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1. Introduction

Convexity (concavity) has many applications in several fields, which include math-
ematics, economics, finance, engineering and computer science. Numerous noteworthy
inequalities and properties can be found in various categories of mathematics employing
convexity (concavity) theory (see [1-4]). The unique global minimum in convex optimiza-
tion problems can be efficiently located by applying a variety of optimization methods,
including gradient descent, Newton’s method and interior-point approaches. In applied
problems, especially in optimization problems, the role of the concept of convexity is well-
known. This concept, along with the functions derived from it, has a special place in the
theory of integral inequalities; for example the inequalities of Jensen, Hermite, Simpson,
Bullen, etc. (see [5-7]). Here, we first recall some necessary definitions and inequalities
(see [8] and references therein).

Definition 1. The function i : [0*, 0*] — R is said to be convex if we have
pleo+ (1 —e)y) < eplp) + (1 - e)y(y),
forall p,y € [0%,0"] and € € [0,1]. If — is convex, then  is concave.

The double Hermite-Hadamard inequality (hereinafter the Hadamard inequality),
widely known in the theory of inequalities, is closely related to convex functions. This
inequality is formulated in the literature as follows:
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Let ¢:[0%, 0*] — R be a convex function. Then, we have the following double inequality:

%

¢ +0° L () +9(e")
zp( 5 )é g J,. vedes TR M

Many important inequalities have been established in the literature for various classes
of convex functions and classes derived from them (for example, see [2,9-11]).

In [12], Bullen proved the following inequality, which is known as Bullen’s inequality,
for the convex function ¢:

Qig/j lP(S)des;[lp(ﬁ ;Q )+¢(l9 )erlP(Q) | o

The well-known Bullen’s inequality was first presented by Bullen in 1978 [12]. Due to their
outstanding uses, Bullen-type inequalities have garnered a lot of interest. Bullen’s inequality
is a topic that many scientists and mathematicians are very interested in and concerned
about because of its importance in many different domains. Bullen’s inequality has drawn
a lot of interest from scholars, who have worked hard over the years to enhance and
generalize it. Numerous researchers have generalized the well-known Bullen’s inequality
in its conventional form for various subcategories of convex functions. Recently, there
have been many interesting and attention-grabbing studies in the literature devoted to
improving and generalizing Bullen-type inequalities. For example, some of these works
are listed below.

In [13], Cakmak established some inequalities of the Hadmard and Bullen types for
Lipschitzian functions. In [14], Cakmak presented Bullen-type inequalities via fractional in-
tegral operators for differentiable convex and #—convex functions and gave good examples.
In [15] (see also [16]), Erden and Sarikaya established generalized Bullen-type inequalities
using local fractional integrals and some applications for special means were given. In [17],
Iscan et al. obtained some generalized Hadamard- and Bullen-type inequalities for con-
vex functions and described some applications and error estimates for the left and right
Hadamard inequalities. In [18], Hussain and Mehboob, using the generalized fractional
integral identity, derived new estimates for the Bullen-type functional for (s, p) —convex
functions. In [19], Yasar et al. presented the Bullen-, midpoint-, trapezoid- and Simpson-
type inequalities for s-convex functions in the fourth sense. In [20], Boulares et al. presented
fractional multiplicative Bullen-type inequalities, along with some applications, using mul-
tiplicative calculus. Recently, in [21], Bahtiyar et al. gave a uniform treatment of fractional
Bullen-type inequalities to provide a concrete estimation analysis of bounds using Lipschitz
functions, mean value theorem and convexity theory.

It was inevitable that fractional calculus would arise using arbitrary-order integrals
and derivatives. Due to its applicability in numerous fields of science and engineering,
this topic has gained considerable prominence. The fact that researchers have over time
suggested more efficient solutions to physical phenomena attuned to new operators with
dominant kernels is a significant difference in this subject. Fractional derivatives play an
important role in a number of mathematical problems and the corresponding practical
consequences [22,23]. The fractional calculus approach has recently been employed to
define the intricate dynamics of problems in real-life scenarios in several branches of
applied science domains. There are numerous uses in the literature [24,25]. Fractional
calculus has been widely employed to achieve novel results in the theory of inequality,
connecting fractional operators through the idea of convexity (see [26-30]). We need the
following definition of classical integral operators:

Definition 2 ([23]). Let ¢ € L[0", 0*]. The Riemann—Liouville integrals ], , ¢ and ]2‘*,1/) of
order . > 0 with 0* > 0 are defined by

Bt ()= g5y [0 - 9 v, e
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and

*

JE_p (o) = r(1> / Ce—p)lpe)de,  p<a,

respectively, where T (a) = [° e "“u*~'du. Here we have J%, (x) = JO_y(p) = ¢(p). In the
case of & =1, the fractional integral reduces to the classical integral.

Two classical inequalities—namely, the Holder inequality and its other form—and the
power mean inequalities have been used frequently in the development of the theory of

integral inequalities.

Theorem 1 (Holder inequality). Let p > 1, %—l—% = 1and P(e),g(e) : [0%,0"] — R. If

917,181 € L[8", "] then
/: i (eide < </19Q |1p(s)|pds)p([;*'g(e)'qu)q’ ®)

for which equality holds if and only if A|y(e)|P = B|g(e)|7 almost everywhere, where A and B
are constants.

Theorem 2 (Improved Holder integral inequality [31]). Let p > 1, % + % = 1and
¥(e)g(e):[0%, 0] — RIf |9[P, [g]" € L[97, ¢7], then
Q*
/W P(e)g () de @

*

1 0"
< _ )P "/ _ )[a
_Q*_ﬁ*(/ (" —e)lp@de)” ([ (0" —e)lgle) de)

*

1 Q" 3/ [ :
* p P * q q
+Q*—l9*(/19*( — ) |y(e |de /* —0")|g(e |ds>

Theorem 3 (Power mean inequality). Let g > 1, % + % =land ¢(e),g(e) : [0%,0*] — R. If
[p|P, [g]7 € L[8*, 0*], then

\»-x
S|

—

* *

[ wostone< ([ o) ([

Theorem 4. [Improved power mean integral inequality [32]] Let ¢ > 1 and (¢), g(e):[9*, 0*]
— R If ||, |g|7 € L[9*, 0*] are the integrable functions on [0*, 0*|, then

|w<e>||g<e>|%le) " )

%

[ 1(@g(e)de ©

1

< ([ ~oiene) ([ @ o)’

%

ot ([ e o) ([ e olvolsera)’

In [33], U. Kirmac1 proved the following lemma.

