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Abstract: In this paper, we study the concept of interval-valued fuzzy set on the family SS(X, E) of
all soft sets over X with the set of parameters E and examine its basic properties. Later, we define
the concept of interval-valued fuzzy topology (cotopology) τ on SS(X, E). We obtain that each
interval-valued fuzzy topology is a descending family of soft topologies. In addition, we study some
topological structures such as interval-valued fuzzy neighborhood system of a soft point, base and
subbase of τ and investigate some relationships among them. Finally, we give some concepts such as
direct sum, open mapping and continuous mapping and consider connections between them. A few
examples support the presented results.
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1. Introduction

The concept of interval-valued fuzzy set was given by Zadeh [1]. This set is an exten-
sion of fuzzy sets in the sense that the values of the membership degrees are intervals of
numbers instead of the numbers. Chang [2] introduced the concept of fuzzy topology in
1968. But, since the concept of openness of a fuzzy set was not given, Samanta et al. [3,4]
introduced the concept of gradation of openness (closedness) of a fuzzy set in 1992. Further-
more, the concept of intuitionistic gradation of openness of fuzzy sets in Sostak’s sense [5]
was defined by some researchers [6–8]. In [9], D. L. Shi et al. introduced the concept
of ordinary interval-valued fuzzifying topology and investigated some of its important
properties. It is known that to describe and deal with uncertainties, a lot of mathematical
approaches put forward a proposal such as probability theory, fuzzy set theory, rough
set theory, interval set theory etc. But all these theories have inherent difficulties. In [10],
Molodtsov presented soft set theory in order to overcome difficulties affecting the existing
methods. Later, many papers were written on soft set theory. Since soft set theory has many
application areas, it has progressed very quickly until today. Maji et al. [11] defined some
operations on soft sets. In recent years, topological structures of soft sets have been studied
by some authors. M. Shabir and M. Naz [12] have initiated the concept of soft topological
space. A large number of papers was devoted to the study of soft topological spaces from
various aspects [13–22]. Moreover, C.G. Aras et al. [23] gave the definition of gradation of
openness τ which is a mapping from SS(X, E) to [0, 1] which satisfies some conditions and
showed that a fuzzy topological space gives a parameterized family of soft topologies on X.
Also, S. Bayramov et al. [24] gave the concepts of continuous mapping, open mapping and
closed mapping by using soft points in intuitionistic fuzzy topological spaces.

The importance and applications of interval-valued analysis is given in the book [25].
Our aim in this paper is to demonstrate applications of interval-valued mathematics in
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the context of fuzzy and soft topologies. We study the concept of interval-valued fuzzy
set on the family SS(X, E) of all soft sets over X and examine its basic properties. We
also define the concept of interval-valued fuzzy topology τ (called also cotopology) on
SS(X, E). We prove that each interval-valued fuzzy topology is actually a descending
family of soft topologies. Further, we study some topological structures such as interval-
valued fuzzy neighborhood system of a soft point, base and subbase of τ and investigate
some relationships among them. Finally, we give some concepts such as direct sum, open
mappings and continuous mappings and consider connections between them.

2. Preliminaries

In this section we give basic notions about soft sets and soft topology which will be
used in the sequel.

Definition 1 ([10]). Let X be a set, called an initial universal set, and E a nonempty set, called the
set of parameters. A pair (F, E) is called a soft set over X, where F : E→ P(X) is a mapping from
E into a power set of X.

The family of all soft sets over X with the set of parameters E is denoted by SS(X, E).

Definition 2 ([11]). If for all e ∈ E, F(e) = ∅, (F, E) is said to be the null soft set denoted by Φ.
If for all e ∈ E, F(e) = X, then (F, E) is said to be the absolute soft set denoted by X̃.

Definition 3 ([14,16]). Let (F, E) be a soft set over X. The soft set (F, E) is called a soft point if
for some element e ∈ E, F(e) = {x} and F(e′) = ∅ for all e′ ∈ E \ {e}(briefly denoted by xe).

Note that since each soft set can be expressed as a union of soft points, to give the
family of all soft sets on X it is sufficient to give only soft points on X.

Notice that in the literature there are other definitions of soft points, but we think that
our approach gives an easier applications of these points.

Definition 4 ([14]). The soft point xe is said to belong to the soft set (F, E), denoted by xe∈̃(F, E),
if xe(e) ∈ F(e), i.e., {x} ⊆ F(e).

Definition 5 ([12]). A soft topology on a non-empty set X is a collection τ of soft sets over X with
a set of parameters E satisfying the following axioms:

(ST1) X̃ and Φ belong to τ;
(ST2) The soft intersection of finitely many members in τ belongs to τ;
(ST3) The soft union of any family of members in τ belongs to τ.

The triple (X, τ, E) is called a soft topological space. Members of τ are called soft open sets.

