
Citation: Aderyani, S.R.; Saadati, R.;

Rassias, T.M.; Srivastava, H.M.

Existence, Uniqueness and the

Multi-Stability Results for a W -Hilfer

Fractional Differential Equation.

Axioms 2023, 12, 681. https://

doi.org/10.3390/axioms12070681

Academic Editor: Chris Goodrich

Received: 21 May 2023

Revised: 26 June 2023

Accepted: 5 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Existence, Uniqueness and the Multi-Stability Results for a
W -Hilfer Fractional Differential Equation
Safoura Rezaei Aderyani 1 , Reza Saadati 1,* , Themistocles M. Rassias 2,* and Hari M. Srivastava 3,4,5,6

1 School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran;
safoura_rezaei99@mathdep.iust.ac.ir

2 Department of Mathematics, National Technical University of Athens, Zografou Campus,
15780 Athens, Greece

3 Department of Mathematics and Statistics, Universtity of Victoria, Victoria, BC V8P 5C2, Canada;
harimsri@uvic.ca

4 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

5 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,
AZ1007 Baku, Azerbaijan

6 Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu,
Seoul 02447, Republic of Korea

* Correspondence: rsaadati@eml.cc (R.S.); trassias@math.ntua.gr (T.M.R.)

Abstract: In this paper, we apply the well-known aggregation mappings on Mittag-Leffler-type
functions to investigating new approximation error estimates of a W -Hilfer fractional differential
equation, by a different concept of Ulam-type stability in both bounded and unbounded domains.

Keywords: stability; fractional calculus; special functions; aggregation maps

MSC: 39B62; 46L05; 47B47; 47H10; 46L57

1. Introduction

The main issue we are studying in the present paper is that of aggregation mapping,
which refers to the procedure of merging some inputs into a single output. Probably the
oldest instance is the concept of the arithmetic mean, which has been applied throughout
the history of empirical sciences. Any map, such as the arithmetic mean, that computes a
unique output value from a vector of input values, is named an aggregation map [1].

Aggregation maps play a significant role in various technical tasks scholars that are
faced with in current times. They are particularly significant in regard to the diverse
problems relevant to the fusion of information. Generally, aggregation maps are widely
applied in applied mathematics (e.g., statistics, probability, decision mathematics), pure
mathematics (e.g., theory of means and averages, functional equations, measure theory),
social sciences (e.g., mathematical psychology), computer and engineering sciences (e.g.,
operations research, engineering design, artificial intelligence, information theory, data
fusion, image analysis), economics and finance (e.g., game theory, decision making, voting
theory) and many other natural sciences. Thus, an important characteristic of aggregation
maps is that they are applied in different fields [2,3].

Here, we apply n-ary aggregation maps on well-known special functions, including
Mittag-Leffler-type functions, to define a class of matrix-valued controller, which helps us
to present a new concept of Ulam-type stability. The aggregation maps allow us to obtain
the best approximation error estimates by a different concept of perturbation stability,
depending on the variant special functions that are initially chosen, and to study minimal
errors and optimal stability, which enables us to obtain a single optimal solution.
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The history of Ulam-type stability commenced in the 19th century. This stability
was first presented by Stanisław Marcin Ulam [4], for an additive function, which was
investigated by Donald Hyers [5], for a group of homomorphisms given on a Banach
space. Thereafter, the stability notion was extended by Themistocles Rassias [6], and was
named Ulam–Hyers–Rassias (UHR) stability. In addition, Ger and Alsina [7] investigated
the Ulam-type stability of ODEs, by replacing functional equations. In [8], Jung and
Algifiary proposed the Ulam stability of nth-order ODEs, by means of the Laplace transform
technique. Jung, Rezaei and Rassias [9] studied the Ulam stability of ODEs by the Laplace
transform technique. Applying the UHR technique, Baleanu and Wu [10] demonstrated
the Mittag-Leffler (ML)-type stability of fractional equations; Baleanu, Wu and Huang [11]
demonstrated the ML-type stability of fractional delay difference equations with impulse;
Wu [12] proved the ML-type stability of fractional neural networks through the fixed point
(FP) theory see also [13].

Here, we present some novel notions concerning the stability of fractional equations
in the Mittag-Leffler–Hyers–Ulam sense, by the FP technique, which is the most popular
technique for studying the stability of different types of equations. The FP technique was
applied for the first time by Baker [14], who used it to get the UHR stability of a functional
equation in a single variable. At present, numerous authors follow Radu’s technique [15],
and make use of a theorem of Margolis and Diaz.

Here, we study existence, uniqueness and the multi-stability results for the fractional
system below:{

H DX ,Z ;W
Θ+ J (S) = ρ(S , J (S), H DX ,Z ;W

Θ+ J (S)),
I1−W ;W
Θ+ J (Θ+) = JΘ,

(1)

where H DX ,Z ;W
Θ+ (.) is a fractional-order derivative in the Hilfer sense of order X ∈ (0, 1]

and type Z ∈ [0, 1], I1−W ;W
Θ+ (.) is a fractional integral of order 1−W ,W = X +Z(1−X ),

in regard to the function W defined in Definition 2, and ρ : Υ×R2 −→ R is an arbitrary
function. Presume S ∈ Υ = [Θ, D] with D > Θ and JΘ ∈ R.