Lemma 1. Let ¢ : [0*,0*] — R and ¢ € C2(8*,0%) with ¢" € L[8*,0*]. Then, we have
*_9* 2 1 Q* 1 o * 9* *
%(h +h) = e [ ptee— 3 | M (283 )

where
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1/2
L = /0 e(e—05)y" (0 *e+ 0" (1 — ¢))de,

1
L = /1/2(8—0.5)(8—1)IP/’(19*€+Q*(1—8))d€.

The main objective of this paper is to obtain some generalized Bullen-type inequalities
for continuously differentiable functions. We first establish an identity of the Bullen type for
twice-differentiable functions in terms of fractional integral operators. Based on this new
identity, some generalized Bullen-type inequalities are obtained by employing convexity
properties. Concrete examples are constructed to illustrate the results, and the correctness
is verified by graphical analysis. An analysis is provided on the estimations of bounds.
According to calculations, improved Holder and power mean inequalities give better upper-
bound results than classical inequalities. Lastly, some applications to quadrature rules,

modified Bessel functions and digamma functions are provided as well.

2. Main Results

We start the results in this section by proving the following lemma.

Lemma 2. Let :[0%,0*] — R and ¢ € C2(8*,0%) withy" € L[8*,0*]. When Vs € [0,1],

the equality holds:
a+1

0(e) = F{ g [1p@) + 1 (@) = [#12 pten) + (1= 1 o)

* _ 0%)\2
:M@“ﬂ'

I'(a+1)
b (10— )

I = /0%8"‘(%— e)p’ (0% e+ 0" (1 — e))de,

1
I = / (e —3)(1—¢)" " (% e+ 0" (1 — ) )de.

J

where ¢ = »x0* + (1 —x)0*, « > 1, F=

Proof. By integrating the first integral by parts twice, we get

I = _ﬁig* /O” et~ = (w+ 1)et | ¢/ (0" + 0" (1 — ) )de

Ve

P(ed” + (1 —¢€)e")

1 s 1 — (4 1)e
9 — Q* 9 — Q*
l9*iQ* (/OK [mx(tx —1)e* 2 — (a+ 1)1)({-3“_1} P(d e+ 0" (1— e))de]

%ﬂ(

= Wq)(c) + 5 /0% 2P + (1 —¢)o*)de

(0* —0*)
- (59‘1 +‘_ 2)052/0 (9% e + 0" (1 —e))de.

After changing the variable 9*e + 0*(1 — ¢) = z, we get

0

wa(w—1)

I = '/O.K (e — )" (0 e+ 0" (1 — ¢))de

e

e e () (i)

oo (=) en(e=)

®)
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& o — ot —z \*?
B mw(c) ! (Q*(— 19*1); /C@ <QQ - 19*> plz)iz

(I+a)a [o [ o —z \**
_(Q*—ﬁ*)3/c <Q*—19*> piz)ds
P %F(uc+1)] (") — I'(a+2)

= Ww(c) + m m]ﬁﬂ/’( Q")

For the I, we can write

1
L= [ (e=s)(1=e)'y"(8%e+0"(1-e))de

1
= (1= [ A=y (0" + 0" (1 —e))de

7/ 04+1 // 19*€+Q (1*8))61

and, similarly to the first integral, we obtain

o (= (AT )

ajl 9*) — F(D‘+2) o *,
o gy Y g )

and

- A ey - T4 o
11+12 - (Q* _0*)21P(C)+ (Q* _19*)“+1]C+ l)b(Q ) (Q 19*)04+2]c+4)( ) (9)

F it + D e - R )

_ A+ (1) (C){ T(a+2)
(0" — 8%)? (g* — 8%)**2
F'(a+1)

TS (") + 2 p(8")]

eI p(a) + (1= ) (8°)] }

G

Multiplying both sides of Equation (9) by m,

we complete the proof. [

Remark 1. From Equation (8), for ¢ =  and a = 1, we have Equation (7).

Theorem 5. Let :[8%,0*] — R and ¢ € C*(8*,0%). If ¢" € L[8*%,0*] and | ¢"| is a convex
function, then the inequality

vie) = F{ S @)+ 1 90)] = [t o) + (- o) |

< Oy (0 el e, 00)

holds Vo > 1. Here,
(a0 + 1) 4 (a4 3) 22(1 — 2)%F2 £ 2(1 — 24F3)
(a+1)(a+2)(a+3) !
(@ +3)2*F2 — (& + 1) + (@ +1)(1 — »)3+3
(a+1)(a+2)(a+3) ’

and F and c are defined above in Lemma 2.

Proof. From Lemma 2, taking into account that | | is convex, we obtain
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(o)~ F{ [+ 12 90 = [ o) + (-0 o) |

* _ 0%)2 A
< —%"EQ%— (119_)%)0( /0 |e* (5 — €)y" (€8 + (1 — €)0")|de

s [ty e 1l

eSO T[T oer [ e -erte)ae

By solving the integrals and taking into account notations, we get

(0" —8*)

S Ty [y (9)| + el (0]

The proof is completed. O

Corollary 1. If we choose » = % and o = 1, then, from Equation (10), we obtain

L (07 +0" | 9(e") +¢(87) 1 ¢
- (Q* o 19*)2
- 96

and if || §" |lo= supc - o [¥" (€)], then

[o(Tre) ] L [ ploe

19*

(19" ()] + [ ()],

2
" Jleo -

<@ =9)
=48

This inequality was obtained by Kirmaci in [33] (see Corollary 1 for m = 1, Remarks 1 and 3) and
by Dragomir and Pearse in [2] (see Corollary 13).

