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1. Introduction

In a model example of the classical Calderón’s complex interpolation theory [1] (see
also [2,3]), two Banach spaces Xj = (Cn, ‖ · ‖j) (j = 0, 1) are interpolated by intermediate
Banach spaces Xζ = (Cn, ‖ · ‖ζ) for ζ ∈ S = {ζ = σ + i τ : 0 < σ < 1} ⊂ C with the norms

‖w‖ζ = ‖w‖σ = inf {max
j=0,1

Nj( f ) : f ∈ F , f (ζ) = w},

where F is the family of mappings f : S→ Cn, bounded and analytic in S, continuous up
to the boundary, f (σ + i τ)→ 0 as τ → ±∞, and Nj( f ) = supτ∈R ‖ f (j + i τ)‖j, j = 0, 1.

Its plurisubharmonic version was considered in [4] as follows. Given two plurisubhar-
monic functions u0, u1 in a bounded domain D of Cn, find a plurisubharmonic function
u in D ×A ⊂ Cn+1 with A = {ζ : 0 < log |ζ| < 1} ⊂ C, whose boundary values on
Aj = {log |ζ| = j} coincide with uj (j = 0, 1) (the annulus A was used instead of the
strip S in order to stick to the standard setting of the Dirichlet problem for the complex
Monge–Ampère operator in bounded domains).

More precisely, denote

W(u0, u1) = {v ∈ PSH(D×A) : lim sup
ζ→Aj

v(·, ζ) ≤ uj(·), j = 0, 1}. (1)

When both u0 and u1 are bounded above, this set is not empty (it contains u0 + u1 −M for
a constant M big enough). Note also that for any v ∈W(u0, u1), the function sup{v(z, ξ) :
|ξ| = |ζ|} belongs to W(u0, u1) as well.

Let û = sup{v ∈W(u0, u1)}. It is a plurisubharmonic function in D×A, depending
on z and |ζ| and so, in particular, it is a convex function of log |ζ|.

Definition 1. A family vt(z) on D× (0, 1) is a subgeodesic for u0, u1 if vlog |ζ|(z) ∈W(u0, u1).
The largest subgeodesic, ut, is the geodesic. In other words, ut(z) = ulog |ζ|(z) = û(z, ζ) for

t = log |ζ|.

This shows that the plurisubharmonic interpolation problem is equivalent to finding a
(sub)geodesic passing through the two given plurisubharmonic functions, which we will
call here the geodesic connectivity problem .

The origins of the plurisubharmonic geodesics lie in studying Kähler metrics on
compact complex manifolds (X, ω). Starting with [5], a notion of geodesics in the spaces
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of such metrics has been playing a prominent role in Kähler geometry and has found a
lot of applications; see, for example [6–9], and the bibliography therein. Considerable
progress was made then by relating the metrics to quasi-psh functions on compact complex
manifolds; see [10–23], and many others.

We would especially like to refer to [12,22] where the connectivity problem for quasi-
plurisubharmonic functions on compact Kähler manifolds was for the first time treated
in terms of rooftop envelopes; the approach was developed then in [15–19,24,25] and other
recent papers. A nice overview of this activity can be found in [26].

For the local setting of plurisubharmonic functions on bounded domains, the geodesics
were considered in the (unpublished) preprint [27] and, independently, in [28,29], and then
in [4,30–33]. Comparing with the compact manifold case, two main difficulties arise. First,
a plurisubharmonic function can have its singularities on the boundary of the domain,
and theory of boundary behavior of such plurisubharmonic functions is at the moment
underdeveloped. Another issue is the lack of control over the total Monge–Ampère mass
of plurisubharmonic functions and of monotonicity for its non-pluripolar part, the central
tools used in the compact case.

In this paper, we survey the local theory results; also, we present a few new results on
solvability of the connectivity problem in the Cegrell class F .

We start with the simplest case of interpolation of bounded plurisubharmonic func-
tions and functions from the Cegrell class E0 (Sections 1 and 2) and applications to set
interpolation by means of relative extremal functions (Sections 3–5). In Section 6, we ex-
tend these results to the Cegrell class F1. The main tool for interpolation of unbounded
functions is the rooftop technique, which we present in Section 7. A general setting of the
connectivity problem is given in Section 8, and we introduce one of the main objects of the
theory, residual plurisubharmonic functions, in Section 9. We formulate a fundamental
Rooftop Equality conjecture and confirm it for functions from the class F in Section 10, and
we apply it to solving the connectivity problem for certain cases in Section 11. Finally, in
Section 12, we mention a few other directions in the field of plurisubharmonic interpolation
and geodesics.

