^* - \kappa}{2}, \forall \wp \in Y$. Then $\tilde{\lambda}^f$ is an FBI of Y.

Proof. Suppose that $\wp, \varrho \in Y$ such that $\wp \leq \varrho$. Since $\widetilde{\lambda}^f$ is $(\in, \in \lor(\kappa^*, q_\kappa))$ -*FBI*, $\widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$. By hypothesis, $\widetilde{\lambda}^f(\varrho) < \frac{\kappa^* - \kappa}{2}$; thus, it implies $\widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\varrho)$. Again, for any $\wp, \varrho \in Y$, we have

$$\widetilde{\lambda}^{f}(\wp + \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2}$$

and

$$\widetilde{\lambda}^f(\wp \varrho) \geq \widetilde{\lambda}^f(\wp) \wedge \widetilde{\lambda}^f(\varrho) \wedge rac{\kappa^* - \kappa}{2}.$$

Since $\tilde{\lambda}^f(\varrho) < \frac{\kappa^* - \kappa}{2}$ and $\tilde{\lambda}^f(\wp) < \frac{\kappa^* - \kappa}{2}$, so

$$\widetilde{\lambda}^{f}(\wp + \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho)$$

and

$$\widetilde{\lambda}^f(\wp \varrho) \ge \widetilde{\lambda}^f(\wp) \wedge \widetilde{\lambda}^f(\varrho).$$

Finally, take any $\wp, t, \varrho \in Y$. Since $\tilde{\lambda}^f$ is $(\in, \in \lor(\kappa^*, q_\kappa))$ -*FBI*, by Theorem 1 and the hypothesis

$$\widetilde{\lambda}^{f}(\wp t\varrho) \geq \widetilde{\lambda}^{f}(\wp), \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2} = \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho).$$

as required. \Box

Theorem 3. Let $(\emptyset \neq) \Omega \subseteq Y$. Then Ω is a BI of $Y \Leftrightarrow \chi^f_{\Omega}$, an $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI.

Proof. Straightforward. \Box

Theorem 4. An FS $\tilde{\lambda}^f$ is the $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of $\Upsilon \Leftrightarrow U(\tilde{\lambda}^f; \iota) \neq \emptyset$ $(\iota \in (0, \frac{\kappa^* - \kappa}{2}])$, a BI of Υ .

Proof. (\Rightarrow) Let $\wp \in Y$ and $\varrho \in U(\tilde{\lambda}^{f};\iota)$ be such that $\wp \leq \varrho$. Then, $\tilde{\lambda}^{f}(\varrho) \geq \iota$. By Theorem 1, $\tilde{\lambda}^{f}(\wp) \geq \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2} = \iota$. Therefore, $\wp \in U(\tilde{\lambda}^{f};\iota)$. Let $\wp, \varrho \in U(\tilde{\lambda}^{f};\iota)$, where $\iota \in (0, \frac{\kappa^{*}-\kappa}{2}]$. Then $\tilde{\lambda}^{f}(\wp) \geq \iota$ and $\tilde{\lambda}^{f}(\varrho) \geq \iota$. By Theorem 1, $\tilde{\lambda}^{f}(\wp + \varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \frac{\kappa^{*}-\kappa}{2} = \iota$. Therefore, $\wp + \varrho \in U(\tilde{\lambda}^{f};\iota)$. Similarly, $\wp \varrho \in U(\tilde{\lambda}^{f};\iota)$ for $\wp, \varrho \in U(\tilde{\lambda}^{f};\iota)$. Let $\wp, \varrho \in U(\tilde{\lambda}^{f};\iota)$ and $t \in Y$. Then, $\tilde{\lambda}^{f}(\wp) \geq \iota$ and $\tilde{\lambda}^{f}(\varrho) \geq \iota$. So, by Theorem 1, $\tilde{\lambda}^{f}(\wp t\varrho) \geq \tilde{\lambda}^{f}(\wp) \wedge \tilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \iota \wedge \iota \wedge \frac{\kappa^{*}-\kappa}{2} = \iota$. Thus $\tilde{\lambda}^{f}(\wp t\varrho) \geq \iota$. Therefore $\wp t\varrho \in U(\tilde{\lambda}^{f};\iota)$. Hence $U(\tilde{\lambda}^{f};\iota)$ is a BI.

 $(\Leftarrow) \text{ Take any } \wp, \varrho \in Y \text{ with } \wp \leq \varrho. \text{ If } \widetilde{\lambda}^f(\wp) < \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \text{ then for some } \iota \in (0, \frac{\kappa^* - \kappa}{2}], \\ \widetilde{\lambda}^f(\wp) < \iota \leq \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}. \text{ So } \varrho \in U(\widetilde{\lambda}^f; \iota), \text{ but } \wp \notin U(\widetilde{\lambda}^f; \iota), \text{ which is a contradiction. Thus } \\ \widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \forall \wp, \varrho \in Y \text{ with } \wp \leq \varrho. \text{ Again, if } \widetilde{\lambda}^f(\wp + \varrho) < \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \\ \text{for some } \wp, \varrho \in Y, \text{ then } \widetilde{\lambda}^f(\wp + \varrho) < \iota \leq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \text{ for some } \iota \in (0, \frac{\kappa^* - \kappa}{2}]. \text{ Thus, } \\ \wp, \varrho \in U(\widetilde{\lambda}^f; \iota), \text{ but } \wp + \varrho \notin U(\widetilde{\lambda}^f; \iota), \text{ a contradiction. Therefore, } \widetilde{\lambda}^f(\wp + \varrho) \geq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \forall \wp, \varrho \in Y. \text{ Further, } \\ \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \forall \wp, \varrho \in Y. \text{ Similarly, } \widetilde{\lambda}^f(\wp \varrho) \geq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \forall \wp, \varrho \in Y. \text{ Further, } \\ \widetilde{\lambda}^f(\wp t \varrho) < \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \text{ for some } \wp, t, \varrho \in Y. \text{ Then, } \exists \iota \in (0, \frac{\kappa^* - \kappa}{2}] \text{ such that } \\ \widetilde{\lambda}^f(\wp t \varrho) < \iota \leq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2} \text{ implies } \wp_\iota, \varrho_\iota \in U(\widetilde{\lambda}^f; \iota), \text{ but } (\wp t \varrho)_\iota \notin U(\widetilde{\lambda}^f; \iota), \text{ again } \\ \text{ a contradiction. Therefore } \widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \forall \wp, \varrho \in Y, \text{ as required. } \Box \\ \square(1) = \widetilde{\lambda}^f(\wp) \lor \widetilde{\lambda}^f(\varrho) \geq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \forall \wp, \varrho \in Y, \text{ as required. } \Box \\ \square(1) = \widetilde{\lambda}^f(\wp) \lor \widetilde{\lambda}^f(\varrho) \geq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \widetilde{\lambda}^f(\varrho$