Let [L1,L2](0 ≤ L1 < L2 < ∞) be an interval, and C[L1,L2] be the space of continuous
functions h : [L1,L2] −→ R with norm

‖h‖C[L1,L2]
= max

L1≤ζ≤L2
|h(ζ)|.

The weighted space C1−W ;W [L1,L2] of continuous functions h on (L1,L2] is defined by

C1−W ;W [L1,L2] =

{
h : (L1,L2] −→ R; (W (ζ)−W (L1))

1−Wh(ζ) ∈ C[L1,L2]

}
, 0 ≤ W < 1,

with norm

‖h‖C1−W ;W [L1,L2]
= max

ζ∈[L1,L2]

∣∣∣∣(W (ζ)−W (L1))
1−Wh(ζ)

∣∣∣∣.
2. Preliminaries
2.1. On Fractional Derivatives

Definition 1 ([1]). Let the interval (L1,L2)(

i=1,2︷︸︸︷
Li ∈ R), and X > 0. Presume W (ζ) is a

monotonically increasing and positive function on (L1,L2] that has a continuous derivative W ′(ζ)
on (L1,L2). The fractional integral respecting W on [L1,L2] is given by

IX ;W
L+

1
h(ζ) =

1
Γ(X )

∫ S
L1

W ′(S)(W (ζ)−W (S))X−1h(S)dS .
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Definition 2 ([1]). Let X ∈ (α− 1, α) with α ∈ N, and let h, W ∈ Cα[L1,L2] be two functions,
such that W is increasing and W ′(ζ) 6= 0 for any ζ ∈ [L1,L2]; therefore, the W -Hilfer fractional
derivative H DX ,Z ;W

L+
1

(.) of order X and type Z ∈ [0, 1] is defined as follows:

H DX ,Z ;W
L+

1
h(ζ) = IZ(α−X );W

L+
1

(
1

W ′(ζ)

d
dζ

)α

I(1−Z)(α−X );W
L+

1
h(ζ).

Theorem 1 ([1]). Let h ∈ C1[L1,L2], X ∈ (0, 1) and Z ∈ [0, 1]. Then,
H DX ,Z ;W

L+
1

IX ;W
L+

1
h(ζ) = h(ζ).

Theorem 2 ([1]). Let h ∈ C1[L1,L2], X ∈ (0, 1) and Z ∈ [0, 1]. Then,

IX ;W
L+

1

H DX ,Z ;W
L+

1
h(ζ) = h(ζ)− (W (ζ)−W ′(L1))

W−1

Γ(W)
I(1−Z)(1−X );W
L+

1
h(L1).

Lemma 1 ([16]). Let η1, η2 > 0. If h(S) = (W (S)−W (L1))
η2−1. Then, we obtain

Iη1;W
L+

1
h(S) = Γ(η2)

Γ(η2 + η1)
(W (S)−W (L1))

η1+η2−1. (2)

2.2. On the Alternative Theory

Theorem 3 ([17]). Let n ∈ N. Consider the set Υ with a complete [0, ∞]n-valued metric χ
(see [18]), and consider the self-map ∝ on Υ, satisfying the inequality

χ(∝ λ1, ∝ λ2) ≤
n︷ ︸︸ ︷

(β, · · · , β) χ(λ2, λ1), β < 1 is a Lipschitz constant,

for every λ1, λ2 ∈ Υ. Thus, we have two options:

(I) χ(∝m λ1, ∝m+1 λ1) =

n︷ ︸︸ ︷
(+∞, · · · ,+∞), ∀m ∈ N,

or
(II) we obtain m0 ∈ N s.t.:

(1) χ(∝m λ1, ∝m+1 λ1) <

n︷ ︸︸ ︷
(+∞, · · · ,+∞), ∀m ≥ m0;

(2) the fixed point λ∗2 of ∝ is the convergent point of the sequence {∝m λ1};
(3) λ∗2 is the unique fixed point of ∝, in the set V = {λ2 ∈ Υ | χ(∝m0 λ1, λ2) <

n︷ ︸︸ ︷
(+∞, · · · ,+∞)};

(4)

n︷ ︸︸ ︷(
(1− β), · · · , (1− β)

)
χ(λ2, λ∗2) ≤ χ(λ2, ∝ λ2), for every λ2 ∈ Υ.

2.3. On Aggregation Maps and Special Functions

Firstly, we introduce the concept of aggregation maps. Next, we apply a small list of
aggregation maps, to study optimal stability, which helps us to obtain a unique optimum
solution.

Now, let

diag[M1, · · · ,Mn] := diag

M1
. . .

Mn

, n ∈ N.