The set of all plurisubharmonic (psh for short) functions in a domain Ω will be denoted
by PSH(Ω), and its subset of negative functions is PSH−(Ω). For basics on psh functions,
we refer to [34,35]. A nice (and comprehensive) presentation of the theory of Cegrell classes
can be found in [36].

2. Bounded Psh Functions and Class E0

Let D be a bounded domain in Cn and let u0, u1 ∈ PSH(D) ∩ L∞(D). We consider the
class W(u0, u1) given by (1) and define its upper envelope û and geodesic ut as described
in Introduction. We define the subgeodesic Vt := max{u0 −M t, u1 −M (1− t)}, where
M = ‖u0 − u1‖∞, and obtain

Vt ≤ ut ≤ (1− t)u0 + tu1, 0 < t < 1 (2)

(the second inequality being a consequence of convexity of ut in t), which implies that
ut → uj, uniformly on D, as t → j ∈ {0, 1}. This means that, in the bounded case, the
geodesic always exists and attains the boundary values in a very nice sense.

When uj = 0 on ∂D, one has control on the regularity of the upper envelope û of
W(u0, u1) and, therefore, on ut:

Theorem 1 ([29]). If uj ∈ C1,1(D), then ut ∈ C1,1(D) both in z and t.
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Subgeodesics and geodesics of psh functions have some special properties when the
functions belong to a specific class—namely, to the Cegrell class F1. Here we start, however,
with another Cegrell class, E0.

Assume D is a bounded hyperconvex domain, i.e., there exists a negative psh function
ρ exhausting D: Dc = {z : ρ(z) < c} b D for all c < 0 and ∪c<0Dc = D. The Cegrell class
E0(D) is formed by all bounded psh functions u in D that have zero boundary value on ∂D
(u(z)→ 0 as z→ ∂D) and finite total Monge–Ampère mass:

∫
D(ddcu)n < ∞.

Note that if u0, u1 ∈ E0(D), then ut ∈ E0(D) for any t as well.
Consider the energy functional

E(u) =
∫

D
u(ddcu)n.

By integration by parts,

E(u)− E(v) =
∫

D
(u− v)

n

∑
k=0

(ddcu)k ∧ (ddcv)n−k, u, v ∈ E0(D).

Theorem 2 ([28]). Let u, v ∈ E0(D) satisfy u ≤ v. Then

1. E(u) ≤ E(v);
2. if E(u) = E(v), then u = v.

The energy functional has the following remarkable properties.

Theorem 3 ([27,28]). Let u0, u1 ∈ E0(D). Then:

1. For any subgeodesic vt ∈ E0(D), E(vt) is a convex function of t;
2. For a subgeodesic vt ∈ E0(D), t 7→ E(vt) is linear if and only if vt is a geodesic for some

u0, u1 ∈ E0(D).

From this, one can deduce the following uniqueness result.

Theorem 4 ([28]). If u0, u1 ∈ E0(D) satisfy
∫

D u0(ddcu0)
k ∧ (ddcu1)

n−k = E(u1) for k =
0, . . . , n, then u0 = u1.

This works also for larger classes of psh functions; however, E0 suffices for an applica-
tion to plurisubharmonic interpolation of certain measures and sets.

3. Relative Extremal Functions

Let K b D. Recall that the relative extremal function of K w.r.t. D is

ωK = ωK,D = sup∗{u ∈ PSH−(D) : u|K ≤ −1}

(here sup∗ is the upper semicontinuous regularization of sup). This is a function from
E0(D), maximal outside K: (ddcωK)

n = 0 on D \ K. The relative capacity of K (w.r.t. D) can
be defined as

Cap (K) = (ddcωK)
n(K).

Let ut be the geodesic between uj = ωKj , j = 0, 1. Consider the sets

K̂t = {z : ut(z) = −1}, 0 < t < 1, (3)

then −E(ut) ≥ Cap (K̂t) while E(ωK) = −Cap (K), so we obtain

Theorem 5 ([28]). For any Kj b D,

Cap (K̂t) ≤ (1− t)Cap (K0) + t Cap (K1).
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One might expect that the geodesic interpolations ut of ωKj are ωK̂t
, which would

replace the inequality in this theorem by equality. It turns out to be false, even in the
simplest examples (see also Theorem 9):

Example 1. Let n = 1, D = D, K0 = {z : |z| ≤ e−1}, K1 = {z : |z| ≤ e−2}. Then
K̂t = {z : |z| ≤ e−1−t}, while

ut(z) = max
{

log |z|, log |z|+ t− 1
2

,−1
}

is not a relative extremal function. We have supp ddcuj = ∂Kj = {z : log |z| = −1− j} and
supp ddcut = {z : log |z| = −1± t} = ∂K̂t ∪ {z : log |z| = −1 + t}.