Theorem 6. Let :[0*,0*] — R and ¢ € C3(8%,0%). If ¢" € L[9*,0*] and | | is a convex
function, then inequality

(o) F{ L [ + 0] = [ ) + (-0 )]}

F— %) 1 Liaptp 11 (g 1"y ox %
SMAP{% P [0 (09)1 + se(2 = 0ly (011 ay

holds Vo > 1, q > 1. F and c are defined above in Lemma 2, and A:m%.

I+ap+p

(=5 7 [(1=52) g (071 + (1= Pl ("))

= =

Proof. From Lemma 2, taking into account the properties of the modulus, we obtain

(e~ F{ () + T p(07)] = 12 ) + (A= o)

* _ x 2
< M(|11|+|12|)~ (12)

By using the Holder inequality (Equation (3)), and since | 3|7 is a convex function
for the first integral |I;|, we have



Axioms 2023, 12, 691

7 of 26

“|

=[(1_%)1+“P+P 21 2uptp “(—%2)|¢“<z9*)!q+

1

L] < [Z“ﬂ —seytterty 2P )} p
1
q

1— s
2

2
e+ Ik

| < /0 e (s — &) [ (9% + 0" (1 —¢)) |de

< (/()”a“ﬂ(»r—e)*’ds);(/O”[sw"w*)ru<1—e>|¢"<e*>|"]de) .

Let us calculate the integrals.

==

Considering that |x + y|P < 2P~1(|x|P + |y|¥) for p > 0 and x,y € R, we have:

/ s”‘p(%—s)pds:/ |s”‘p(%—£)p{d£§/ |e"P|(|5¢] + |e])Pde
0 0 0
gzr’-l/ 1% (|5¢]” + [e|P)de
0

2P AP (2 4 2ap + )
(A 4ap)(A+ap+p)

and
* 100\ (4G YN > 17 a% |G %(2_%> YN
el @]+ = ey (o)) de = S [ (017 + 222y o)
Thus, for first integral, we get

op—= 1 l-‘rﬂtp-‘rpz 2 2 2_
|11|§[ ( + “P+P)] |:2’ /119* “1 (

%) "ok t]%
G+ ap)(tap+p) el
_ 1+w+p(2+20‘p+19) 17 0% |4 // q 7
_[(1+0cp)(1+rxp+p)] [%2‘4] @) + (2 =) [9"(e ”,,.

Similarly, for the second integral, we can write

1
|12 Z/ (e—2)(1—e)* 9" (0" e+ 0" (1 —¢))|de

<('/%1[(€—%)(1—8> pds) (/ lp" (8 e+ 0" (1 ‘qd8>1,

and, after solving the integrals, we have

/l [(e — 50) (1 —e)*]"de = /17%(1 — . —z)Pz"dz
o

Va

1—s
<2rl / [(1—5)P 4 2P| 2"Pdz
0

_ 2+2ap+p
— 9P 1 1— p+ap+1 ,
(1-2) (1+ap)(1+ap+p)

and

! 2 * I % 1- " * N
[ el + -9l 7ae = 7 e+ L e

In this way, for the second integral, we get

(1+ocp)(1+zxp+

=

|1,L7//

==

(1+ap)(1+ap+p) \1/1

|_|
Qh—'

(13)
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By summing I; and I, and taking into account Equation (12) and the notations, we get
Equation (11). The proof is completed. [J

Corollary 2. If we choose s = % and « =1, from Equation (11), we get

’z{‘*’(ﬂ*;g >+1P( >+¢w*>} Q*iﬁ* /Q*t,b(e)ds
|

(14)

19*

¢'( 19* 3|¢"<g*>|ﬂ]5
2

{SW’( oo ]}

_ 2+3p
where S = A2

(0" —19*

l
S»r

Theorem 7. Let :[0*,0%] — R and ¢ € C2(8*%,0%). If ¢ € L[9*,0*] and | ¢""|" is a convex
function, then inequality

(e~ F{ [ () + 1 p(07)] = [ (e + (101 )]}

* g+ 1 P
= }M{B”(l Fap, 24 p) M+ (120 M (1)

LB (ap+2,14p) [%’HZMZ +(1- %)'X+2M4} },
holds Yo > 1, q > 1. F and c are defined above in Lemma 2, and B(.,.) is the Euler beta function,
- 1
- // * 14 // 1
M= |2+ (- 2 )1
- 1
| ey (T 1 me sy a7
M= | 510"+ (55 ) lv@)l]
- 1
_ 11— 4, & q 1_1_% 11705 9 q
M= [l @l + (5 5ol

[T =3¢\ 0 wvpd I 1-x 1" gk q%
e+ (355 e

Proof. By using the improved Hoélder inequality (Equation (4)) for the I; from Equation (12),
we get

] < [Tl Ge=o)llg" (8% + 0" (1 — ) e

M, =

/0”(% )¢ (5 — £)|7"ds> ’ (/0%(% —e)|¢" (8 + 0" (1— s))|‘7d£> '

(
1 (/O%Ha(% R 8)|pd£> % (/O%EWN(l?*e +0*(1— e))|qd£>£17

([ Gemereras) ([ e ey % + 071 e pide)’
(1 (¢ |
1
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» 1
/ (3¢ — &)1 TPePde = / (3¢ — 22) 1P (5e2)* 5edz
0 0

1
= 5725 [ (1 2) Pz = VB 4 ap,2 4 p)
0

1
/% TP (5 — e)Pde = / (3¢ — 52)P (3e2) 1T 52dz
0 0

1
_ %ap+2+p/ 2P (1 — 2)Pdz = 5P T2 PB(ap + 2,1+ p),
0

Using the definition of convexity,
/(J”(%—e)\¢"(ez9*+(1—et) ide < [y"'( a*)yq/o%t(%—e)ds
+ 9" (") / e)(1—e)de
= 2o+ (’f - e
/0%€|1/J"(19*5 +0*(1—¢))|7de < |9 (8")|" /%szdﬁ— [y (0| /0%8(1 —e)de