Note that diag[M1, · · · ,Mn] ≤ diag[∇1, · · · ,∇n], iff Mi≤ ∇i, for any i = 1, · · · , n.
Let n ∈ N and [n] := {1, · · · , n}. We usually apply bold symbols to demonstrate

n-tuples: for instance, diag[y1, · · · , yn]n×n will usually be written Y. Let J 6= ∅ be a real
interval.
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Definition 3 ([19]). A function P(n) : diag[J, · · · , J]n×n −→ J is an aggregation function, if:

(i) it is nondecreasing in each variable;
(ii) it satisfies the boundary conditions

sup
Y∈Jn

P(n)(Y) = sup J, and inf
Y∈Jn

P(n)(Y) = inf J. (3)

n ∈ N shows the arty of the aggregation map. Note that the aggregation maps will be
written P instead of P(n).

We present a common list of aggregation maps, as follows:

• The geometric mean function GM : diag[J, · · · , J]n×n −→ J and the arithmetic mean
function AM : diag[J, · · · , J]n×n −→ J are, respectively, given by

AG1(Y) := AM(Y) :=
1
n

n

∑
i=1

yi, (4)

AG2(Y) := GM(Y) := (
n

∏
i=1

yi)
1
n ; (5)

• For every k ∈ [n], the projection function Pk : diag[J, · · · , J]n×n −→ J and the
order statistic function OSk : diag[J, · · · , J]n×n −→ J related to the kth argument, are
correspondingly given by

AG3(Y) := Pk(Y) := yk, (6)

AG4(Y) := OSk(Y) := (y)k, (7)

where (y)k is the kth lowest coordinate of y:

y(1) 6 · · · 6 y(k) 6 · · · y(n).

The projections onto the first and the last coordinates are given by

AG5(Y) := PF(Y) := P1(Y) = y1, (8)

AG6(Y) := PL(Y) := Pn(Y) = yn. (9)

Likewise, the extreme order statistics y1 and yn are correspondingly the minimum and
maximum functions

AG7(Y) := Min(Y) := OS1(Y) = min{y1, · · · , yn}, (10)

AG8(Y) := Max(Y) := OSn(Y) = max{y1, · · · , yn}, (11)

which will be written through the operations ∨ and ∧, respectively:

Max(Y) =
n∨

i=1

yi, and Min(Y) =
n∧

i=1

yi.

Similarly, the median of odd numbers of values diag[y1, · · · , y2k−1](−1+2k)×(−1+2k) is
simply given by

Med

(
diag[y1, · · · , y−1+2k](−1+2k)×(2k−1)

)
= y(k).

For an even number of values diag[y1, · · · , y2k], the median is given by

Med

(
diag[y1, · · · , y2k]2k×2k

)
:= AM

(
diag[y(k+1), y(k)]2×2

)
=

y(k+1) + y(k)
2

.
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For every ϕ ∈ J, we also define the ϕ-median, Medϕ : diag[J, · · · , J]n×n −→ J, by

AG9(Y) := Medϕ(Y) = Med

(
diag[y1, · · · , yn, ϕ, · · · , ϕ︸ ︷︷ ︸

n−1

](2n−1)×(2n−1)

)
(12)

= Med(Min(Y), ϕ,Max(Y));

• For every ∅ 6= K ⊆ [n], the partial minimum Mink : diag[J, · · · , J]n×n −→ J and the
partial maximum Maxk : diag[J, · · · , J]n×n −→ J, associated with K, are, respectively,
given by

AG10(Y) := Mink(Y) :=
∧
i∈K

yi, (13)

AG11(Y) := Maxk(Y) :=
∨
i∈K

yi; (14)

• For every weight vector V = diag[v1, · · · , vn]n×n ∈ diag[[0, 1], · · · , [0, 1]]n×n s.t.
∑n

i=1 vi = 1, the weighted arithmetic mean function

WAMV : diag[J, · · · , J]n×n −→ J

and the ordered weighted averaging function OWAV : diag[J, · · · , J]n×n −→ J,
associated with V, are, respectively, given by

AG12(Y) := WAMV(Y) :=
n

∑
i=1

viyi, AG13(Y) := OWAV(Y) :=
n

∑
i=1

viy(i); (15)

• The sum and product functions ∑, Π : diag[R, · · · ,R]n×n −→ R are correspondingly
given by

AG14(Y) := ∑(Y) :=
n

∑
i=1

yi, AG15(Y) := Π(Y) :=
n

∏
i=1

yi. (16)

The main issue we are studying in this section is that of aggregation mapping, which
refers to the process of combining various input values into a single output. We will apply
the above aggregation mappings on Mittag-Leffler functions, to study the stability results
for the governing model.

Consider the following special functions:

• The one-parameter Mittag-Leffler function [20],

�1 (Λ) := ∇X (Λ) =
∞

∑
i=0

Λi

Γ(iX + 1)
, (17)

in which Λ,X ∈ C, i ∈ N, and <(℘) > 0;
• The pre-superhyperbolic supercosine through (17) [20],

�2 (Λ) := precoshX (Λ)

= 0.5
(
∇X (Λ) +∇X (−Λ)

)
=

∞

∑
i=0

Λ2i

Γ((2i)X + 1)
,

where Λ,X ∈ C, and <(X ) > 0;
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• The pre-supercosine function through (17) [20],

�3 (Λ) := precosX (Λ)

=
1
2

(
∇X (iΛ) +∇X (−iΛ)

)
=

∞

∑
i=0

(−1)iΛ2i

Γ((2i)X + 1)
,

where Λ,X ∈ C, and <(X ) > 0;
• The pre-superhyperbolic supersine through (17) [20],

�4 (Λ) := presinhX (Λ)

=
1
2

(
∇X (Λ)−∇X (−Λ)

)
=

∞

∑
i=0

Λ2i+1

Γ((2i + 1)X + 1)
,

in which Λ,X ∈ C, and <(X ) > 0;
• The pre-supersine function through (17) [20],

�5 (Λ) := presinX (Λ)

=
1
2i

(
∇X (iΛ)−∇X (−iΛ)

)
=

∞

∑
i=0

(−1)iΛ2i+1

Γ((2i + 1)X + 1)
,

where Λ,X ∈ C, and <(X ) > 0.