While the sets K̂t, as defined, could depend on the choice of the domain D, this is not
actually true, at least in the case when Kj are polynomially convex, which means that

Kj = {z ∈ Cn : |P(z)| ≤ ‖P‖Kj ∀P ∈ P},

P being the collection of all polynomials. Namely, they are sections of certain holomorphic
hulls of the set KA := (K0×A0)∪ (K1×A1) ⊂ Cn+1 with respect to functions holomorphic
in Cn × (C \ 0)):

Theorem 6 ([4]). If Kj are compact and polynomially convex, then, for any ζ ∈ A,

K̂log |ζ| = {z ∈ Cn : | f (z, ζ)| ≤ ‖ f ‖KA ∀ f ∈ O(Cn × (C \ 0))}.

4. Toric Case

More can be said if Kj are closures of complete, logarithmically convex, multicircled
(Reinhardt) domains, which means that y ∈ Kj provided z ∈ Kj and |yi| ≤ |zi| for all i, and

Log Kj := {s ∈ Rn : exp s = (es1 , . . . , esn) ∈ Kj}

are convex subsets of Rn. When, in addition, the domain D is multicircled, the functions
ωKj are toric (multicircled), and so are the geodesics ut.

Any toric plurisubharmonic function u(z) on D can be identified with its convex image:
the convex function ǔ(s) = u(exp s) on Log D ⊂ Rn, increasing in each variable sj. In
addition, ǔt is a convex function on Log D× (0, 1) ⊂ Rn+1.

The geodesics between toric psh functions have an easy description:

Theorem 7 ([31,37]). The convex image ǔt of any toric geodesic ut is given by

ǔt = L[(1− t)L[ǔ0] + tL[ǔ1]],

where L is the Legendre transform,

L[ f ](y) = sup
x∈Rn

−

{〈x, y〉 − f (x)}.

We can assume D = Dn, the unit polydisk. By [38],

ωKj(z) = sup
a∈Rn

+

∑ ak log |zk|
|hLj(a)| , z ∈ Dn \ Kj,
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where Lj = Log Kj ⊂ Rn
− = {s ∈ Rn : sj ≤ 0, 1 ≤ j ≤ n} and

hLj(a) = sup
s∈Lj

〈a, s〉, a ∈ Rn,

is the support function of Lj. Then L[ω̌Kj ] = max{hLj + 1, 0}, which gives an explicit
formula for the geodesic ut of uj = ωKj :

ǔt = L[(1− t)max{hL0 + 1, 0}+ t max{hL1 + 1, 0}].

As a consequence, we obtain

Theorem 8 ([31]). Let ut be the geodesic between uj = ωKj for complete, logarithmically convex
Reinhardt sets Kj b Dn. Then the sets K̂t defined by (3) are the geometric means of Kj: K̂t =

K1−t
0 Kt

1; in other words, Log K̂t = (1− t)Log K0 + t Log K1.

One can show that, in the toric case, there can never be an equality in Theorem 5,
unless the geodesic is constant:

Theorem 9 ([31]). In the conditions of Theorem 8, if there exists 0 < t0 < 1 such that ut0 = ωKt0
,

then u0 = u1.

Recall that volumes of convex combinations K(t) = (1− t)K0 + t K1 of convex bodies
Kj ⊂ Rn satisfy the Brunn–Minkowski inequality

Vol(K(t)) ≥ Vol(K0)
1−t Vol(K1)

t;

in other words, volumes of K(t) are logarithmically concave. The same is true for the
multiplicative combinations K̂t = K1−t

0 Kt
1 of convex Reinhardt bodies Kj ⊂ Cn [39].

The geodesic interpolation gives us a reverse estimate: the (usual) convexity of the
capacities

Cap (Kt) ≤ (1− t)Cap (K0) + t Cap (K1)

for logarithmically convex Reinhardt bodies Kj.

5. Weighted Extremal Functions

One can obtain a stronger relation between the capacities if the functions uj = ωKj are
replaced with weighted ones uj = cj ωKj for some cj > 0.

Let uc
t be the corresponding geodesic. The sets K̂t are now to be defined as

K̂c
t = {z ∈ Ω : uc

t (z) = mt}, 0 < t < 1,

where mt = min{uc
t (z) : z ∈ Ω}.