Example 3. Define the operations $(+, \cdot)$ and order relation \leq on $Y = \{\wp_1, \wp_2, \wp_3, \tau\}$ in the following ways:

+	\wp_1	<i>℘</i> 2	63	\wp_4		•	\wp_1	<i>℘</i> 2	623	\wp_4
\wp_1	\wp_1	\wp_2	63	\wp_4		\wp_1	\wp_1	\wp_1	\wp_1	\wp_1
<i>\begin{bmm}{p} 2 \end{bmm} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </i>	<i>℘</i> 2	<i>℘</i> 2	623	\wp_4		<i>℘</i> 2	\wp_1	<i>℘</i> 2	<i>℘</i> 2	<i>℘</i> 2
Ø3	693	623	\wp_3	\wp_4		<i>\</i> \$23	\wp_1	<i>℘</i> 2	<i>℘</i> 2	<i>℘</i> 2
<i>\begin{bmm}{p} 4 \end{bmm}{m} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</i>	\wp_4	\wp_4	\wp_4	\wp_4		\wp_4	\wp_1	<i>℘</i> 2	<i>℘</i> 2	<i>℘</i> 2
$\leq := \{ (\wp_1, \wp_1), (\wp_2, \wp_2), (\wp_3, \wp_3), (\wp_1, \wp_2), (\wp_2, \wp_3), (\wp_3, c) \}$										

Then, $(Y, +, \cdot, \leq)$ is an ordered semiring. Now define an FS $\tilde{\lambda}^f$ of Y as $\tilde{\lambda}^f(\wp_1) = 0.5$, $\tilde{\lambda}^f(\wp_2) = 0.4$, $\tilde{\lambda}^f(\wp_3) = 0.1$ and $\tilde{\lambda}^f(\tau) = 0.3$. Therefore,

$$U(\tilde{\lambda}^{f};\iota) = \begin{cases} Y, & \text{if } \wp_{1} < \iota \leq 0.1; \\ \{\wp_{1}, \wp_{2}, \tau\}, & \text{if } 0.1 < \iota \leq 0.3; \\ \{\wp_{1}, \wp_{2}\}, & \text{if } 0.3 < \iota \leq 0.4; \\ \{\wp_{1}\}, & \text{if } 0.4 < \iota \leq 0.5; \\ \emptyset, & \text{if } 0.5 < \iota \leq 1. \end{cases}$$

By Theorem 4, $\tilde{\lambda}^f$ is an $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of Y as $U(\tilde{\lambda}^f; \iota)$ is a BI of Y, $\forall \iota \in (0, \frac{\kappa^* - \kappa}{2}]$, with $\kappa^* = 1$ and $\kappa = 0$.

Definition 3. Let $\tilde{\lambda}^f \in \mathcal{F}(Y)$. The set

$$[\widetilde{\lambda}^f]_{\iota} = \{ \wp \in \mathbf{Y} \mid \wp_{\iota} \in \lor(\kappa^*, q_{\kappa})\widetilde{\lambda}^f \},\$$

where $\iota \in (0,1]$, is said to be an $(\in \lor(\kappa^*,q_\kappa))$ -level subset of $\widetilde{\lambda}^f$.

Theorem 5. Let $\widetilde{\lambda}^f \in \mathcal{F}(Y)$ such that $\wp \leq \varrho$ implies $\widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\varrho)$. Then. $\widetilde{\lambda}^f$ is an $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of $Y \Leftrightarrow \forall \iota \in (0, 1]$, the $(\in \lor(\kappa^*, q_\kappa))$ -level subset $[\widetilde{\lambda}^f]_\iota$ of $\widetilde{\lambda}^f$ is a bi-deal of Y.

Proof. (\Rightarrow) Take any $\wp \in Y$ and $\varrho \in [\tilde{\lambda}^f]_\iota$ such that $\wp \leq \varrho$. As $\varrho \in [\tilde{\lambda}^f]_\iota$, we have $\varrho_\iota \in \vee(\kappa^*, q_\kappa)\tilde{\lambda}^f$ implies $\tilde{\lambda}^f(\varrho) \geq \iota$ or $\tilde{\lambda}^f(\varrho) + \iota + \kappa > \kappa^*$. By hypothesis, we have $\tilde{\lambda}^f(\wp) \geq \tilde{\lambda}^f(\varrho) \geq \iota$ or $\tilde{\lambda}^f(\wp) \geq \tilde{\lambda}^f(\varrho) \geq \kappa^* - \iota - \kappa$. Thus, $\wp_\iota \in \vee(\kappa^*, q_\kappa)\tilde{\lambda}^f$. Therefore, $\wp \in [\tilde{\lambda}^f]_\iota$. Next, take any $\wp, \varrho \in [\tilde{\lambda}^f]_\iota$. Then, $\wp_\iota, \varrho_\iota \in \vee(\kappa^*, q_\kappa)\tilde{\lambda}^f$; that is, $\tilde{\lambda}^f(\wp) \geq \iota$ or $\tilde{\lambda}^f(\wp) + \iota + \kappa > \kappa^*$ and $\tilde{\lambda}^f(\varrho) \geq \iota$ or $\tilde{\lambda}^f(\varrho) + \iota + \kappa > \kappa^*$. **Case (i).** Let $\tilde{\lambda}^f(\wp) \geq \iota$ and $\tilde{\lambda}^f(\varrho) \geq \iota$. If $\iota > \frac{\kappa^* - \kappa}{2}$; then,

$$\begin{split} \widetilde{\lambda}^{f}(\wp + \varrho) &\geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \iota \wedge \iota \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \frac{\kappa^{*} - \kappa}{2}, \end{split}$$

and, so, $(\wp + \varrho)_{\iota}(\kappa^*, q_{\kappa})\widetilde{\lambda}^f$. If $\iota \leq \frac{\kappa^* - \kappa}{2}$, then

$$\begin{split} \widetilde{\lambda}^{f}(\wp + \varrho) &\geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \iota \wedge \iota \wedge \frac{\kappa^{*} - \kappa}{2} = \iota, \end{split}$$

and so $(\wp + \varrho)_{\iota} \in \widetilde{\lambda}^{f}$. Hence, $(\wp + \varrho)_{\iota} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}$. **Case (ii).** Let $\widetilde{\lambda}^{f}(\wp) \geq \iota$ and $\widetilde{\lambda}^{f}(\varrho) + \iota + \kappa > \kappa^{*}$. If $\iota > \frac{\kappa^{*} - \kappa}{2}$, then