3 2
=2l + (5 -2 ) el

Thus, we have
apr2tp o 1 53 2 8
Wl <5 7 BI(1+ap,2+p) {6!¢”<ﬁ*)lq + (2 - z) |¢”<e*>\q}
1
q

ap+2+ 1 2 3
v 7 T'Br(ap 42,1+ p) {f!t/ﬁ”(ﬂ)ﬁ + <}; - Z) |‘/’”(Q*)|q}

1
:%a+2Bl}’(1+ocp,2+p)[ ! " (9" |q ( )W// ’]q

1
q

‘|‘%‘x+2B%(0{p—|—2,1—|—p) [;{’lpu(ﬁ*)w + (; _ ;3{) |lp//(g*)’q:| ﬁ'

First, in I, replace ¢ with 1 — ¢; then, by using the improved Holder inequality

(Equation (4)), we can write
1
Bl < [ le= )1 - 0 llg" (8" +0"(1 - &) Jde
1—3
= [0 (- 08 + el
_/ |T_£ D‘||l[]”( )
< ('/OT(T )1+p€apd€>p(/o( —8)|¢//(€Q*+(1—8)19*)ng>q

*+e0")|de, here (T=1— )

1

T

1 T 14+« i T " * * %
+; / e TP (T —¢)Pde / elp” (e0” + (1 —¢€)0")|7de | .
0 0
Similarly, for I, we get

li% 1 1- 1% 1 1- 11 ( Q% 7
1l < (1= 028} 1+ ap 24 ) [ @+ (3257 Il

1
q

(1 3)"2Br (ap +2,1+ p) [1—3%’1]),,@)” + G - 1_3%) |¢”(19*)|q]
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After summing the integrals and groupings, taking into account the accepted notation,
we get

1
||+ || < BY(14+ap,2+ p) [%Hle (1 %)a+2M3]
1
+Br(ap+2,1+p) [%a+2M2 +(1- %)’HZMAJ .

Taking into account the last inequality, from Equation (12), we obtain Equation (15). The proof
is completed. O

Corollary 3. If we choose s = % and o =1, then, from Equation (15), we obtain

p(TE) e O] L e

(16)

*_19*2 1 5 N 5 5
< qu(l—i-p,Z—l-p)(Ml+M2+M3+M4),

16
where ) )
11 9x\ |9 "(Ax\I19\ g 11 ax\ |49 " A%\19\ 7
Ml:(hp O, Sly"(@") )q,M2:<|¢ O, 19(e) )
5 10 %\ 49 //ﬂ*ql~ (0 %\ 19 //19*‘71
M - (W SO g, (WE T

Remark 2. If we use the inequality |x + y|P < 2P~ 1(|x|P + |y|P) for p > 0 and x,y € R, then

we will have
1 1
1 v 1 5
(1+p2+p) = (/ Z”(l—Z)dez)p < 2(/ zp(1+zl+”)dz)p
0 0

1
1 1 v 3 [
=2 —+—= ) =2|7——|
(1+p+2p+2> {Z(Hp)}
i.e., the inequality in Equation (16) will take the form:
’2{1/}( 2e>+¢(e)2¢( )}_ / o (e)de

Q*_ﬂ* "
* *\2
o (=) 3
- 8 21+p

==

B

1
>]p(M1+M2+M3+M4).

Theorem 8. Let :[0*, 0] — R and ¢ € C*(8*,0%). If ¢ € L[8*,0*] and | ¢"|¥ is a convex
function, then inequality

(o)~ F{ L e+ 12 p(o0)] - [ e + (g o] |
* _ gx\2
< —%”‘(i (119_)%)04 - Py (P + P3), (17)

holds Vo > 1, p > 1. F and c are defined above in Lemma 2 and

==

1 /1 * (
P Gy B Ao

1—s)(a+1)+2
a+1

vl
%

P = (1—30)""? V(“afiﬁ 9" (0" + (1 - @\w”(e*)!’”}

Proof. Since | ¢|” is a convex function, using the power mean inequality (Equation (5))
for the I; from Equation (12), we have
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i s/o”e% )]y (#%e + " (1 c))|de

[ (8% e+ 0" (1 —¢))|de

1

1 1
(ol @er g a -]
1

< (/0%8"‘(%8)%)1_;( JAECEE [elw”(ﬁ*)\“(l8)\¢”(Q*)’p}d€>q'

Let us calculate the integrals:

» N _ %ﬂc+2 '
/0 €=l = a2y

/0%5“(%—8)[£|1p”(19*)|p+(1—£)|lp” ) ﬂds

= |9 (¢9") |P/%e"‘“(%—s)ds+ 9" (0")|" / )(1 —¢)de
2 t3 ‘ lP” (19*) |P " 22 2013 212 203
m ‘l’b ’ (éx+1_0€+2_0€+2+ﬂé+3>
LA CH N "

T (@+2)(a+3) oc+2(vc+1 a+3>’4’ Rl

= e A+ DR ]

(e +2)(a+3) a+1
Thus, for first integral, we get
1 1
202 -5 L0 +2 i
IL| < 18
bl < [(a—f—l)(zx—f—Z)] [(w+2)(u¢+3)} (18)
1
(1—s)(a+1)+2 P
17 a%\|P //
[ty o L2802y

Similarly, for the second integral, we get

1| = [:(s—%)(1—5)“|1p”(19*s+g*(1_S))|ds
= (,/:(8 x)(1 - 8)“d€)1; (/%1(1 —&)"(e—»)|9" (8" e+ 0" (1 ‘Pde> l
= </01_%(1—z—%)zﬂédz>1—;lz </01_%z“(1—z—%)!l/)"((l—z)l?*+ZQ*)|pdz)p‘

o a2 1-
|L| < <(a(1+1)(2(+2>> <|1P”(19*)|p
| / tx+1 —Z)dZ)

(0t N At 1 ey
_<(oc+1)(zx+2)> x+2 (zx+1 a+3>|w (e[’

L= m“%”m*n”] |

|—

or

==

1—u

2*(1—z—»)(1—2)dz

S—

<=

(a+2)(a+3)

Thus, for the second integral, we have
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1-1 1
(1 _ %)oc+2 p p

(e +1)(a+2)

(1 _ %)uc+2

2| < @12)(«+3)

(19)