It can be shown that mt is a concave function and

|mt| ≤ ct := (1− t) c0 + t c1.

Moreover, if K0 ∩ K1 6= ∅, then |mt| = ct.

Theorem 10 ([32]). Let Kj b D be polynomially convex, K0 ∩ K1 6= ∅, and let the weights cj be
chosen such that

cn+1
0 Cap (K0) = cn+1

1 Cap (K1).

Then (
Cap (K̂c

t )
)− 1

n+1 ≥ (1− t)
(

Cap (K̂c
t )
)− 1

n+1
+ t
(

Cap (K̂c
t )
)− 1

n+1 .
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A little drawback of this result is that the sets K̂c
t depend on the parameters cj. It turns

out not to be the case in the toric situation, and the capacity inequality becomes the one on

concavity of the function
(

Cap (K̂t)
)− 1

n+1 :

Theorem 11 ([32]). If Kj ⊂ Dn are closures of complete, logarithmically convex Reinhardt domains,
then K̂c

t = K̂t = K1−t
0 Kt

1 for any weights cj > 0. Furthermore, the geodesic uc
τ equals cτ ωKτ for

some τ ∈ (0, 1) if and only if Kc0
1 = Kc1

0 (that is, c0 Log K1 = c1 Log K0) and so, uc
t = ct ωKt for

all t.

Since the concavity of v−1(t) implies convexity of v(t) and since the function x 7→ x1+ 1
n

is convex, the conclusion of Theorem 11 is stronger than convexity of (Cap (K̂t))
1
n , and the

latter is equivalent to logarithmic convexity of Cap (K̂t). This implies

Corollary 1 ([32]). In the conditions of Theorem 11,

Cap (K̂t) ≤ Cap (K0)
1−tCap (K1)

t.

6. Geodesics in F1

To obtain the above results on geodesics, including the linearity of the energy func-
tional E, extended to larger classes of psh functions, one should stick to those where the
functional is still finite. This leads to considering Cegrell’s energy classes, of which the
simplest one is the class F1.

Let D be a bounded hyperconvex domain in Cn.

Definition 2 ([40,41]). The class F (D) is formed by all u ∈ PSH−(D) that are limits of decreas-
ing sequences uN ∈ E0(D) such that

sup
N

∫
D
(ddcuN)

n < ∞.

If, in addition, supN
∫

D |uN |(ddcuN)
n < ∞, then u ∈ F1(D). A function v ∈ PSH−(D) belongs

to E(D) if for any D′ b D there exists u ∈ F (D) coinciding with v on D′.

For any u ∈ F1(D), (ddcu)n = limN→∞(ddcuN)
n, u(ddcu)n = limN→∞ uN(ddcuN)

n,
and E(u) = limN→∞ E(uN). Then, given uj ∈ F1(D), we approximate them by uj,N ∈
E0(D), find the geodesics ut,N , and then we can look at ut = lim uN,t as N → ∞.

A piece missing from the bounded case is an argument for ut to converge to uj as
t → j, since one cannot have L∞-bounds now. Instead, a rooftop technique can be used.
Since it will be playing a central role in the rest of the exposition, we will present it in the
next section, while here we just state a result on F1-geodesics based on that technique.

Let P(u, v) be the rooftop envelope (the largest psh minorants of min{u, v}). Then, for
any u0, u1 ∈ PSH−(D) and any C ≥ 0, the curve wC,t = P(u0, u1 +C)−Ct, 0 < t < 1, is ev-
idently a subgeodesic, and it plays the role of the subgeodesics Vt (2) from the bounded case.

Theorem 12 ([28]). Let u0, u1 ∈ F1(D). Then

1. for any subgeodesic vt ⊂ F1(D), the function t 7→ E(vt) is convex;
2. for the geodesic ut, the function t 7→ E(ut) is affine;
3. ut → uj in capacity as t→ j ∈ {0, 1}: ∀ε > 0, Cap {|ut − uj| ≥ ε} → 0.

Uniqueness Theorems 2 and 4 also remain true for u, v ∈ F1(D) [28].
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7. Rooftop Envelopes

Rooftop envelopes were explicitly introduced in [22] for quasi-psh functions on com-
pact Kähler manifolds, and then the technique was developed in [12,14,15,21,23,42] and
others. In the local context, they were considered first in [28] for functions in the Cegrell
class F1 and then in [33] for arbitrary psh functions, bounded from above.