$$\begin{split} \widetilde{\lambda}^{f}(\wp + \varrho) &\geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &> (\kappa^{*} - \iota - \kappa) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \kappa^{*} - \iota - \kappa, \end{split}$$

that is, $\widetilde{\lambda}^{f}(\wp + \varrho) + \iota + \kappa > \kappa^{*}$, and thus $(\wp + \varrho)_{\iota}(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}$. If $\iota \leq \frac{\kappa^{*} - \kappa}{2}$, then

$$\begin{split} \widetilde{\lambda}^{f}(\wp + \varrho) &\geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \iota \wedge (\kappa^{*} - \iota - \kappa) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \iota. \end{split}$$

and so $(\wp + \varrho)_{\iota} \in \widetilde{\lambda}^{f}$. Hence, $(\wp + \varrho)_{\iota} \in \vee(\kappa^{*}, q_{\kappa})\widetilde{\lambda}^{f}$. **Case (iii).** Let $\widetilde{\lambda}^{f}(\wp) + \iota + \kappa > \kappa^{*}$ and $\widetilde{\lambda}^{f}(\varrho) \ge \iota$. Proof is analogous to case proof (ii). **Case (iv).** Let $\widetilde{\lambda}^{f}(\wp) + \iota + \kappa > \kappa^{*}$ and $\widetilde{\lambda}^{f}(\varrho) + \iota + \kappa > \kappa^{*}$. Proof is analogous to previous two cases.

Thus for all cases, we have $(\wp + \varrho)_{\iota} \in \lor(\kappa^*, q_{\kappa})\widetilde{\lambda}^f$, and thus $\wp + \varrho \in [\widetilde{\lambda}^f]_{\iota}$. Similarly, for any $t \in Y$ and $\wp, \varrho \in [\widetilde{\lambda}^f]_{\iota}$, we have $\wp \varrho \in [\widetilde{\lambda}^f]_{\iota}$ and $\wp t \varrho \in [\widetilde{\lambda}^f]_{\iota}$. Hence, $[\widetilde{\lambda}^f]_{\iota}$ is a *BI* of Y. (\Leftarrow) Let $\widetilde{\lambda}^f(\wp) < \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$, for some $\wp, \varrho \in Y$. Then, $\iota \in (0, \frac{\kappa^* - \kappa}{2}]$ such that $\widetilde{\lambda}^f(\wp) < \iota \leq \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$. Thus, it follows that $\varrho \in [\widetilde{\lambda}^f]_{\iota}$ but $\wp \notin [\widetilde{\lambda}^f]_{\iota}$, which is a contradiction, and hence $\widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$. Let $\widetilde{\lambda}^f(\wp + \varrho) < \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$ for some $\wp, \varrho \in Y$. Then $\exists \iota \in (0, \frac{\kappa^* - \kappa}{2}]$ such that $\widetilde{\lambda}^f(\wp + \varrho) < \iota \leq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$. Thus, it follows that $\wp, \varrho \in [\widetilde{\lambda}^f]_{\iota}$ but $\wp + \varrho \notin [\widetilde{\lambda}^f]_{\iota}$, which is a contradiction. Therefore, $\widetilde{\lambda}^f(\wp + \varrho) \geq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}, \forall \wp, \varrho \in Y$. Similarly, $\widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$ for some $\wp, t, \varrho \in Y$. It follows that $\wp, \varrho \in [\widetilde{\lambda}^f]_{\iota}$ but $\wp t \varrho \notin [\widetilde{\lambda}^f]_{\iota}$ which is again a contradiction. Thus $\widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$, as required. \Box

4. Lower Part of $(\in, \in \lor(\kappa^*, q_\kappa))$ -*FBI*

The concept of the lower part of the $(\in, \in \lor(\kappa^*, q_\kappa))$ -*FBI* of Y is defined and characterized.

Definition 4. The (κ^*, κ) -lower part $\lambda_{\kappa}^{f_{\kappa}^{\kappa^*}}$ of $\tilde{\lambda}^f$ is defined as

$$\underline{\lambda^{f_{\kappa}^{\kappa^{*}}}}(\wp) = \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*} - \kappa}{2},$$

 $\forall \wp \in Y \text{ and } 1 \geq \kappa^* > \kappa \geq 0.$

The (κ^*, κ) *-lower part* $(\chi_{\kappa}^{f_{\kappa}^{\kappa^*}})_{\Omega}$ *of the characteristic function* χ_{Ω}^{f} *is defined for* $\Omega \subseteq R$ *as*

$$(\underline{\chi}_{\underline{\kappa}}^{f^{\kappa^*}})_{\Omega}(\wp) = \begin{cases} \frac{\kappa^* - \kappa}{2}, & \text{if } \wp \in \Omega; \\ 0, & \text{if } \wp \notin \Omega. \end{cases}$$

Definition 5. Let $\widetilde{\mathcal{L}}^f$, $\widetilde{\lambda}^f \in \mathcal{F}(Y)$. Define $\widetilde{\mathcal{L}}^f(\cap)_{\kappa}^{\kappa^*}\widetilde{\lambda}^f$, $\widetilde{\mathcal{L}}^f(\cup)_{\kappa}^{\kappa^*}\widetilde{\lambda}^f$, and $\widetilde{\mathcal{L}}^f(\circ)_{\kappa}^{\kappa^*}\widetilde{\lambda}^f$ as follows:

$$\begin{split} & (\widetilde{\mathcal{L}}^{f}(\cap)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f})(\wp) = (\widetilde{\mathcal{L}}^{f}\cap\widetilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\ & (\widetilde{\mathcal{L}}^{f}(\cup)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f})(\wp) = (\widetilde{\mathcal{L}}^{f}\cup\widetilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\ & (\widetilde{\mathcal{L}}^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f})(\wp) = (\widetilde{\mathcal{L}}^{f}\circ\widetilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \\ & (\widetilde{\mathcal{L}}^{f}(+)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f})(\wp) = (\widetilde{\mathcal{L}}^{f}+\widetilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \end{split}$$

 $\forall \wp \in Y \text{ and } 1 \ge \kappa^* > \kappa \ge 0.$

Lemma 2. $\widetilde{\mathcal{E}}^f, \widetilde{\lambda}^f \in \mathcal{F}(Y)$. Then,