Here, we define the matrix-valued controller S as follows:

S(Λ) := diag
[
�1 (Λ), · · · , �5 (Λ)

]
.

Note that we have the following inequalities:

θ

Γ(X )

∫ S
0

W ′(s)(W (S)−W (s))X−1∇X
(
(W (s)−W (0))X

)
ds

≤ θ

Γ(X )

∫ S
0

W ′(s)(W (S)−W (s))X−1
∞

∑
k=0

(W (s)−W (0))kX

Γ(kX + 1)
ds

=
θ

Γ(X )

∞

∑
k=0

1
Γ(kX + 1)

∫ S
0
(W (S)−W (s))X−1(W (s)−W (0))kX dW (s)

=
θ

Γ(X )

∞

∑
k=0

1
Γ(kX + 1)

∫ W (S)−W (0)

0
(W (S)−W (0)− u)X−1(u)kX du

(u = W (s)−W (0))

≤ θ

Γ(X )

∞

∑
k=0

1
Γ(kX + 1)

(W (S)−W (0))X−1
∫ W (S)−W (0)

0
(1− u

W (S)−W (0)
)X−1ukX du

=
θ

Γ(X )

∞

∑
k=0

1
Γ(kX + 1)

(W (S)−W (0))(k+1)X
∫ 1

0
(1− v)X−1vkX dv



Axioms 2023, 12, 681 7 of 16

(
v =

u
W (S)−W (0)

)
=

θ

Γ(X )

∞

∑
k=0

1
Γ(kX + 1)

(W (S)−W (0))(k+1)X Γ(kX + 1)Γ(X )

Γ((k + 1)X + 1)

≤ θ
∞

∑
n=0

(W (S)−W (0))nX

Γ(nX + 1)

= θ∇X
(
(W (S)−W (0))X

)
.

Now, we obtain

θ
Γ(X )

∫ S
0 W ′(s)(W (S)−W (s))X−1S

(
(W (s)−W (0))X

)
ds

≤ θS

(
(W (S)−W (0))X

)
.

(18)

3. Existence, Uniqueness and Multi-Stability

Making use of Theorem 3, we study existence, uniqueness and the multi-stability
results of the system (19) and (20).

Now, for ρ : Υ×R2 → R and 0 < θ, we consider the following equations:

H DX ,Z ;W
Θ+ J (S) = ρ(S , J (S), H DX ,Z ;W

Θ+ J (S)); (19)

IW ;W
Θ+ J (Θ+) = JΘ, JΘ ∈ R, (20)

and the following inequality:

diag
[ ∣∣∣∣H DX ,Z ;W

Θ+ L (S)− ρ(S , L (S), H DX ,Z ;W
Θ+ L (S))

∣∣∣∣, · · · ,∣∣∣∣H DX ,Z ;W
Θ+ L (S)− ρ(S , L (S), H DX ,Z ;W

Θ+ L (S))
∣∣∣∣ ]

15×15

≤ diag
[

θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · , θ15AG15

(
S

(
(W (S)−W (0))X

)) ]
,

(21)

where S ∈ Υ.
Now, we define the notion of multi-stability.

Definition 4. Equations (19) and (20) have multi-stability with respect to

diag
[
AG1

(
S

(
(W (S)−W (0))X

))
, · · · ,AG15

(
S

(
(W (S)−W (0))X

))]
,

if there exists ci︸︷︷︸
i=1,··· ,15

> 0, such that for every θi︸︷︷︸
i=1,··· ,15

> 0 and every solution L ∈ C1−W ;W (Υ,R)

to (45) and I1−W ;W
Θ+ L (Θ+) = JΘ, there exists a solution J ∈ C1−W ;W (Υ,R) to (19) and (20) with

diag
[
|L (S)−J (S)|, · · · , |L (S)−J (S)|

]
15×15

≤ diag
[

c1θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · , c15θ15AG15

(
S

(
(W (S)−W (0))X

))]
,

for every S ∈ δ.
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Lemma 2 ([21]). Let a continuous function ρ(S , κ, υ) : Υ × R2 → R. Then, Equation (1) is
equivalent to

J (S) = (W (S)−W (Θ))W−1

Γ(W)
JΘ + IX ;W

Θ+ i (S), (22)

where i ∈ C(Υ,R) satisfies the equality below:

iJ (S) = ρ

(
S , J (S),iJ (S)

)
.