The rooftop envelope P(u, v) of bounded above functions u and v is the largest psh
minorant of min{u, v}. Since P(u, v) ≥ u + v−M for some M ≥ 0, P(u, v) 6≡ −∞.

As follows from Prop. 3.3 in [12] (see also Lemma 3.7 in [16]),

NP(ddc[P(u, v)])n ≤ 1{P(u,v)=u}NP(ddcu)n + 1{P(u,v)=v}NP(ddcv)n, (4)

where NP(ddcw)n is the non-pluripolar Monge–Ampère operator in the sense of [43]: for Borel
sets E,

NP(ddcw)n = lim
j→∞

1E∩{w>−j}(ddc max{w,−j})n.

In particular, P(u, v) satisfies (ddc[P(u, v)])n = 0 on {−∞ < P(u, v) < min{u, v}}.
While P(u, vj) decreases to P(u, v) when vj decreases to v, its behavior for increasing

vj can be more complicated, provided vj are unbounded from below.

Example 2. Let D = Dn, u = 0, vj = maxk log |zk|+ j. Then min{u, vj} increase, as j → ∞,
to the function ĥ equal to 0 outside the origin and ĥ(0) = −∞, while P(u, vj) = v0 for all j.

This observation is a particular case of how the rooftop envelopes P(u, v + C) behave
when C → ∞. Denote

sup
C

∗P(u, v + C) = P[v](u),

the asymptotic rooftop, or asymptotic envelope of u with respect to the singularity of v.

Lemma 1 ([28]). If u, v ∈ F1(D), then P[v](u) = u.

Remark 1. This actually implies the connectivity of any u0, u1 ∈ F1(D); see Theorem 13.

One can ask if this works for any negative psh functions. The rest of the paper will be
actually devoted to this question.

8. Geodesics on PSH−(D)

Any u ∈ PSH−(D) is the limit of a decreasing sequence uN ∈ E0(D) [44]. So, for any
pair uj ∈ PSH−(D), j = 0, 1, we repeat what we did for F1: approximate uj by uj,N , connect
them by the geodesics ut,N , and then obtain the ’geodesic’ ut as the limit of ut,N as N → ∞.

The crucial question is if ut connects uj. More precisely: Does ut converge to uj, in any
sense, as t→ j ∈ {0, 1}?

Example 3. Let D = D, u0 = 0, u1 = log |z| ∈ F (D) \ F1(D).
For any N > 0, the function uN,t = max{u1,−Nt} is the geodesic between u0 and u1,N =

max{u1,−N}. Therefore, ut ≡ u1 = log |z| is not passing through u0.
The same works for u0 = 0 and u1 = Ga ∈ F (D) \ F1(D), the pluricomplex Green function

with pole at a ∈ D ⊂ Cn, n > 1.

Even more striking is

Example 4. Let uj = Gaj be the (pluricomplex) Green functions with different poles. Then ut does
not exceed the geodesic between Ga0 and 0, that is, by Example 3, Ga0 , and, by the same argument,
it does not exceed Ga1 . Therefore, it does not exceed (actually, equals) P(Ga0 , Ga0) = Ga0,a1 , the
Green functions with two logarithmic poles.
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In this case, we obtain a ’geodesic’ that does not pass through any of the endpoints.

So, there are functions that cannot be connected by geodesics, the obstacle being that
they have different ‘strong’ singularities. This sets the following

Geodesic connectivity problem: What pairs u0, u1 ∈ PSH−(D) can be connected by a psh
(sub)geodesic?

The problem in the compact setting (quasi-psh functions on compact Kähler manifolds)
was handled in [12] in terms of asymptotic envelopes, and this easily adapts to the local case:

Theorem 13 ([33]). Let u0, u1 ∈ PSH−(D), then the geodesic ut converges to u0 in L1
loc(D) (and

in capacity) as t→ 0 if and only if P[u1](u0) = u0.

As we have already seen, the possible obstacles can arise only from the singularities of
u0 and u1. When the singularities are equivalent, u0 � u1, which means

u0(z)− A ≤ u1(z) ≤ u0(z) + A

for some A > 0 and all z ∈ D, we have both P[u1](u0) = u0 and P[u0](u1) = u1 and so, the
geodesic connects the data functions.

This, however, does not cover Theorem 12 because functions from F1 need not have
equivalent singularities. Then one should look for a coarser equivalency of singularities.