- (1) $(\underbrace{\pounds_{\kappa}^{\kappa^{*}}}_{\kappa})_{\kappa}^{\kappa^{*}} = \underbrace{\pounds_{\kappa}^{f^{\kappa^{*}}}}_{\kappa} \text{ and } \underbrace{\pounds_{\kappa}^{f^{\kappa^{*}}}}_{\kappa} \subseteq \widetilde{\pounds}^{f};$ (2) $If \widetilde{\pounds}^{f} \subseteq \widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \in \mathcal{F}(\mathbf{Y}), \text{ then } \widetilde{\pounds}^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} \subseteq \widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} \text{ and } \widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\ell}^{f} \subseteq \widetilde{\lambda}^{f}\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f};$ (3) $If \widetilde{\pounds}^{f} \subseteq \widetilde{\lambda}^{f}, \text{ and } \widetilde{\lambda}^{f} \in \mathcal{F}(\mathbf{Y}), \text{ then } \widetilde{\pounds}^{f}(+)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} \subseteq \widetilde{\lambda}^{f}(+)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} \text{ and } \lambda(+)_{\kappa}^{\kappa^{*}}\widetilde{\ell}^{f} \subseteq \lambda(+)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f};$
- (4) $\widetilde{\mathcal{L}}^{f}(\cap)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} = \mathcal{L}_{\kappa}^{f^{\kappa^{*}}} \cap \lambda_{\kappa}^{f^{\kappa^{*}}};$
- (5) $\widetilde{\mathcal{E}}^{f}(\bigcup)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} = \overline{\mathcal{E}}_{\kappa}^{\kappa^{*}} \cup \overline{\lambda}_{\kappa}^{\kappa^{*}}$
- (6) $\widetilde{E}^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} = \underline{f}_{\kappa}^{f^{\kappa^{*}}} \circ \underline{\lambda}^{f}_{\kappa}^{\kappa^{*}};$
- (7) $\widetilde{\mathcal{L}}^{f}(+)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} = \underline{\mathcal{L}}_{\kappa}^{\kappa^{*}} + \underline{\mathcal{L}}_{\kappa}^{\kappa^{*}}$

Proof. Straightforward. \Box

Lemma 3. Let Σ , $\Omega \subseteq Y$. Then,

- (1) $\chi_{\Sigma}(+)^{\kappa^*}_{\kappa}\chi_{\Omega} = (\chi^{\kappa^*}_{\kappa})_{\Sigma+\Omega};$
- (2) $\chi_{\Sigma}(\cap)_{\kappa}^{\kappa^*}\chi_{\Omega} = (\chi_{\kappa}^{\kappa^*})_{\Sigma\cap\Omega};$
- (3) $\chi_{\Sigma}(\cup)_{\kappa}^{\kappa^{*}}\chi_{\Omega} = (\chi_{\kappa}^{\kappa^{*}})_{\Sigma\cup\Omega};$
- (4) $\chi_{\Sigma}(\circ)^{\kappa^*}_{\kappa}\chi_{\Omega} = (\underline{\chi}^{\kappa^*}_{\kappa})_{(\Sigma\Omega]}.$

Proof. Straightforward. \Box

Lemma 4. If $\tilde{\lambda}^f$ is the $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of Y, then $\lambda^{f_\kappa^{\kappa^*}}$ is an FBI of Y.

Proof. Let $\wp, \varrho \in Y$ be such that $\wp \leq \varrho$. Then, $\widetilde{\lambda}^{f}(\wp) \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Thus, it implies $\widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, and, so, $(\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\wp) \geq (\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\varrho)$. Next suppose that $\wp, \varrho \in Y$. Since $\widetilde{\lambda}^{f}$ is an $(\in, \in \lor(\kappa^{*}, q_{\kappa}))$ -FBI of $Y \quad \widetilde{\lambda}^{f}(\wp + \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. It follows that $\widetilde{\lambda}^{f}(\wp + \varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \wedge \frac{\kappa^{*}-\kappa}{2}$, and hence, $(\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\wp + \varrho) \geq (\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\wp) \wedge (\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\varrho)$. Similarly, $(\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\wp \varrho) \geq (\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\wp) \wedge (\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})(\varrho), \forall \varphi, \varrho \in Y$. Let $\wp, t, \varrho \in Y$; we have $\widetilde{\lambda}^{f}(\wp t\varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. Then $\widetilde{\lambda}^{f}(\wp \varrho) \wedge \frac{\kappa^{*}-\kappa}{2} \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$, and so $(\lambda_{\kappa}^{f_{\kappa}^{*}})(\wp t\varrho) \geq (\lambda_{\kappa}^{f_{\kappa}^{*}})(\wp) \wedge (\lambda_{\kappa}^{f_{\kappa}^{*}})(\varrho)$. Therefore, $\lambda_{\kappa}^{f_{\kappa}^{*}}$ is an *FBI* of Y. \Box

Lemma 5. Let $(\emptyset \neq) \Omega \subseteq S$. Then, Ω is a BI of $\Upsilon \Leftrightarrow (\underline{\chi}_{\kappa}^{f^{\kappa^*}})_{\Omega}$, the $(\in, \in \lor(\kappa^*, q_{\kappa}))$ -FBI of Υ .

Proof. Let $\wp, \varrho \in \Upsilon$ and $\iota, \theta \in (0, 1]$ be such that $\wp_{\iota} \in (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}$ and $\varrho_{\theta} \in (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}$. Then, $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp) \ge \iota > 0$ and $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\varrho) \ge \theta > 0$. Therefore, $\wp, \varrho \in \Omega$. As Ω is a *BI* of Υ , $\wp + \varrho \in \Omega$. Thus $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp + \varrho) = \frac{\kappa^{*} - \kappa}{2}$. If $\omega \wedge \theta \le \frac{\kappa^{*} - \kappa}{2}$, then $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp + \varrho) \ge \omega$, so we have $(\wp + \varrho)_{\iota \wedge \theta} \in (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}$. If $\iota \wedge \theta > \frac{\kappa^{*} - \kappa}{2}$, then $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp + \varrho) + \iota \wedge \theta > \frac{\kappa^{*} - \kappa}{2} + \frac{\kappa^{*} - \kappa}{2} =$ $\kappa^{*} - \kappa. \text{ So } (\wp + \varrho)_{\iota \land \theta}(\kappa^{*}, q_{\kappa})(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}. \text{ Similarly, } \wp_{\iota} \in (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega} \text{ and } \varrho_{\theta} \in (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega} \text{ imply} \\ (\wp\varrho)_{\iota \land \theta}(\kappa^{*}, q_{\kappa})(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}. \text{ Therefore, } (\wp + \varrho)_{\iota \land \theta} \in \vee(\kappa^{*}, q_{\kappa})(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}. \text{ Let } \wp, \varrho, t \in Y \text{ and} \\ \iota \in (0, 1] \text{ be such that } \wp_{\iota}, \varrho_{\theta} \in (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}. \text{ Then, } \wp, \varrho \in \Omega, (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp) \geq \iota, (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp) \geq \theta. \\ \text{Since } \Omega \text{ is a } BI \text{ of } Y, \text{ we have } \wp t \varrho \in \Omega. \text{ Thus, } (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp t \varrho) \geq \frac{\kappa^{*} - \kappa}{2}. \text{ If } \iota \land \theta \leq \frac{\kappa^{*} - \kappa}{2}, \\ \text{then } (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp t \varrho) \geq \iota \land \theta. \text{ Therefore } (\wp t \varrho)_{\iota \land \theta} \in (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}. \text{ Again, if } \iota \land \theta > \frac{\kappa^{*} - \kappa}{2}, \\ \text{then } (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}(\wp t \varrho) + \iota \land \theta > \frac{\kappa^{*} - \kappa}{2} + \frac{\kappa^{*} - \kappa}{2} = \kappa^{*} - \kappa. \text{ So } (\wp t \varrho)_{\iota \land \theta}(\kappa^{*}, q_{\kappa})(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}. \text{ Thus, } (\wp t \varrho)_{\iota \land \theta} \in (\kappa^{*}, q_{\kappa})(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa^{*}}})_{\Omega}, \text{ as required.} \end{cases}$