Remark 1. Let L ∈ C1−W ;W (Υ,R) be a solution of (45), and I1−W ;W
Θ+ L (Θ+) = JΘ. Then, L

is a solution of the inequality below:

diag
[ ∣∣∣∣L (S)− (W (S)−W (0))W−1

Γ(W)
JΘ

− 1
Γ(X )

∫ S
0

W ′(X )(W (S)−W (s))X−1 iL (s)ds
∣∣∣∣, · · · ,∣∣∣∣L (S)

− (W (S)−W (0))W−1

Γ(W)
JΘ −

1
Γ(X )

∫ S
0

W ′(X )(W (S)−W (s))X−1 iL (s)ds
∣∣∣∣ ]

15×15

≤ diag
[

θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · , θ15AG15

(
S

(
(W (S)−W (0))X

)) ]
,

where iL ∈ C(Υ,R) satisfies the equality below:

iL (S) = ρ

(
S , L (S),iL (S)

)
. (23)

Let us suppose the following axioms are satisfied:
(F1) ρ : Υ×R2 → R is continuous;

(F2) There is 0 < τ1, τ2, with 0 <
τ1

(1− τ2)
< 1 s.t.

|ρ(S , Ω, v)− ρ(S , Ω, v)| ≤ τ1|Ω−Ω|+ τ2|v−v| for each Ω, v, Ω, v ∈ R and S ∈ Υ.

Theorem 4. Let (F1) and (F2) be satisfied. If L ∈ C1−W ;W (Υ,R) satisfies (45) and I1−W ;W
Θ+

L (Θ+) = JΘ, then there is a single function J satisfying (19) and (20), s.t.,

diag
[
|J (S)−L (S)|, · · · , |J (S)−L (S)|

]
15×15

≤ diag
[

θ1

1− τ1

(1− τ2)

AG1

(
S

(
(W (S)−W (0))X

))
, · · · ,

θn

1− τ1

(1− τ2)

AG15

(
S

(
(W (S)−W (0))X

)) ]
,

(24)

for every S ∈ Υ.

Proof. Set $ = C1−W ;W (Υ,R), and define a mapping, χ : $× $→ [0, ∞]n, by
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χ(Φ1, Φ2)

= inf
{
({1, · · · , {15) ≥ 0 : diag

[
|Φ1(S)−Φ2(S)|, · · · , |Φ1(S)−Φ2(S)|

]
15×15

≤ diag
[
{1θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · ,

{15θ15AG15

(
S

(
(W (S)−W (0))X

) ]}
.

(25)

We show ($, χ) is a complete metric space. Let χ(Φ1, Φ2) > χ(Φ1, ν) + χ(ν, Φ2), for some
Φ1, Φ2 and ν ∈ $. Thus, there exists S◦ ∈ δ with

diag
[
|Φ1(S◦)−Φ2(S◦)|, · · · , |Φ1(S◦)−Φ2(S◦)|

]
15×15

> (χ(Φ1, ν) + χ(ν, Φ2))diag
[

θ1AG1

(
S

(
(W (S◦)−W (0))X

))
, · · · ,

θ15AG15

(
S

(
(W (S◦)−W (0))X

)) ]
.

Thus, from the definition of χ, we obtain

|Φ1(S◦)−Φ2(S◦)|
> |Φ1(S◦)− ν(S◦)|+ |(ν(S◦)−Φ2(S◦)|,

which is contradictory. We now show ($, χ) is complete. Presume ωk is a Cauchy sequence
in ($, χ). Thus, for every εi︸︷︷︸

i=1,··· ,15

> 0, there exists a ℵεi︸︷︷︸
i=1,··· ,15

∈ N, s.t. χ(ωm, ωk) ≤

(ε1, · · · , ε15), for every m, k ≥ ℵεi︸︷︷︸
i=1,··· ,15

. According to (25), we obtain

diag
[
|ωm(S)−ωk(S)|, · · · , |ωm(S)−ωk(S)|

]
15×15

≤ diag
[

ε1θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · , ε15θ15AG15

(
S

(
(W (S)−W (0))X

)) ]
,

(26)

for each S ∈ Υ. If S is fixed, (26) concludes that {ωk(S)} is a Cauchy sequence in R. As
the set of real numbers R is complete, {ωk(S)} converges for any S ∈ Υ. Then, we obtain
a function ω, defined by

ω(S) := lim
k→∞

ωk(S), (S ∈ Υ), (27)

which gives us ω ∈ $, (because {ωk(S)} is Cauchy in complete space R, so they are
uniformly convergent on the mapping ω defined in (27). The uniform convergence leads
us to the fact that ω is continuous, and is an element of $). If we set m → ∞, it follows
from (26) that

diag
[
|ω(S)−ωk(S)|, · · · , |ω(S)−ωk(S)|

]
15×15

≤ diag
[

ε1θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · , ε15θ15AG15

(
S

(
(W (S)−W (0))X

))]
.