In [30], it was proved that two toric psh functions in Dn with isolated singularities at
0 can be connected if and only if all their directional Lelong numbers coincide. This means
that the main terms of their singularities are the same. The proof was based on relating
toric psh functions to convex ones (as in Section 4) and then using the technique of convex
analysis. This will not work for arbitrary psh functions, so one should find another way to
single out such ‘main terms’ of the singularities.

9. Residual Function

Most of the contents of this section are taken from [33].

Definition 3. Given φ ∈ PSH−(D), its residual function is

gφ = gφ,D = P[φ](0) = sup
C≥0

∗P(φ + C, 0)} ∈ PSH−(D).

Equivalently, gφ is the (u.s.c. regularization) of the upper envelope of the class of all functions
u ∈ PSH−(D) with singularities at least as strong as that of φ, meaning that u ≤ φ + C for some
C ∈ R.

The function gφ is determined by the asymptotic behavior of φ near its singularities,
and it is a candidate for the main term of the asymptotic of the singularity of φ.

Example 5. If φ(z) � log |z− a|, a ∈ D, then gφ = Ga, the pluricomplex Green function with
pole at a.

Example 6. More generally, if φ(z) � ∑ ck log |z− ak|, then gφ is the weighted multipole pluri-
complex Green function.

Example 7. If φ is toric and D = Dn, then gφ coincides with its indicator Ψu [45] defined
in [46,47] as the toric psh function in Dn whose convex image ψu(s) = Ψu(exp s) in Rn

− is given
by the directional Lelong numbers νu,a of u at 0 in the directions a ∈ Rn

+:

ψu(s) = −νu,−s, s ∈ Rn
−.
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The next two examples deal with functions with non-isolated singularities.

Example 8. Let φ(z) � log |z1| and D = Dn, then gφ(z) = log |z1|.

Example 9. Let φ(z) � log |z1| and D = Bn, then [48]

gφ(z) = log
|z1|√

1− |z′|2
.

These two are particular cases of Green functions with poles along complex spaces; given
an ideal I = 〈 f1, . . . , fN〉 ⊂ O(D) with bounded generators, GI is the upper envelope
of u ∈ PSH−(D) such that u ≤ log | f | + O(1) [49]. Note that in this definition, the
asymptotics of u and log | f | are related only locally, not uniformly in D, so their equality to
the corresponding residual functions is not a trivial fact.

A bit different are the next two examples dealing with boundary singularities.

Example 10. If D = D ⊂ C and φ = −Pa, the negative Poisson kernel with pole at a ∈ ∂D, then
gφ = −Pa.

Example 11. More generally, if D ⊂ Cn is strongly pseudoconvex with smooth boundary, then
for any ζ ∈ ∂D there exists the pluricomplex Poisson kernel Ωζ ∈ PSH−(D) which satisfies
(ddcΩζ)

n = 0 in D, is continuous in D \ {ζ}, equal to 0 on ∂D \ {ζ}, and such that Ωζ(z) ≈
−|z− ζ|−1 as z→ ζ nontangentially [50,51].

We have P(Ωζ + C, 0) = Ωζ for any C > 0 and so, gΩζ
= Ωζ . When D = Bn,

Ωζ(z) =
|z|2 − 1
|1− 〈z, ζ〉|2 .

In the general case, the picture can be much more complicated. Since the singularities
can lie both inside the domain and on its boundary, we call gφ the Green–Poisson residual
function of φ for the domain D.

By properties of rooftops, (ddcP(φ + C, 0))n = 0 on {φ > −C}, so the non-pluripolar
Monge–Ampère current of gφ is zero.

The boundary values of gφ need not be zero (outside the unbounded locus of φ); see
Example 8. However, they are zero there if the domain is B-regular (i.e., each boundary
point possesses a strong psh barrier [52]).

By the unbounded locus of u ∈ PSH−(D) we mean the set Lu of all points z ∈ D such
that u is not bounded in D ∩Uz for any neighborhood Uz of z.

A very important property we believe the residual functions have is their idempotency:

ggu = gu.

At the moment, however, it is known to hold only under some assumptions on u. To
present them, we need the following

Definition 4. u ∈ PSH−(D) has small unbounded locus if there exists v ∈ PSH−(D), v 6≡ −∞,
such that v∗ = −∞ on Lu; here, for any ζ ∈ D, v∗(ζ) = lim supz→ζ v(z).