Let $\wp \in Y$ and $\varrho \in \Omega$ such that $\wp \leq \varrho$. Then $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\varrho) = \frac{\kappa^{*}-\kappa}{2}$. Since $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}$ is an $(\in, \in \lor(\kappa^{*}, q_{\kappa}))$ -*FBI* of Y, and $\wp \leq \varrho$, we have $(\underline{f}_{\kappa}^{\kappa^{*}})_{\Omega}(\wp) \geq (\underline{f}_{\kappa}^{\kappa})_{\Omega}(\varrho) \land \frac{\kappa^{*}-\kappa}{2} = \frac{\kappa^{*}-\kappa}{2}$. Thus, $(\underline{f}_{\kappa}^{\kappa^{*}})_{\Omega}(\wp) = \frac{\kappa^{*}-\kappa}{2}$ and so $\wp \in \Omega$. Let $\wp, \varrho \in \Omega$. Then, $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\wp) = \frac{\kappa^{*}-\kappa}{2}$ and $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\varrho) = (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\wp) \land (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\varrho) = \underline{\kappa}^{*-\kappa}$. Thus, it implies $(\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\wp) \land (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\wp) \land (\underline{\chi}_{\kappa}^{f_{\kappa}^{\kappa}})_{\Omega}(\varphi) \land (\underline{\chi}_{$

Theorem 6. Let $\widetilde{\lambda}^f \in \mathcal{F}(Y)$. Then $\widetilde{\lambda}^f$ is an $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of $Y \Leftrightarrow$

- (1) $\widetilde{\lambda}^f (+)^{k^*}_k \widetilde{\lambda}^f \preceq \underline{\lambda}^f_{\kappa^*},$
- (2) $\widetilde{\lambda}^f(\circ)^{k^*}_k \widetilde{\lambda}^f \preceq {\lambda}^f_{\kappa}^{\kappa^*},$
- (3) $\widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} 1^{f}(\circ)_{k}^{k} \widetilde{\lambda}^{f} \preceq \underline{\lambda}_{\kappa}^{f^{\kappa^{*}}}, and$
- (4) $(\forall \wp, \varrho \in \mathbf{Y}) \ \wp \leq \varrho \Rightarrow \overline{\lambda^f}(\wp) \geq \overline{\lambda^f}(\varrho) \land \frac{\kappa^* \kappa}{2}.$

Proof. (\Rightarrow) Suppose that $\widetilde{\lambda}^f$ is an $(\in, \in \lor(\kappa^*, q_\kappa))$ -*FBI* of Y. If $\widetilde{\lambda}^f (+)_k^{k^*} \widetilde{\lambda}^f = 0$, then $\widetilde{\lambda}^f (+)_k^{k^*} \widetilde{\lambda}^f \preceq \widetilde{\lambda}^f$. Suppose that $\widetilde{\lambda}^f (+)_k^{k^*} \widetilde{\lambda}^f \neq 0$. Then, we have

$$\begin{split} (\widetilde{\lambda}^{f}(+)_{k}^{k*}\widetilde{\lambda}^{f})(\wp) &= (\widetilde{\lambda}^{f} + \widetilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \bigvee_{\wp \leq \nu + \tau} \{\widetilde{\lambda}^{f}(\nu) \wedge \widetilde{\lambda}^{f}(\tau)\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\leq \bigvee_{\wp \leq \nu + \tau} \widetilde{\lambda}^{f}(\nu + \tau) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \lambda_{\kappa}^{f_{\kappa}^{\kappa^{*}}}(\wp). \end{split}$$

Thus, $\widetilde{\lambda}^{f}(+)_{k}^{k^{*}}\widetilde{\lambda}^{f} \leq \underline{\lambda}_{\kappa}^{f^{*}}$. Similarly, $\widetilde{\lambda}^{f}(\circ)_{k}^{k^{*}}\widetilde{\lambda}^{f} \leq \underline{\lambda}_{\kappa}^{f^{*}}$. Again, $(\widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}}1^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f})(\wp) = 0$, then $\widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}}1^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f} \leq \underline{\lambda}_{\kappa}^{f^{*}}$. Suppose that $(\widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}}1^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f})(\wp) \neq 0$. Then, we have

$$\begin{split} &(\lambda^{f}(\circ)_{\kappa}^{\kappa^{*}} 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \lambda^{f})(\wp) \\ &= (\tilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \tilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \bigvee_{\wp \leq yz} \left\{ \tilde{\lambda}^{f}(y) \wedge \left\{ \left\{ \bigvee_{z \leq v\tau} \{ 1^{f}(v) \wedge \tilde{\lambda}^{f}(\tau) \right\} \wedge \frac{\kappa^{*} - \kappa}{2} \right\} \right\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \bigvee_{\wp \leq yz} \bigvee_{z \leq v\tau} \left\{ \tilde{\lambda}^{f}(y) \wedge \tilde{\lambda}^{f}(\tau) \wedge \frac{\kappa^{*} - \kappa}{2} \right\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\leq \bigvee_{\wp \leq yz} \bigvee_{z \leq v\tau} \tilde{\lambda}^{f}(yv\tau) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\leq \tilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \frac{\lambda^{f}_{\kappa}^{\kappa^{*}}}{\kappa}(\wp). \end{split}$$