(28)

Considering (25), we obtain

χ(ω, ωk) ≤ (ε1, · · · , ε15).
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This confirms that the Cauchy sequence {ωk} converges to ω in ($, χ). Thus, ($, χ) is
complete. In view of Lemma 2, Equations (19) and (20) are equivalent to the system below:

J (S) = (W (S)−W (Θ))W−1

Γ(W)
JΘ + IX ;W

Θ+ i (S), (29)

in which i ∈ C(Υ,R) satisfies the equality,

i(S) = ρ

(
S ,

(W (S)−W (Θ))W−1

Γ(W)
JΘ + IX ;W

Θ+ i (S),i(S)
)

,

for all S ∈ Υ. To prove this note, by using IX ;W
Θ+ (.) on both sides of (1), and utilizing

Theorem 2, we obtain

J (S)− (W (S)−W (Θ))W−1

Γ(W)
I(1−X )(1−Z);W
Θ+ JΘ = IX ;W

Θ+ i (S).

Thus,

J (S) = (W (S)−W (Θ))W−1

Γ(W)
JΘ + IX ;W

Θ+ i (S). (30)

In addition, if J satisfies (30), then it satisfies (1). To see this, apply H DX ,Z ;W
Θ+ (.) on both

sides of Equation (30). Then, according to Theorem 1, we obtain

H DX ,Z ;W
Θ+ J (S) = H DX ,Z ;W

Θ+

(W (S)−W (Θ))W−1

Γ(W)
JΘ + H DX ,Z ;W

Θ+ IX ;W
Θ+ i (S) = i(S),

where, for W ∈ (0, 1), we apply H DX ,Z ;W
Θ+ (W (S) − W (Θ))W−1 = 0. We deduce that

J (S) satisfies (1) if J (S) satisfies (29).
Let ∝: $ −→ $, such that Φ1 ∈ $

∝ (Φ1(S))

=
(W (S)−W (0))W−1

Γ(W)
JΘ +

1
Γ(X )

∫ S
0 W ′(X )(W (S)−W (�))X−1 iΦ1 (�)d �,

(31)

where iΦ1 ∈ C(Υ,R) satisfies the following equality:

iΦ1(S) = ρ

(
S , Φ1(S),iΦ1(S)

)
. (32)

For Φ1 ∈ $, we obtain

| ∝ (Φ1(S))− ∝ (Φ1(S0))|

=

∣∣∣∣ (W (S)−W (0))W−1

Γ(W)
JΘ +

1
Γ(X )

∫ S
0

W ′(X )(W (S)−W (�))X−1 iΦ1 (�)d �

− (W (S0)−W (0))W−1

Γ(W)
JΘ +

1
Γ(X )

∫ S
0

W ′(X )(W (S0)−W (�))X−1 iΦ1 (�)d �
∣∣∣∣

−→ 0, as S −→ S0,

so ∝: $ −→ $ is continuous.
We now prove ∝ is contractive on $. Let ∝: $ −→ $ defined in (31). Let Φ1, Φ2 ∈

C1−W ;W (Υ,R), and χ(Φ1(S), Φ2(S)) ≤ (k1, · · · ,k15), and k1, · · · ,k15 ∈ [0,+∞]. Then, for
all S ∈ Υ, we obtain
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diag
[
|Φ1(S)−Φ2(S)|, · · · , |Φ1(S)−Φ2(S)|

]
15×15

≤ diag
[
k1θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · ,k15θ15AG15

(
S

(
(W (S)−W (0))X

))]
.

For all S ∈ Υ, we obtain∣∣∣∣ ∝ (Φ1(S))− ∝ (Φ2(S))
∣∣∣∣

≤ 1
Γ(X )

∫ S
0 W ′(X )(W (S)−W (�))X−1|iΦ1 (�)−iΦ2(�)|d �,

(33)

where

iΦ1(S) = ρ(S , Φ1(S),iΦ1(S)),

and

iΦ2(S) = ρ(S , Φ2(S),iΦ2(S)).

Through hypothesis (F2), we obtain, for any S ∈ Υ,

|iΦ1 (S)−iΦ2(S)| ≤ τ1|Φ1(S)−Φ2(S)|+ τ2|iΦ1 (S)−iΦ2(S)|,

which can be written as

|iΦ1 (S)−iΦ2(S)| ≤
τ1

1− τ2
|Φ1(S)−Φ2(S)|. (34)

Next, using Remark 1, (33) and (34), we obtain

diag
[ ∣∣∣∣ ∝ (Φ1(S))− ∝ (Φ2(S))

∣∣∣∣, · · · ,
∣∣∣∣ ∝ (Φ1(S))− ∝ (Φ2(S))

∣∣∣∣ ]
15×15

≤ diag
[

τ1

(1− τ2)Γ(X )

∫ S
0

W ′(X )(W (S)−W (�))X−1|Φ1(�)−Φ2(�)|d �, · · · ,

τ1

(1− τ2)Γ(X )

∫ S
0

W ′(X )(W (S)−W (�))X−1|Φ1(�)−Φ2(�)|d �
]

15×15

≤ diag
[

k1θ1τ1

(1− τ2)

1
Γ(X )

∫ S
0

W ′(X )(W (S)−W (�))X−1

×AG1

(
S

(
(W (�)−W (0))X

))
d �, · · · ,

k15θ15τ1

(1− τ2)

1
Γ(X )

∫ S
0

W ′(X )(W (S)−W (�))X−1

×AG15

(
S

(
(W (�)−W (0))X

))
d �

]
≤ diag

[
k1θ1τ1

(1− τ2)
AG1

(
S

(
(W (S)−W (0))X

))
, · · · ,

k15θ15τ1

(1− τ2)
AG15

(
S

(
(W (S)−W (0))X

)) ]
.