This differs from the definition of small unbounded locus used in [33], where the
requirement was pluripolarity of Lu, that is, existence of a function V 6≡ −∞ which is psh in
a neighborhood of D and V(ζ) = −∞ for all ζ ∈ Lu. The present definition does not change
Lu ∩ D, while it allows the boundary part Lu ∩ ∂D to be much bigger than pluripolar; such
sets are called b-pluripolar [53]. For example, a compact set K ⊂ ∂D ⊂ C is b-pluripolar if
and only if it is of zero Lebesgue measure.
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The following was proved in [33], and it can be checked that the proof of assertions (i)
and (ii) with the new definition of small unbounded locus remains unchanged.

Theorem 14. Let u ∈ PSH−(D). Then ggu = gu, provided one of the conditions is fulfilled:

(i) u has small unbounded locus;
(ii) the boundary function ũ of u ∈ E(D), in the sense of Cegrell [54], has small unbounded locus;
(iii) u ∈ F (D);
(iv) n = 1 (i.e., D ⊂ C).

Remark 2. In the one-dimensional case, the structure of residual functions is quite simple; if
u = Gµ + Pν is the Green–Poisson representation of u ∈ SH−(D), then gu = Gµs + Pνs with µs,
the restriction of the Riesz measure µ of u to {u = −∞}, and νs, the singular part (with respect to
the Lebesgue measure) of the boundary measure ν of u [55,56].

The idempotency of the residual functions has a lot of useful applications; for those
concerning the geodesics, see Section 11.

The residual function gφ keeps the main characteristics of singularities of φ. Recall that
the Lelong number νu(a) of a psh function u at a point a is the largest nonnegative number
ν such that u(z) ≤ ν log |z− a|+ O(1) near a, the log canonical threshold cu(a) of u is the
supremum of c ≥ 0 such that e−cu ∈ L2

loc(a), and the multiplier ideal Iu(a) is formed by all
f ∈ Oa such that | f |e−u ∈ L2

loc(a). Since they are all continuous for increasing sequences of
psh functions, we obtain

Theorem 15. For any φ ∈ PSH−(D) and a ∈ D, νgφ(a) = νφ(a), cgφ(a) = cφ(a), and
Itgφ(a) = Itφ(a) ∀t > 0.

When φ ∈ F (D), the residual function can actually be described explicitly.

Theorem 16. If (ddcφ)n is well-defined, then so is (ddcgφ)n and, furthermore,

(ddcgφ)
n = 1{φ=−∞}(ddcφ)n.

In particular, if φ ∈ F (D), then gφ ∈ F (D) and it is a unique solution to the equation (ddcu)n =
1{φ=−∞}(ddcφ)n in the class F (D).

Remark 3. The uniqueness part here follows from [57].

Functions from F (D) can have very large unbounded locus, and it can even coincide
with D. Nevertheless, the boundary value of any u ∈ F (D), in the sense of Cegrell, is zero,
which means that the least psh majorant H of u in D satisfying (ddcH)n = 0 is H ≡ 0.

More results on boundary behavior for functions from other Cegrell classes and their
residual functions can be found in [33] (see also the last section of this paper).

10. Residual Functions and Asymptotic Rooftops

In the compact setting, the corresponding analog of the residual function is an ulti-
mate tool for checking the connectivity of quasi-psh functions [16]. This was proved by
using machinery of non-pluripolar Monge–Ampère operator, including the monotonicity
property [58,59]. Unfortunately, that technique does not work in the local setting. In addi-
tion, functions from PSH−(D) can have their singularities on the boundary, and theory of
boundary behavior of such psh functions is still underdeveloped. That is why the results in
the local theory are at the moment not that complete.

Let φ, ψ ∈ PSH−(D). Then P[φ](ψ) ≤ gφ, so

P[φ](ψ) ≤ P(gφ, ψ).
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If φ � gφ (i.e., φ ≤ gφ ≤ φ + C), then the Rooftop Equality holds:

P[φ](ψ) = P(gφ, ψ) ∀ψ ∈ PSH−(D). (5)

Furthermore, it also holds for all φ, ψ ∈ F1(D) [28]. The following guess is then
natural:

Rooftop Equality conjecture: (5) holds for all φ, ψ ∈ PSH−(D).

Theorem 17 ([33]). Let φ ≥ gφ + w with some w ∈ PSH−(D) such that gw = 0, then the
Rooftop Equality P[φ](ψ) = P(gφ, ψ) holds with any ψ ∈ PSH−(D).

Applying this to w = φ, we obtain

Corollary 2. The Rooftop Equality holds with any ψ ∈ PSH−(D) if φ does not have strong
singularities, i.e., if gφ = 0.

In particular, this recovers the aforementioned result for F1 because gφ = 0 for all
φ ∈ F1(D).