Therefore, $\widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}} \mathbb{1}^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f} \preceq \underline{\lambda}_{\kappa}^{f^{\kappa^{*}}}.$ (\Leftarrow) Let $\wp, \varrho \in Y$. Then, by hypothesis, we have

$$\begin{split} \widetilde{\lambda}^{f}(\wp + \varrho) &\geq \frac{\lambda^{f_{\kappa}^{\kappa^{*}}}(\wp + \varrho)}{\geq (\widetilde{\lambda}^{f}(+)_{k}^{k^{*}}\widetilde{\lambda}^{f})(\wp + \varrho)} \\ &= \Big\{\bigvee_{\wp + \varrho \leq \nu + \tau} \{\widetilde{\lambda}^{f}(\nu) \wedge \widetilde{\lambda}^{f}(\tau)\Big\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2}. \end{split}$$

Similarly, by hypothesis, $\widetilde{\lambda}^{f}(\wp \varrho) \geq \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*}-\kappa}{2}$. We also have

$$\begin{split} \widetilde{\lambda}^{f}(\wp ts) &\geq \underline{\lambda}^{f_{\kappa}^{\kappa^{*}}}(\wp ts) \\ &= (\widetilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f})(\wp ts) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \left\{ \bigvee_{\wp t \varrho \leq pq} \widetilde{\lambda}^{f}(p) \wedge (1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f})(q) \right\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \widetilde{\lambda}^{f}(\wp) \wedge (1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f})(t\varrho) \\ &= \widetilde{\lambda}^{f}(\wp) \wedge \left\{ \bigvee_{(u,v) \in A_{rs}} 1^{f}(u) \wedge \widetilde{\lambda}^{f}(v) \right\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \widetilde{\lambda}^{f}(\wp) \wedge 1^{f}(t) \wedge \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \widetilde{\lambda}^{f}(\wp) \wedge \widetilde{\lambda}^{f}(\varrho) \wedge \frac{\kappa^{*} - \kappa}{2}, \end{split}$$

as required. \Box

Theorem 7. *The following statements are equivalent in* Y:

- (1) Y is regular.
- (2) $\lambda_{\kappa}^{\kappa^*} \preceq \tilde{\lambda}^f \circ 1^f(\circ)_{\kappa}^{\kappa^*} \tilde{\lambda}^f$ for any $(\in, \in \lor(\kappa^*, q_{\kappa}))$ -FBI of Y.

Proof. Assume that $\widetilde{\lambda}^f$ is an $(\in, \in \lor(\kappa^*, q_\kappa))$ -*FBI* of Y. If $\wp \in Y$, then, as Y is regular, $\exists t \in Y$ such that $\wp \leq \wp t \wp$. Now, we have

$$\begin{split} (\widetilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f})(\wp) &= (\widetilde{\lambda}^{f} \circ 1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \left\{ \bigvee_{\wp \leq pq} \widetilde{\lambda}^{f}(p) \wedge (1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f})(q) \right\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \widetilde{\lambda}^{f}(\wp) \wedge (1^{f}(\circ)_{\kappa}^{\kappa^{*}} \widetilde{\lambda}^{f})(t\wp) \\ &= \widetilde{\lambda}^{f}(\wp) \wedge \left\{ \bigvee_{t\wp \leq uv} 1^{f}(u) \wedge \widetilde{\lambda}^{f}(v) \right\} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \widetilde{\lambda}^{f}(\wp) \wedge 1^{f}(t) \wedge \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \widetilde{\lambda}^{f}(\wp) \wedge \frac{\kappa^{*} - \kappa}{2}. \end{split}$$

Thus, $\lambda_{\kappa}^{f^{\kappa^*}} \preceq \lambda^f \circ 1^f(\circ)_{\kappa}^{\kappa^*} \lambda^f$.

(2) \Rightarrow (1). Let *B* be a *BI* of Y. Then, by Lemma 5, $(\chi f_{\kappa}^{\kappa^*})_B$ is an $(\in, \in \lor (\kappa^*, q_{\kappa}))$ -*FBI* of Y. Thus, by hypothesis, we have

$$(\underline{\chi}_{\kappa}^{f^{\kappa^*}})_B \subseteq \chi_B(\circ)_k^{k^*} \chi_I(\circ)_k^{k^*} \chi_B = (\underline{\chi}_{\kappa}^{f^{\kappa^*}})_{(BIB]} \subseteq (\underline{\chi}_{\kappa}^{f^{\kappa^*}})_{(\Sigma BIB]}.$$

So $B \subseteq (\sum BRB]$. Since *B* is *BI*, so $(\sum BRB] \subseteq B$. Thus $B = (\sum BRB]$. Hence, by ([9] Lemma 2.2), Y is regular. \Box

Theorem 8. *The following statements are equivalent in* Y:

- (1) Y is regular and intra-regular.
- (2) $\lambda_{\kappa}^{f_{\kappa}^{\kappa^{*}}} = \widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f}$ for any $(\in, \in \lor(\kappa^{*}, q_{\kappa}))$ -FBI of Y.

Proof. (\Rightarrow) Suppose that $\tilde{\lambda}^f$ is an ($\in, \in \lor(\kappa^*, q_\kappa)$)-*FBI* of Y. As Y is regular and intraregular, $a \leq axa$ and $a \leq ya^2z$. Therefore, $a \leq (axya)(ayxa)$. We have

$$\begin{split} (\widetilde{\lambda}^{f}(\circ)_{k}^{k^{*}}\widetilde{\lambda}^{f})(\wp) &= (\widetilde{\lambda}^{f} + \widetilde{\lambda}^{f})(\wp) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \bigvee_{\wp \leq pq} \{ \widetilde{\lambda}^{f}(p) \wedge \widetilde{\lambda}^{f}(q) \} \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \widetilde{\lambda}^{f}(axya) \wedge \widetilde{\lambda}^{f}(ayxa) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &\geq \lambda^{f}(a) \wedge \frac{\kappa^{*} - \kappa}{2} \\ &= \lambda^{f_{\kappa}^{\kappa^{*}}}(a). \end{split}$$

Thus $\underline{\lambda}_{\kappa}^{f_{\kappa}^{\kappa^{*}}} \leq \widetilde{\lambda}^{f}(\circ)_{k}^{k^{*}}\widetilde{\lambda}^{f}$. Since $\widetilde{\lambda}^{f}$ is an $(\in, \in \lor(\kappa^{*}, q_{\kappa}))$ -*FBI*, so $\widetilde{\lambda}^{f}(\circ)_{k}^{k^{*}}\widetilde{\lambda}^{f} \leq \underline{\lambda}_{\kappa}^{f_{\kappa}^{\kappa^{*}}}$. Hence $\lambda_{\kappa}^{f_{\kappa}^{\kappa^{*}}} = \widetilde{\lambda}^{f}(\circ)_{\kappa}^{\kappa^{*}}\widetilde{\lambda}^{f}$.