Notice that if (X, τ, E) is a soft topological space, then τe = {F(e) : (F, E) ∈ τ} defines
a topology on X, for each e ∈ E. This topology is called e-parametric topology [12].

Throughout this paper, I denotes the closed unit interval [0, 1], and [I] represents the
set of all closed subintervals of I. The members of [I] are called interval numbers and are
denoted by ã, b̃, c̃, ... Here ã ∈ [I], ã = [a−, a+] and 0 ≤ a− ≤ a+ ≤ 1. Especially, if a− = a+,
then we take ã = a. Also, it is defined an order relation ≤, on [I] as follows:

(1)
(
∀ã, b̃ ∈ [I]

)
ã ≤ b̃⇐⇒ a− ≤ b−, a+ ≤ b+,

(2)
(
∀ã, b̃ ∈ [I]

)
ã = b̃⇐⇒ ã ≤ b̃ and b̃ ≤ ã, (i.e., a− = b−, a+ = b+),

(3) For any ã, b̃ ∈ [I], maximum and minimum of ã, b̃, respectively

ã ∨ b̃ =
[
a− ∨ b−, a+ ∨ b+

]
,

ã ∧ b̃ =
[
a− ∧ b−, a+ ∧ b+

]
.
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Let {ãi}i∈J ⊂ [I]. Then inf and sup of {ãi}i∈J are defined as follows:

∧
i∈J

ãi =

∧
i∈J

a−j ,
∧
i∈J

a+j

,

∨
i∈J

ãi =

∨
i∈J

a−j ,
∨
i∈J

a+j

.

Also, for each ã ∈ [I], the complement of ã, denoted by ãc, is defined as:

ãc =
[
1− a+, 1− a−

]
.

3. Introduction to Interval-Valued Topology on Soft Sets

We introduce now the main notion in this paper, the notion of interval-valued fuzzy
topology on the set SS(X, E).

Definition 6. A mapping A : SS(X, E)→ [I] is called an interval-valued fuzzy set in SS(X, E)
and is denoted briefly as IVFS.

Let [I]SS(X,E) represent the set of all IVFSs in SS(X, E). For each A ∈ [I]SS(X,E) and
(F, E) ∈ SS(X, E). A(F, E) = [A−(F, E), A+(F, E)] is a closed interval. Thus A−, A+ :
SS(X, E) → I are two fuzzy sets. For each A ∈ [I]SS(X,E), we write A = [A−, A+]. In
particular, 0̃, 1̃ denote the interval-valued fuzzy empty set and the interval-valued fuzzy
whole set in SS(X, E), respectively.

Now we give the relations ⊂ and = on [I]SS(X,E) as follows:(
∀A, B ∈ [I]SS(X,E)

)
[A ⊂ B⇐⇒ (∀(F, E) ∈ SS(X, E)) A(F, E) ≤ B(F, E)],(

∀A, B ∈ [I]SS(X,E)
)
[A = B⇐⇒ (∀(F, E) ∈ SS(X, E)) A(F, E) = B(F, E)].

Definition 7. Let A ∈ [I]SS(X,E) and {Ai}i∈J be arbitrary subfamily of [I]SS(X,E). The comple-
ment, union and intersection of A are denoted by Ac,

⋃
i∈J

Ai and
⋂
i∈J

Ai, respectively, are defined for

each (F, E) ∈ SS(X, E) as follows respectively,

Ac(F, E) =
[
1− A+(F, E), 1− A−(F, E)

]
,⋃

i∈J
Ai

(F, E) =
∨
i∈J

Ai(F, E),

⋂
i∈J

Ai

(F, E) =
∧
i∈J

Ai(F, E).

Proposition 1. Let A, B, C ∈ [I]SS(X,E) and {Ai}i∈J ⊂ [I]SS(X,E). Then the following state-
ments hold:

(1) 0̃ ⊂ A ⊂ 1̃,
(2) A ∪ B = B ∪ A, A ∩ B = B ∩ A,
(3) A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C,
(4) A, B ⊂ A ∪ B, A ∩ B ⊂ A, B,

(5) A ∩
(⋃

i∈J
Ai

)
=
⋃
i∈J

(A ∩ Ai), A ∪
(⋂

i∈J
Ai

)
=
⋂
i∈J

(A ∪ Ai),

(6)
(

0̃
)c

= 1̃,
(

1̃
)c

= 0̃,

(7) (Ac)c = A,
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(8)

(⋃
i∈J

Ai

)c

=
⋂
i∈J

Ac
i ,

(⋂
i∈J

Ai

)c

=
⋃
i∈J

Ac
i .

Proof. It is immediately obtained.

Definition 8. A mapping τ = [τ−, τ+] : SS(X, E) → [I] is called an interval-valued fuzzy
topology over SS(X, E) if it satisfies the following conditions:

(1) τ(Φ) = τ
(

X̃
)
= 1,

(2) τ((F, E) ∩ (G, E)) ≥ τ(F, E) ∧ τ(G, E), ∀(F, E), (G, E) ∈ SS(X, E),

(3) τ

(⋃
i∈J

(Fi, E)

)
≥ ∧

i∈J
τ(Fi, E), ∀{(Fi, E)}i∈J ⊂ SS(X, E).