<[ e+ -l @l |

By summing Equations (18) and (19), we get

+2 1-5 a2 5
i+ 1l < |Gy J erer)

(a+1)(a+2 a+2)(a+3)
x _%|¢“<19*>\”+ Zfﬁl 21y (e) W
[ (1_%)064-2 17% (1_%)a+2 llﬂ
a2 @+2)(xt3)
( +1 1 * 1 * %
X _WW O]+ (1 =) [¢" (e )ﬂ
" — )\ 1" ox ;
:MM{ jy(en)) + & l(+J1rl)+2|¢ (e )ﬂ
_%Dé+2 » . b %
* (a(i1)(i+z){ (“:——i—li_‘—ZW )"+ —2)|g" (e )ﬂ :

Taking into account the introduced notation and the inequality from Equation (12), we obtain
Equation (17). The proof is completed. [

Corollary 4. If we choose » = % and « = 1, then, from Equation (17), we obtain

o(750) ¢ MR

< O grion) 3l ] + [Bla 007 + @)
96 -2¢

(20)

==

b

Proof. For »x = % and « = 1 for the components of the inequality in Equation (17), we have
1 I'(a+1)
2N 4 (1 _ %)uc (Q* o 19*)06—1

:1,

a+1

P(0) — o 5o >+Mw*>]—{%~f§:1¢<e*>+<l—%>'ffrlww*)}

o

_w(ﬂ*zg*)_g*fﬁ*lﬁﬂ d£+/

9* * 2 « "
:¢( ;‘\’)—Q*_ﬂ*/ﬁf lP(s)derM,

el + |39+ 3w
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N T —
YT+ ) (w+2) 6

—x)(a+1)+2 ,
a+1

P2 = 12 sy (0] + O @) |

_ é(;)n [|l[JN(l9*)’p +3‘¢//<Q*)|P} %/

Py = (1 )" [WIIP"W*)IP +(1- %)|¢”(e*)!”} '

=3(3) B+ er)”

(Q*_ﬂ*>2 _ (Q*_ﬁ*)z 1 gk "o v
m.Pl-(Pz—i—Pg,) = M{[|¢ (19 )’p+3‘l/J (Q )|P}

iy +eel]
Thus,
() M 2 [ e

_Q*_lg*
* _ 0%)\2
o =8

=

{[|¢"(19*)|”+3|¢”(e*)|”]’1’ + [3ly" (8" + 9" (e")"]

b

or

N =
* N
S

*

N+
e

)+ MO L [ e

==

<l _19;)2{[!w”(ﬁ*)\”+3\¢”(e*)|”}’1’+ 3ly" ()" + 9" ()"

b

Theorem 9. Let :[0*,0*] — R and ¢ € C3(8%,0%). If¢" € L[9*,0*] and | ¢"|" is a convex
function on [0%, 0*], then the inequality

vie) L @)+ 0] = [ e + (101 o) |
< M{ﬁ (& +1,3)[#42P1 + (1= 5)*77P3] 1)

1
+B7(a+2,2) [M“Pz +(1- %)"‘“1)4} }

holds Vo >1, g > 1, % + + = 1. Fand c are defined above in Lemma 2, and B(.,.) is the Euler

beta function,

1
q

=

B Dé+1,3)|lP//(Q*)|q+%B(“+2,3)[|1P//(Q*)|q_|1P//<l9*)|q]} ,

(

B(Dc+2/2)|lpll(e*>|q_'_%B(‘X_i_?)lz)“lp//(g*)ri_ |1P//<l9*>|q]}ﬁ,

B(Dc+1,3)|lpl/(l9*)|q+(1—%)B(DC+2,3) [|¢//(Q*)’q_ |l[)”(l9*)|q}} ,
(

B a+2,2)|l[)”(l9*)|q+(1—%)B(Dé+3,2)[|lp//(g*)’q— |lp//(l9*)|‘1}} )

==

==

{
{
{
{

Py
P,
P;
Py
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Proof. By using the improved power mean inequality (Equation (6)) for the I; from Equation (12),
we get

] < [T Ge— )1y (0" + ¢ (1 — ) e

1

L ([ emol i) ([ om0 + 0oy
% /%s|g“(%—s)d€>1$ (/0%5|€a(%_5)”1/’”(‘9*84'9*(1 —e))|‘7dg>;
— i(/(;%ea(%—g)ng> 7 </(;%Sa(%_€)2|w//(l9*s+g*(1 —e))|qu)37
1

1-1 1

+ (/0%806+1(%£)d8) q(/o%e“ﬂ(%t)|¢"(l9*€+e*(1e))|‘7de>q.

»” 1
/O € (5 — £)2dt = /O (52)* (3¢ — 322)%sudz
1
%‘”3/ 2%(1 —2)%dz = »*"B(a +1,3),
0
»” 1
/ e““(%—s)ds:/ (52)* T (3¢ — 222) 3edz
0 0
1
= %’”3/ 21— 2)dz = 2T3B(a +2,2),
0
and, using the definition of convexity,
| e Ge—ePly (0% + 0" (1 - o)) e
< [ (8") V/ e (3¢ — ¢)2de + [ (g*)|" / (1 e)de
V4
= W”(ﬁ*)!q/ e (5e —e)?de + 9" (o) | [/ e"‘(%—e)2de—/ e“*’l(%e)zde}
0 0 0
%a+4|¢//(19*)|q3(w+2,3)+ [%'X+3B(Dé+1,3)—%a+4B(06+2,3)|l[)“(Q*)|q

= B+ 13)|9" (@) + B+ 2.3) [ (@) - [(87)]"],

and

e (5e —e) 9" (9% + 0" (1 —¢))|"de
§| " (9| / &2 (5 —e)de + |9 (o |q/%£"‘+1(%—s)(1—s)ds
0

B +3,2)[¢" (a)|T+ [ (e")|" (/0% e (5 — g)de — /0% 2 (5 — s)ds>

= 5B+ 3,2) [ (97)]" + [%“+3B(a +2,2) — »*TB(a +3,2)} [y (e")]"

\

#B(a+2,2)[¢" (0%)]" + 5 T*B(a +3,2) [|¢”(g*)}’4 — ]1p”(z9*)|ﬂ.