(2) \Rightarrow (1). Let *B* be a *BI* of Y. Then, by Lemma 5, $(\chi f_{\kappa}^{\kappa^*})_B$ is an $(\in, \in \lor (\kappa^*, q_{\kappa}))$ -*FBI* of Y. Thus by hypothesis, we have

$$(\underline{\chi^{f_k^*}})_B \subseteq \chi^f{}_B(\circ)^{k^*}_k \chi^f{}_B = (\underline{\chi^{f_k^*}})_{(BB]} \subseteq (\underline{\chi^{f_k^*}})_{(\Sigma BB]}.$$

Therefore, $B \subseteq (\sum BB]$. Since *B* is *BI*, so $(\sum BB] \subseteq B$. Thus $B = (\sum BB]$. Hence, by ([9]Theorem 3.12), Y is regular. \Box

Definition 6. Let $t \in Y$ and $\tilde{\lambda}^f \in \mathcal{F}(Y)$. Define the following \mathcal{I}_t of Y as

$$\mathcal{I}_t = \{ \wp \in \mathbf{Y} | \widetilde{\lambda}^f(\wp) \geq \widetilde{\lambda}^f(\varrho) \wedge \frac{\kappa^* - \kappa}{2} \}.$$

Lemma 6. Let $\widetilde{\lambda}^f$ be the $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI of Y. Then \mathcal{I}_t $(\forall t \in Y)$ is the BI of Y.

Proof. Let $t \in Y$. As $t \in \mathcal{I}_t$, we have $\mathcal{I}_t \neq \emptyset$. Take any $\wp, \varrho \in \mathcal{I}_t$. Then, $\widetilde{\lambda}^f(\wp) \ge \widetilde{\lambda}^f(t) \land \frac{\kappa^* - \kappa}{2}$ and $\widetilde{\lambda}^f(\varrho) \ge \widetilde{\lambda}^f(t) \land \frac{\kappa^* - \kappa}{2}$. Since $\widetilde{\lambda}^f$ is the $(\in, \in \lor(\kappa^*, q_\kappa))$ -*FBI* of Y, $\widetilde{\lambda}^f(\wp + \varrho) \ge \widetilde{\lambda}^f(r) \land \widetilde{\lambda}^f(y) \land \frac{\kappa^* - \kappa}{2} \ge \frac{\kappa^* - \kappa}{2}$, so $\wp + \varrho \in \mathcal{I}_t$. By a similar argument, $\wp \varrho \in \mathcal{I}_t$.

Next, take any $\tau \in Y$ and $\wp, \varrho \in \mathcal{I}_t$. Then $\widetilde{\lambda}^f(\wp) \ge \widetilde{\lambda}^f(t) \land \frac{\kappa^* - \kappa}{2}$ and $\widetilde{\lambda}^f(\varrho) \ge \widetilde{\lambda}^f(t) \land \frac{\kappa^* - \kappa}{2}$. By hypothesis, $\widetilde{\lambda}^f(\wp \tau \varrho) \ge \widetilde{\lambda}^f(\wp) \land \widetilde{\lambda}^f(\varrho) \land \frac{\kappa^* - \kappa}{2}$. Therefore, $\widetilde{\lambda}^f(\wp \tau \varrho) \ge \widetilde{\lambda}^f(a) \land \frac{\kappa^* - \kappa}{2}$. Thus $\wp \tau \varrho \in \mathcal{I}_t$. Additionally, for any $\wp \in Y$ and $\varrho \in \mathcal{I}_t$ such that $\wp \le \varrho$, we have $\wp \in \mathcal{I}_t$. Hence, \mathcal{I}_t is a *BI* of Y. \Box

Definition 7. An ordered semiring Y is called $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-simple if every $(\in , \in \lor(\kappa^*, q_\kappa))$ -FBI is constant. That is, $\forall \wp, \varrho \in Y$; we have $\underline{\lambda}_{\kappa}^{f_{\kappa}^*}(\wp) = \underline{\lambda}_{\kappa}^{f_{\kappa}^*}(\varrho)$, for each $(\in, \in \lor(\kappa^*, q_\kappa))$ -FBI $\widetilde{\lambda}^f$ of Y.

Theorem 9. The ordered semiring Y is bi-simple \Leftrightarrow it is $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-simple.

Proof. (\Rightarrow) Let $\tilde{\lambda}^{f}$ be the $(\in, \in \lor(\kappa^{*}, q_{\kappa}))$ -*FBI* of Y and $\wp, \varrho \in Y$. By Lemma 6, \mathcal{I}_{\wp} is an left ideal of Y. As Y is bi-simple, $\mathcal{I}_{\wp} = R$. So $\varrho \in Y$. Thus, $\tilde{\lambda}^{f}(\varrho) \geq \tilde{\lambda}^{f}(\wp) \land \frac{\kappa^{*}-\kappa}{2}$. Therefore, $\frac{\lambda f_{\kappa}^{\kappa^{*}}(\varrho)}{\kappa^{\kappa^{*}}(\varphi)} = \tilde{\lambda}^{f}(\varrho) \land \frac{\kappa^{*}-\kappa}{2} \geq \tilde{\lambda}^{f}(\wp) \land \frac{\kappa^{*}-\kappa}{2} = \frac{\lambda f_{\kappa}^{\kappa^{*}}(\wp)}{\kappa^{\kappa^{*}}(\varphi)}$. Similarly, $\frac{\lambda f_{\kappa}^{\kappa^{*}}(\varrho)}{\kappa^{\kappa^{*}}(\varrho)} \leq \frac{\lambda f_{\kappa}^{\kappa^{*}}(\wp)}{\kappa^{\kappa^{*}}(\varrho)}$. Thus, $\tilde{\lambda}^{f}(\varphi) = \lambda f_{\kappa}^{\kappa^{*}}(\varrho)$, as required.