Then, we obtain

χ(∝ (Φ1), ∝ (Φ2)) ≤ (
τ1

(1− τ2)
, · · · ,

τ1

(1− τ2)
)︸ ︷︷ ︸

15

χ(Φ1, Φ2).
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As 0 <
τ1

(1− τ2)
< 1, we deduce the contractive property of ∝.

Let L ∈ $. As ∝(L ) ∈ $, we obtain

diag
[ ∣∣∣∣ ∝ (L (S))−L (S)

∣∣∣∣, · · · ,
∣∣∣∣ ∝ (L (S))−L (S)

∣∣∣∣ ]
15×15

≤ diag
[ ∣∣∣∣L (S)− (W (S)−W (0))W−1

Γ(W)
JΘ

− 1
Γ(X )

∫ S
0

W ′(X )(W (S)−W (�))X−1 iL (�)d �
∣∣∣∣, · · · ,∣∣∣∣L (S)− (W (S)−W (0))W−1

Γ(W)
JΘ −

1
Γ(X )

∫ S
0

W ′(X )(W (S)

−W (�))X−1 iL (�)d �
∣∣∣∣ ]

15×15

≤ diag
[

θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · , θ15AG15

(
S

(
(W (S)−W (0))X

)) ]
,

for S ∈ Υ, which implies that

χ(∝ (L ), L ) ≤ (1, · · · , 1)︸ ︷︷ ︸
15

; (35)

hence, for all k ∈ N, we obtain χ(∝k (L ), ∝k+1(L )) < (+∞, · · · ,+∞)︸ ︷︷ ︸
15

. We now use

Theorem 3, and so we obtain a single map J ∈ {σ̃ ∈ $ : χ(∝ L , σ̃) < (+∞, · · · ,+∞)︸ ︷︷ ︸
15

},

such that ∝ J = J . Thus,

J (S) = (W (S)−W (0))W−1

Γ(W)
JΘ +

1
Γ(X )

∫ S
0

W ′(�)(W (S)−W (�))X−1 iJ (�)d �, (36)

for every S ∈ Υ, where iJ ∈ C(Υ,R) satisfies the equality (32), and I1−W ;W
Θ+ J (Θ+) =

JΘ ∈ R.
Based on Theorem 3 and (35), we obtain

χ(J , L ) ≤
(

1

1− τ1

(1− τ2)

, · · · ,
1

1− τ1

(1− τ2)

)
︸ ︷︷ ︸

15

χ(∝ (L ), L )

≤
(

1

1− τ1

(1− τ2)

, · · · ,
(

1

1− τ1

(1− τ2)

)
︸ ︷︷ ︸

15

,

which concludes (24).

We study the next theorem for the set of real numbers. By a similar method, we can
investigate the theorem for [0,+∞) and (−∞, 0]. Let t= C1−W ;W (R).

Theorem 5. Let (F1) and (F2) be satisfied. If L in t satisfies (45), and

I1−W ;W
Θ+ L (Θ+) = JΘ,

then there exists a single function J satisfying (19) and (20), and s.t. (24) is satisfied for all S ∈ R.
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Proof. For all k ∈ N, we consider Pk = [I− k, I+ k]. Based on Theorem 4, there exists a
single function Jk ∈ C1−W ;W (Pk), s.t.,

H DX ,Z ;W
Θ+ Jn(S) =W(S , Jk(S), Jk(η(S))), S ∈ Pk, (37)

I1−W ;W
Θ+ Jk(Θ

+) = JΘ, JΘ ∈ R, (38)

and

diag
[
|Jk(S)−L (S)|, · · · , |Jk(S)−L (S)|

]
15×15

≤ diag
[

θ1

1− τ1

(1− τ2)

AG1

(
S

(
(W (S)−W (0))X

))
, · · · ,

θ15

1− τ1

(1− τ2)

AG15

(
S

(
(W (S)−W (0))X

)) ]
,

(39)

for all S ∈ Pk. The uniqueness of Jk implies that if S ∈ Pk, then

Jk(S) = Jk+1(S) = Jk+2(S) = · · · . (40)

Consider k(S) ∈ N as

k(S) = min{k ∈ N | S ∈ Pk}.