Thus, we have
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m»sxw%“%w+L@{““+L”W”Q)q
+%B(0é+2,3){|¢’//( ‘IIJ” 19* |ﬁ}}ﬁ
_'_%aJrZBl*%(DC_i_z’z){B(zx—i—Z 2) w,// Q*)|’1
Bl +3,2) |9 (@) - |96}

First, in I, replace € with 1 — ¢; then, by using the improved power mean inequality

(Equation (6)), we can write
1
|| < /% (e —3)(1—&)"|[" (0" + 0" (1 — &) |de
1—
= [ I e e (1 - )9 g e

:/OT|(T—€)€“||1/J"((1—€)19*—i—sg*)\ds, here (T=1- )

1

1

1(/ T—¢)e ‘X|T€|d5)1 q(/o (t—e)e*|T —¢| |9 (e0* + (1 —€)d )‘lidg)

1

-t
1-3 T
i(/ ‘f|”“) q(A df—dﬂwﬂ&@+%1—@ﬂﬂq@)f

= i(/nga(Tg)zdg)l—é (/OTE“(Te)ZWN(eQ* + 8)19*)|'7de>$

N % </Or£,x+1(,r_ 8)ds>1_; (/OTSaJrl(T_ e)¢" (e0” + (1 — 8)19*)ng> q.

Similarly, for the second integral, we get

| < (1= 528" 1 (a+1,3) { Ba+1,3)|p"(5)|
(1= )Ba+2,3)||p"(e")]" ~ [ (0] }

+(1—%)”231*%(“+2,2){B(a+2,2)|¢”(19*)|"
’l/"// (%) | }}5

After summing the integrals and groupings, taking into account the accepted notation,

=

+(1 - #)B(a+3,2)[[¢ (")

we get 1
IL|+|L| < B (x+1,3) |:%0(+2P1 F(1- %)a+21,3]

1
+B 1 (0 +2,2) [%‘HZPZ +(1- %)‘”2154 .
Taking into account the last inequality and Equation (12), we obtain Equation (21).
The proof is completed. [

Corollary 5. If we choose s = % and « =1, then, from Equation (21), we obtain
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’ﬂ@6%3“>+¢@”§¢Wﬂ}—wfﬁ*ﬁfw@a 22)

g(wiff(é>FW{$wwwW—§wwwwﬂé+LQW%NV—éw%wW}é

1 1

13//*‘11//*!75 1//*'77//*'75

and for q = 1, we get

‘;P(W;w)+¢@w;¢ww}_@iij¢@%

A
*_19*2 "% 11 (g% 1% 11 (%
< L EE @] = 51w @) + Glv @)l = 151w @)
*719*2 1% 11 (g%
IR L) - gl 0]

(¢f —8%)?

3. Examples

Let us demonstrate the obtained results with examples.

Example 1. Case one: If we choose (e) = €*,e > 0. If we attempt to take 9* = 1,0* = 2
and q € [1.1,10], then the mapping " (¢) = 4e is convex for e > 0, and we can infer that the
inequality in Equation (14) will convert to

g 1-4 1 1
2+3(qj) {[’462‘@+|4e4q q . l‘4ezlq+|4e4’q] q}

2 2

q—1
e ette? et — 2
{5+ - @3)
1-1 1 1
2+3(q%1) } ”{ly432|q+\4e4|ﬂr+[|462|ﬂ+|4e4|a1q}
i) A 2

Case two: Let (e) = e%,e > 0. If we consider taking q = 2 and ¢* € [1,2], 0* € [3,4], then
we can infer that the inequality in Equation (14) will convert to

=

1
12 L1272 ) L2
1 g\ 2 ‘46219 ‘ + ‘4620 ‘ ’432‘9 ‘ + ’432Q
8 (15) 2 * 2
¢ +o* 20" 20* 20% _ 20*
< e i et +e G e (24)
2 4 2(0" — 0%)
1
2 L1272 12 L2
s | [ e 42| 4 [4c2¢
R +
8 15 2 2
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The three mappings attained in the Ry, My and Ly in the inequalities in Equation (23) are
drawn out in Figure 1 against q € [1.1,10]. The three mappings deduced from the Ry, My and Ly
in the inequalities in Equation (24) are drawn out in Figure 2 against 9 € [1,2], 0* € [3,4].

=
80 . . . Ry
A0 :\""-._ — My
20 [ ] — L

0E
ok
40 :,..___
ap L . L 1 1 1

1% 20 25 20 25 40 45 50

Figure 1. The graphical representation of Example 1 for 8* =1, ¢* =2and g4 € [1.1,10].

1.0

|
u

5 WY

100

-100

10 ' a5 4.0

Figure 2. The graphical representation of Example 1 for 8* € [1,2], o* € [3,4].

Example 2. Case one: We choose (e) = ﬁeie > 0. If we consider taking * = 1,0* = 2
and q € [1.1,10], then the mapping ¢"(e) = ie is convex for e > 0 and we find that the
q q

inequality from Equation (20) will convert to
q g q1-%
T, (1) S ()T, (1]
4 2 4 2
1 27 9 15 1
{4s'<s)+96}‘%~128 @)
g q g q1-5
1 q71+3. 1 ! 3. 1 qi]_|_ 1 !
4 2 4 2

Case two: Let (e) = »ye>,e > 0. If we consider taking q = 2 and 9* € [1,2], 0" € [3,4],
then we can infer that the inequality from Equation (20) will convert to

_1
1‘7
+

IN

1
1‘7

IN

+
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Nl—

B (Q* _ 19*)2 ' 9 2 ' Q* 2 ' 9 2 Q* 2
W vy +3 "y + 13 vy + Y
1 O+ Q* 3 Q*3 + 19*3 B Q*4 _ 19*4
= {48' ( 2 ) LT 96(0* — 8*) (26)

=

1
* _ g%\2 %\ 2 x\ 212 %\ 2 £\ 2
R LIy ()T o (5) 4 ()] Y
96 -22 4 4 4 4
The three mappings attained from the Ry, My and Ly in the inequalities in Equation (25) are

drawn out in Figure 3 against q € [1.1,10]. The three mappings deduced from the Ry, My and Ly
in the inequalities in Equation (26) are drawn out in Figure 4 against 9* € [1,2], 0* € [3,4].