(\Leftarrow) Assume that *I* is the proper *BI* of Y. By Lemma 5, $(\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}})_{I}$ is the $(\in, \in \lor(\kappa^{*}, q_{\kappa}))$ -*FBI* of Y. As Y is $(\in, \in \lor(\kappa^{*}, q_{\kappa}))$ -fuzzy bi-simple, $\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}}(\wp) = \underline{\lambda}_{\kappa}^{f_{\kappa}^{*}}(\varrho), \forall \wp, \varrho \in Y$. Let $p \in I$ and $q \in Y$. Then, $\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}}(q) = \underline{\lambda}_{\kappa}^{f_{\kappa}^{*}}(q)$. As $p \in I$, we have $\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}}(p) = \frac{\kappa^{*}-\kappa}{2}$. Therefore, $\underline{\lambda}_{\kappa}^{f_{\kappa}^{*}}(q) = \frac{\kappa^{*}-\kappa}{2}$, which implies that $q \in I$. Thus, I = Y, and hence Y is bi-simple. \Box

5. Conclusions

The notion of the $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideal, which is broader than the existing terminology, was introduced in this work. A condition is provided under which fuzzy bi-ideals and $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals coincide. Bi-ideals and $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals connections were taken into consideration. Regular and intra-regular ordered semirings were described in terms of $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-ideals and their (κ^*, κ) -lower parts. Moreover, $(\in, \in \lor(\kappa^*, q_\kappa))$ -fuzzy bi-simple ordered semirings were defined and characterized.

Author Contributions: Conceptualization, G.M., N.A. and A.M.; methodology, G.M. and D.A.-K.; validation, N.A. and A.M.; formal analysis, A.M. and D.A.-K.; investigation, A.M.; writing—original draft preparation, G.M.; writing—review and editing, A.M. and D.A.-K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Researchers Supporting Project (PNURSP2023R87) at Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Gan, A.P.; Jiang, Y.L. On ordered ideals in ordered semirings. J. Math. Res. Exp. 2011, 31, 989–996.
- 2. Good, R.A.; Hughes, D.R. Associated groups for a semigroup. Bull. Am. Math. Soc. 1952, 58, 624–625.
- 3. Lajos, S.; Szász, A. On the bi-ideals in associative rings. Proc. Jpn. Acad. 1970, 46, 505–507. [CrossRef]
- 4. Palakawong na Ayutthaya, P.; Pibaljommee, B. Characterizations of intra-regular ordered semirings by ordered quasi-ideals. *Int. J. Math. Sci.* 2016, 2016, 4272451. [CrossRef]
- 5. Senarat, P.; Pibaljommee, B. Prime ordered k-bi-ideals in ordered semirings. Quasigroups Relat. Syst. 2017, 25, 121–132.
- 6. Davvaz, B.; Omidi, S. Basic notions and properties of ordered semihyperrings. Categ. Gen. Algebr. Struct. Appl. 2016, 4, 43-62.
- Omidi, S.; Davvaz, B. Contribution to study special kinds of hyperideals in ordered semihyperrings. J. Taibah Univ. Sci. 2017, 11, 1083–1094. [CrossRef]
- 8. Anjum, R.; Ullah, S.; Chu, Y.M.; Munir, M.; Kausar, N.; Kadry, S. Characterizations of ordered h-regular semirings by ordered h-ideals. *AIMS Math.* **2020**, *5*, 5768–5790. [CrossRef]
- 9. Patchakhieo, S.; Pibaljommee, B. Characterizations of ordered k-regular semirings by ordered k-ideals. *Asian-Eur. J. Math.* 2017, 10, 1750020. [CrossRef]
- 10. Palakawong na Ayutthaya, P.; Pibaljommee, B. Characterizationsof ordered intra-k-regular semirings by ordered k-ideals. *Commun. Korean Math. Soc.* **2018**, *3*, 1–12.
- 11. Ahsan, J.; Saifullah, K.; Khan, F. Fuzzy semirings. Fuzzy Sets Syst. 1993, 60, 309–320. [CrossRef]
- 12. Kuroki, N. Fuzzy bi-ideals in semigroups. Comment. Math. Univ. St. Pauli 1979, 28, 17–21.
- 13. Mandal, D. Fuzzy ideals and fuzzy interior ideals in ordered semirings. Fuzzy Inf. Eng. 2014, 6, 101–114. [CrossRef]
- 14. Mandal, D. Fuzzy bi-ideals and fuzzy quasi-ideals in ordered semirings. *Gulf J. Math.* 2014, 2, 60–67. [CrossRef]
- 15. Gao, N.; Li, Q.; Huang, X.; Jiang, H. Fuzzy Orders and Pseudo-fuzzy Orders on Semirings. J. Intell. Fuzzy Syst. 2019, 36, 6443–6454. [CrossRef]
- 16. Al-Kaseasbeh, S.; Al Tahan, M.; Davvaz, B.; Hariri, M. Single valued neutrosophic (m,n)-ideals of ordered semirings. *AIMS Math.* **2022**, *7*, 1211–1223. [CrossRef]
- 17. Jun, Y.B.; Khan, A.; Shabir, M. Ordered semigroup characterized by their $(\in, \in \lor q)$ -fuzzy bi-ideals. *Bull. Malays. Math. Soc.* 2009, 32, 391–408.
- 18. Hedayati, H. Fuzzy ideals of semirings. *Neural Comput. Appl.* 2011, 20, 1219–1228. [CrossRef]
- 19. Cristea, I.; Mahboob, A.; Khan, N.M. A new type fuzzy quasi-ideals of Ordered Semigrouops. J. Mult.-Valued Log. Soft Comput. 2020, 34, 283–304.
- 20. Muhiuddin, G.; Mahboob, A.; Khan, N.M. A new type of fuzzy semiprime subsets in ordered semigroups. *J. Intell. Fuzzy Syst.* **2019**, *37*, 4195–4205. [CrossRef]
- 21. Muhiuddin, G.; Mahboob, A. Int-soft Ideals over the soft sets in ordered semigroups. AIMS Math. 2020, 5, 2412–2423. [CrossRef]
- 22. Muhiuddin, G.; Al-Kadi, D. Interval valued m-polar fuzzy BCK/BCI-algebras. *Int. J. Comput. Intell. Syst.* 2021, 14, 1014–1021. [CrossRef]
- 23. Muhiuddin, G.; Al-Kadi, D.; Mahboob, A.; Aljohani, A. Generalized fuzzy ideals of BCI-algebras based on interval valued m-polar fuzzy structures. *Int. J. Comput. Intell. Syst.* **2021**, *14*, 169. [CrossRef]
- Qahtan, S.; Alsattar, H.A.; Zaidan, A.A.; Deveci, M.; Pamucar, D.; Martinez, L. A comparative study of evaluating and benchmarking sign language recognition system-based wearable sensory devices using a single fuzzy set. *Knowl.-Based Syst.* 2023, 269, 110519. [CrossRef]
- Qahtan, S.; Alsattar, H.A.; Zaidan, A.A.; Deveci, M.; Pamucar, D.; Delen, D. Performance assessment of sustainable transportation in the shipping industry using a q-rung orthopair fuzzy rough sets-based decision-making methodology. *Expert Syst. Appl.* 2023, 223, 119958. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.