In addition, consider a function J given by

J (S) = Jk(S)(S), S ∈ R,

and we claim J ∈t. For S1 ∈ R, we let the integer k1 = k(S1). Thus, S1 belongs to
the interior of Pk1+1, and there is an ε > 0, such that J (S) = Jk1+1(S) for all S with
S1 − ε < S < S1 + ε. Then, we prove that J satisfies (19), (20) and (24) for all S ∈ R. For
all S ∈ R, allow the integer k(S). Thus, S ∈ Pk(S), and we infer from (37) and (38) that

J (S) = Jk(S)(S)

=
(W (S)−W (0))W−1

Γ(W)
JΘ +

1
Γ(X )

∫ S
0 W ′(X )(W (S)−W (�))X−1 iJn(S) (�)d �

=
(W (S)−W (0))W−1

Γ(W)
JΘ +

1
Γ(X )

∫ S
0 W ′(X )(W (S)−W (�))X−1 iJ (�)d �,

(41)

where

iJ (S) = ρ(S , J (S),iJ (S))

and

iJk(S)(S) = ρ(S , Jk(S)(S),iJk(S)(S))

are in C(Υ,R). The above, (41), is true because k(�) ≤ k(S) for all �∈ Pk(S), and we deduce
from (40) that

J (�) = Jk(�)(�) = Jk(S)(�). (42)
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As J (S) = Jk(S)(S) and S ∈ Pk(S) for all S ∈ R, (39) concludes that

diag
[
|J (S)−L (S)|, · · · , |J (S)−L (S)|

]
15×15

= diag
[
|Jk(S)(S)−L (S)|, · · · , |Jk(S)(S)−L (S)|

]
15×15

≤ diag
[

θ1

1− τ1

(1− τ2)

AG1

(
S

(
(W (S)−W (0))X

))
, · · · ,

θ15

1− τ1

(1− τ2)

AG15

(
S

(
(W (S)−W (0))X

)) ]
.

(43)

Eventually, we claim J is single. Let J ′ ∈t be another function satisfying (19), (20)
and (24), for any S ∈ R. As J |Pk(S)(= Jk(S)) and J ′|Pk(S) both satisfy (19), (20) and (24)
for any S ∈ Pk(S), and the uniqueness of Jk(S) = J |Pk(S) , we conclude that

J (S) = J |Pk(S)(S) = J ′|Pk(S)(S) = J ′(S),

as required.

4. Example

Example 1. Consider the system (1) for W (S) = S2, Θ = 0, D = 1, X = Z =
1
2

, J : [0, 1]→
R and ρ : [0, 1]×R2 → R defined by

ρ(S , φ, ψ) =
1
5 2F1(P,Q,Q;S)φ +

1
8

ψ,

and we obtain
H D

1
2 , 1

2 ;S2

0+ J (S) = 1
5 2F1

(
P,Q,Q;S

)
J (S) + 1

8
H D

1
2 , 1

2 ;S2

0+ J (S),

I
1
4 ;S2

0+ J (0+) = J0 ∈ R,
(44)

in which P ∈ R+ and Q ∈ R, and 2F1(P,Q,Q; .) is the hypergeometric function.
In addition, consider the inequality below:

diag
[ ∣∣∣∣H D

1
2 , 1

2 ;S2

0+ L (S)− 1
5 2F1

(
P,Q,Q;S

)
L (S)− 1

8
H D

1
2 , 1

2 ;S2

0+ L (S)
∣∣∣∣, · · · ,∣∣∣∣H D

1
2 , 1

2 ;S2

0+ L (S)− 1
5 2F1

(
P,Q,Q;S

)
L (S)− 1

8
H D

1
2 , 1

2 ;S2

0+ L (S)
∣∣∣∣ ]

15×15

≤ diag
[

θ1AG1

(
S

(
(W (S)−W (0))X

))
, · · · , θ15AG15

(
S

(
(W (S)−W (0))X

)) ]
,

(45)

for every S ∈ [0, 1].
For any κ, υ, κ, υ ∈ R and S ∈ [0, 1], we obtain

|ρ(S , Ω, v)− ρ(S , Ω, v)|

=

∣∣∣∣15 2F1

(
P,Q,Q;S

)
Ω +

1
8

H D
1
2 , 1

2 ;S2

0+ v− 1
5 2F1

(
P,Q,Q;S

)
Ω− 1

8
H D

1
2 , 1

2 ;S2

0+ v

∣∣∣∣
≤ 1

5 2F1

(
P,Q,Q;S

)
|Ω−Ω|+ 1

8
|v−v|.
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Thus, condition (F2) is satisfied with τ1 =
1
5 2F1

(
P,Q,Q;S

)
and τ2 =

1
8

, and the condition

8
35 2F1

(
P,Q,Q;S

)
< 1

is satisfied. Theorem 4 implies that (44) has a single solution, and is stable with

diag
[
|J (S)−L (S)|, · · · , |J (S)−L (S)|

]
15×15

≤ diag
[

θ1

1− 8
35 2F1

(
P,Q,Q;S

)AG1

(
S

(
(W (S)−W (0))X

))
,

· · · ,
θ15

1− 8
35 2F1

(
P,Q,Q;S

)AG15

(
S

(
(W (S)−W (0))X

))]
15×15

,

where S ∈ [0, 1].

5. Conclusions

We used the aggregation maps on diverse special functions such as the Mittag-Leffler
function, supertrigonometric and superhyperbolic functions, to propose a novel controller
that helps us study a different notion of stability: namely, multi-stability. Multi-stability
enables us to obtain various approximations, depending on various special functions, and
to obtain optimal stability, which, in turn, enables us to obtain a unique optimum solution.
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