0.02 : . . — R
— My

— L

-0.01 ._________

-0.02

5 20 25 30 35 40 45 &0
Figure 3. The graphical representation of Example 2 for 8* =1, 0* =2 and g4 € [1.1,10].

Hr
v
.

1.0

30 3.4

Figure 4. The graphical representation of Example 2 for 8* € [1,2], o* € [3,4].

Comparative Analysis of Classical and Improved Bounds

Example 3. If we choose (e) = 15¢*,& > 0, then | (¢)|7 = varepsilon* for g > 1and e > 0
is a convex function. For the case where & = 1,0* =1, 0" = 2 and q = 2, let us find the right part
of the inequalities from Equations (14) and (16).

(a)  For Equation (14), we have
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';[w(ﬁ ol )+4’( wa*)} Q*iﬂ* /l:ll’(t)dt‘

9—19* ;{ |¢" 8")| 3|¢"<e*>ﬂ]3

{3@"( | L Ze*l ]} |
s ORIESIETN

~ 0.733214.

(b)  For Equation (16), we have

(S ) M) L

*_19*
Si(g 6 ) %34{M1+M3+M2+M4}

1
= 71012909 - {2.598076 -+ 2.345208 + 1.322876 + 1.732051}]
~ 0.064530.

Since 0.733214 > 0.064530, the extended Holder inequality gives a better estimate than
the classical Holder inequality. The 2D and 3D graphical illustrations of Example 3 are
mentioned in Figures 5 and 6, respectively.

— Halder
— |mproved Holder

1.5 2.0 2.5 2.0

Figure 5. The graphical representation of Example 3 for 8* =1, 0* =2 and g4 € [1.1,10].

# Holder

1.0

# 'mproved Holder

Figure 6. The graphical representation of Example 3 for 8* € [1,2], o* € [3,7].
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Example 4. If we choose (e) = e°,¢ > 0, then |¢" (€)|9= ¢ for g > 1 and ¢ > 0 is a convex
function. For the case where x = 1,9* = 1,0* = 2 and q = 2, let us find the right part of the
inequalities from Equations (20) and (22).

(a)  For Equation (20), we have

*

o(2p) + ML) 1 g,

2 2 2 -0 Sy

IN

==
—

*_19*2 (9% "ok ; 1 (g% (o

(9%21){“4) ©@)|” + 39" (0 )|P}v n [3|¢ )7 + 9" (0 )ﬂ
.2r

= 1 .

96 - 21

~ 0.1609.

[(7.3891 +163.7944)% + (2216716 + 54.5981)%}

(b)  For Equation (22), we have
e e e O

2 2 2 B
DRG0k (1)13 [ e |¢”<19*>q}3 P {Er e }3
- 16 12 10 60 6 15

* 120 40 40 120

1 1
{13|1P”(Q*)|q B |¢”(l9*)|q}" 4 { 9" ()" _ 7ly" (@)1 }q]
= 11—60.2887 . [2.310122 + 0.646038 + 2.393757 + 0.966398]

~ 0.113958.

Since 0.1609 > 0.113958, the extended power mean inequality gives a better esti-
mate than the classical power mean inequality. The 2D and 3D graphical illustrations of
Example 4 are mentioned in Figures 7 and 8, respectively.

1.0 — Power Mean
— |Improved Power Mean

08t

0et

0zt

0.0 n n n .
4 8 8 10

Figure 7. The graphical representation of Example 4 for 9* = 1,0* =2and g4 € [1.1,10].

0 # Fower Mean

B Improved Power Mean

50 : ;

Figure 8. The graphical representation of Example 4 for 9* € [2,3], ¢* € [5,7].
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4. Applications

In this section, we employ our obtained results to derive some notable applications
in terms of special means, the quadrature rule and estimations of inequalities in terms of
special functions.

4.1. Special Means

We here consider the means for arbitrary real numbers 8%, 0* (8* # 0*). We use the
following:

1.  Arithmetic mean:
o *
A8, 07) = JZFQ , 8%,0" € R.

2. Logarithmic mean:
N N 19,* *
L(#% ")

= Wiﬁlm |0*| # |o*|, 0%, 0" #0, 9, 0" € R.
3. Generalized log-mean:

(@)1 = ()11
(n+1)(e* —0%)

La(87,0") = , n€Z\{-1,0},0", 0" €R".

4.  Harmonic mean:

5. p-Logarithmic mean:
(Q*)ler _ (19*)1+p
(1+p)(er —0%)

Proposition 1. Let 9*,0* € [0,00), * < 0* and n € Z'*, n > 2. Then, we have

1
4

1
Lﬁ _ E[An(ﬁ*’g*) +A(l9*n,Q*n)} ’

_ * k)2
< n(n 1)(8Q 9") S;{A};(ﬂﬂ(”2)4,3|Q*|(”2)Q> AT (3|l9*|("*2)q,‘g*|(n*2)q> }

where
2+3p

(1+p)(1+2p)

Proof. This follows from Corollary 2 applied to the convex function
P(e) =€, :[0,00) = R.
O

Proposition 2. Let ¢*, 0" € Rwith 0 < ¢* < ¢*. Then,
—1 /0% % 1 —1 /0% % —1/0% %
Li0ne) - 3[aT e 1 o)
A 21 1 *|— *|— 1 * | — * | —
< (923; ) Sv{Aa(lﬂ 1797,3]0"| 1) + A1 (3]8" %, g 3q)}-

Proof. This follows from Corollary 2 applied to the convex function

9(e) = e £0.