For the same reason, Corollary 2 proves the Rooftop Equality for the Cegrell class
F a(D) of functions φ ∈ F (D) such that (ddcφ)n do not charge pluripolar sets.

It turns out, however, that Theorem 17 works also for the whole class F :

Corollary 3. If φ ∈ F (D), then P[φ](ψ) = P(gφ, ψ) for any ψ ∈ PSH−(D).

Proof. By Cor. 4.15, 4.16 in [57], there exists a unique pair of functions φ1, φ2 ∈ F (D)
such that (ddcφ1)

n = 1{φ>−∞}(ddcφ)n, (ddcφ2)
n = 1{φ=−∞}(ddcφ)n, and φ1 + φ2 ≤ φ ≤

P(φ1, φ2).
By Theorem 16, (ddcgφ)n = 1{φ=−∞}(ddcφ)n, so the uniqueness gives us φ2 = gφ.

Since φ1 ∈ F a(D), Theorem 17 with w = φ1 completes the proof.

Corollary 4. If φ, ψ ∈ F (D), then:

(i) gφ+ψ = ggφ+gψ , while the relation gφ+ψ = gφ holds if and only if gψ = 0;
(ii) gmax{φ,ψ} = gmax{gφ ,gψ}, while the relation gmax{φ,ψ} = gφ holds if and only if gψ ≤ gφ;
(iii) gP(φ,ψ) = P(gφ, gψ).

Proof. Assertions (i) and (ii), as well as the relations P(gφ, gψ) = gP(gφ ,gψ) and gP(φ,ψ) =

gP[φ](ψ) = gP[ψ](φ), are proved in Prop. 3.7–3.9, Cor. 7.6 in [33] for φ, ψ with small un-
bounded loci; however, the only property used in the proofs was the idempotency of all
the residual functions involved, which we have in our case of F (D). Then, by Corollary 3,

gP(φ,ψ) = gP(gφ ,ψ) = gP(gφ ,gψ) = P(gφ, gψ),

which proves (iii).

11. Geodesic Connectivity

Let u0, u1 ∈ PSH−(D). Since P[u1](u0) ≤ P(gu1 , u0), the equality P[u1](u0) = u0,
which is equivalent to the condition ut → u0 as t→ 0, implies u0 ≤ gu1 , while the reverse
implication would mean precisely the Rooftop Equality (5) for φ = u1 and ψ = u0.

So, we have

Theorem 18 ([33]). Let u0, u1 ∈ PSH−(D) and let the Rooftop Equality (5) be satisfied for φ = uj,
j = 0, 1. Then ut → uj in L1

loc(D) (and in capacity) if and only if u0 ≤ gu1 and u1 ≤ gu0 . If guj

are idempotent, the two inequalities are equivalent to gu0 = gu1 .
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Corollary 5.

(i) Any two negative psh functions without strong singularities can be geodesically connected.
(ii) Two functions from F (D) can be geodesically connected if and only if their residual functions

coincide.
(iii) No pair of psh functions with idempotent but different residual functions can be connected by

a (sub)geodesic.
(iv) Any negative psh function can be geodesically connected with its residual function.
(v) Two negative subharmonic functions in D ⊂ C can be geodesically connected if and only if

their residual functions coincide.

Remark 4. In the toric case, assertion (ii) covers the main result of [30].

12. Other Results

We just mention some other directions related to psh geodesics on domains of Cn.

1. One can consider separately residual functions go
u and gb

u determined by the singularities
of u inside the domain and on its boundary, respectively [33]. For example, the Green
function GI with poles along a complex space given by an ideal sheaf I = 〈 f1, . . . , fk〉,
mentioned in Section 8, actually equals go

log | f |; under some additional conditions on

I , it coincides with glog | f |, and in some situations, with gb
log | f |.

2. Residual functions gu for functions u ∈ PSH−(D) with well-defined (ddcu)n and
possessing boundary values ũ in the sense of Cegrell were considered in [33]. It was
shown there that if

∫
D(ddcu)n < ∞ and ũ has small unbounded locus, then gu is

idempotent and equal to P(go
u, gb

u).
3. Cegrell’s energy classes can be considered for m-subharmonic functions on domains

of Cn, 1 ≤ m < n [60,61]. Geodesics for such functions, including the linearity of the
corresponding energy functional, were studied in [62].

4. The Dirichlet problem for unbounded psh functions and its relation to the asymptotic
rooftop construction were recently considered in [63–65].

5. The regularity of toric and convex geodesics was studied in [66].
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