7
£
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O
Proposition 3. Let 9*, 0" € [0,00), 0" < 0%,V q > 1. Then, we have
]. * % * *
ok 1| A(9%,0%) 9 o
e - Jere o afer )|

* - * 2 * * S * *
< (Qs‘“s%{A% (1ef?9,34e1'7) + A (31el”"9, e]'7) }

Proof. This follows from Corollary 2 applied to the convex function
P(e) =€, ¢ :]0,00) — R.
O
Proposition 4. Let 9*,0* € [0,00), 8" < ¢* andn € 7+, n > 2. Then, we have
* % 1 * * * *
Li(8%,¢") = 5[A"(8%, ") + A8, ")J’

* _ 9%)2
< (Q 9619 ) Tl(?’l—l) [A;,<19*|(n—2)p,3|g*|(n—2)p> —%—Aé (3|l9*|(n—2)pl|Q*|(n—2)p>:|.

Proof. This follows from Corollary 4 applied to the convex function
P(e) =¢€",9p:[0,00) = R.
O

Proposition 5. Let 9%, 0" € Rwith 0 < ¢* < ¢*. Then,

— * % 1 — * % — * %
L) - g [a e+ 0]

(" —9")*[ 1 -3 -3 1 -3 -3
<\ -Uv )" * P * 14 * p * P
< 2T ab (jor 20,3107 7%) + A% (3167, o7 ) |

Proof. This follows from Corollary 4 applied to the convex function

Ple) = e £ 0
O

4.2. Quadrature Formula
Here, we present an application to a quadrature formula. Let d be a partition ¢* = ¢y <
€1... < €p-1 < &y = 0" of the interval [0*, 0*] and consider the quadrature formula

*

[ we)de = T(p,d) + E(p,d),

*

where »
Tpd) =Y (€i+12— i) {IIJ(Si) +2¢(5i+1) n lp<5i +25i+1>}, 27
i=0

is the quadrature version and E(¢, d) is the approximation error. Here, we present some
error estimates for the quadrature formula.
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Proposition 6. Under the condition of Corollary 1, the following inequality is true:

m—1

£

[ vee—tpa| < T B e+ el @)
i=0

Proof. Apply Corollary 1 and we get the desired result. []

Remark 3. If the d-fragmentation of the interval [9*, 0| is uniform, then, from Equations (27)
and (28), we get

I 'S Hp(ei) +9(eir) &+ €11
T(,d) = 120[ )y (Stim )]
and ; a3 s

¢ h h g
/* P(e)de — T(gl],d)‘ < %Mz < FM @478)]\42'

where h = ¢; 1 —¢; and My = max (|4’”( -

The resulting error is better than the errors expressed in terms of the second derivatives of the
Newton—Cotes (midpoint or trapezoid formula) and Gauss quadrature formulas:

Ri(y) = 52(e" — 8°), or Ray) = 2o~ 9",
and
— M ( ) * * _ n —
Raul¥) = (i) (@~ ) Man = max (j9]), forn=1
respectively.

Proposition 7. Let i:[0%,0*] — R be the differentiable mapping on (8*,0*) with 9* < o*.
Suppose that |9, ¢ > 1 is a convex function; then, for every partition of [8*, 0*|, the midpoint
error satisfies

‘m\—

¢ 1+p,2
IA ¢<e>de—T<w,d>] <Blip2ey
3> elH—ssKlw” ISl <sl+1>|q)u(|¢"<sz~+l>w£5|zp”<ei>|q>a

+<|¢ |q+z¢”<,+1>|q) <|¢N(£iﬂ)|q6+2|¢”(si)qﬂ.

Proof. Apply Corollary 3 and then we get the desired result. O

4.3. §-Digamma Function
The §-digamma mapping is determined by the expression below [34]:

Eili)

I\)M—‘

05(e) = —In(§—1) +1In(g (

with § > 1and € > 0.
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Proposition 8. For 0 < 8" < ¢*, we get

1 , o * 5I~(Q*)+5’~(l9*) S+(0%) — 54+(8*
M ere>+q o 1_ m{)z_ﬂi( )

2
Proof. Applying (e) = &5(e) for e > 0 to Corollary 1, we obtain the desired result. [

< (Q* _19*)2 [
- 96

5‘/7// (19* )

+

(@)

Proposition 9. For 0 < ¢* < ¢*,q > land % + % =1, we get that

1 l(%(ﬂ* + Q*> . d5(0") +5;~(19*)]  &(e") — 65(9%)

2 2 2 0" — 0
V4 (s ol

Proof. Applying (e) = &;(e) for e > 0 to Corollary 4, we obtain the desired result. [

P
+

<=

P13

5‘/7// (19* )

(@)

5‘/7// (19* )

(@)

- (Q*_ﬂ*)z [(

4.4. Modified Bessel Function
Let the function Z, : R — [1,0) be defined by

Tp(e) = 2PT(1 + p)e 2 I, (e),

For this, we recall the modified Bessel function of the first kind Ip, which is defined

as [35]: )
Ip(e) =), L
b Son'T(p+n+1)

The first- and nth-order derivative formulas of 7, (¢) are, respectively [36]:

Te) = gy en(e)

" Zy(e)
d"e

_ 2
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where »F3(., ., .) is the hypergeometric function defined by [36]:

1+p 2+p 14+p—n &2 o
2F3< P PP ,1+P;>=2

27 27 2 4
Proposition 10. Let #*,0* € R with 0 < ¢* < o*; then, for each p > —1, we have

o+e o (840 Q" Tryp(0") + 9 T1p(9°)]  Zp(0") — Zp(9)
241 +p) L 2 41+p) ¢

(Q*_ﬂ*)z 3-2p *|p—3 1+p 2+p.p_2 p—l (19*)2

1+p 24+p p—2 p—1 *)?
21:3( p2tpp=2p f1+P;(Q4)>D-

*|p—3
e 2 2 2 7 2

Proof. Applying (e) = Zp(e) to Corollary 1, we get the desired result. [
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5. Concluding Remarks

In this study, we first developed a new fractional Bullen-type identity with a parame-
ter. Thus employing the theory of convexity, we provided new estimations of fractional
Bullen-type inequalities pertaining to twice-differentiable functions. An analysis of the im-
provement of the estimations was provided using several concrete examples with graphical
visualizations. Finally, several applications were provided as well. This study could be used
to explore for other general fractional integral operators with non-singular kernels. Also,
one can think about studying such results for other classes of convex functions, especially
coordinate convex functions.
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