The interval-valued fuzzy topology is denoted briefly IVFT and the triple (X, τ, E) is
called an interval-valued fuzzy topological space over SS(X, E) (in short IVFTS)

It is clear that τ ∈ IVFT consists of two fuzzy topologies over SS(X, E), τ− and τ+.
Also, for each (F, E) ∈ SS(X, E), τ−(F, E) ≤ τ+(F, E).

Example 1. Let X = {x, y, z} and E = {e}. The set of all soft points on X is {xe, ye, ze}. Then
the soft sets are:

F1(e) = {x}, F2(e) = {y}, F3(e) = {z}, F4(e) = {x, y},
F5(e) = {x, z}, F6(e){y, z}, F7(e) = ∅, F8(e) = X.

Define the mapping τ : SS(X, E)→ [I] as follows:

τ(Φ) = τ
(

X̃
)
= 1,

τ(F1) = [0.2, 0.5],

τ(F2) = [0.3, 0.4],

τ(F3) = [0.4, 0.5],

τ(F4) = [0.2, 0.4],

τ(F5) = [0.3, 0.5],

τ(F6) = [0.3, 0.5].

Then it is clear that τ is an IVFT.

Example 2. Let X = {x} and E = {a, b, c}. The set of all soft points on X is {xa, xb, xc}. Then
the soft sets are

F1(a) = {x}, F1(b) = ∅, F1(c) = ∅,

F2(a) = ∅, F2(b) = {x}, F2(c) = ∅,

F3(a) = ∅, F3(b) = ∅, F3(c) = {x},
F4(a) = {x}, F4(b) = {x}, F4(c) = ∅,

F5(a) = {x}, F5(b) = ∅, F5(c) = {x},
F6(a) = ∅, F6(b) = {x}, F6(c) = {x},

F7 = Φ, F8 = X̃.

We define the mapping τ : SS(X, E)→ [I] as follows:
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τ(Φ) = τ
(

X̃
)
= 1,

τ(F1) = [0.3, 0.5],

τ(F2) = [0.2, 0.4],

τ(F3) = [0.3, 0.6],

τ(F4) = [0.2, 0.5],

τ(F5) = [0.4, 0.5],

τ(F6) = [0.2, 0.4].

Then it is clear that τ is an IVFT.

Definition 9. A mapping C = (µC, υC) : SS(X, E) → [I] is called an interval-valued fuzzy
cotopology (in short IVFCT) over SS(X, E) if it satisfies the following conditions:

(1) C(Φ) = C
(

X̃
)
= 1,

(2) C((F, E) ∪ (G, E)) ≥ C(F, E) ∧ C(G, E), ∀(F, E), (G, E) ∈ SS(X, E),

(3) C

(⋂
i∈J

(Fi, E)

)
≥ ∧

i∈J
C(Fi, E), ∀{(Fi, E)}i∈J ⊂ SS(X, E).

The triple (X, C, E) is called an interval-valued fuzzy cotopological space over SS(X, E)
and denoted by IVFCTS.

Proposition 2. (1) If τ : SS(X, E) → [I] is an IVFT, then C(F, E) = τ
(
(F, E)c) is a IVFCT,

∀(F, E) ∈ SS(X, E).
(2) If C : SS(X, E)→ [I] is an IVFCT, then τ(F, E) = C

(
(F, E)c) is an IVFT, ∀(F, E) ∈

SS(X, E).

Proof. (1) It is clear that

C(Φ) = τ(Φc) = τ
(

X̃
)
= 1,

C
(

X̃
)
= τ

(
X̃c
)
= τ(Φ) = 1.

C((F, E) ∪ (G, E)) = τ
(
((F, E) ∪ (G, E))c) = τ

(
(F, E)c ∩ (G, E)c)

≥ τ
(
(F, E)c) ∧ τ

(
(G, E)c) = C(F, E) ∧ C(G, E).

C

⋂
i∈J

(Fi, E)

 = τ

⋂
i∈J

(Fi, E)

c = τ

⋃
i∈J

(Fi, E)c


≥

∧
i∈J

τ(Fi, E)c =
∧
i∈J

C(Fi, E).

(2) The proof is done similarly to (1).

Definition 10. Let (X, τ, E) be an IVFTS and ã ∈ [I]. We define two families τã and τ∗ã as
follows, respectively:

(1) τã = {(F, E) ∈ SS(X, E) : τ(F, E) ≥ ã},
(2) τ∗ã = {(F, E) ∈ SS(X, E) : τ(F, E) > ã}.

Proposition 3. Let (X, τ, E) be an IVFTS and ã, b̃ ∈ [I]. Then:
(1) τã is a soft topology.
(2) If ã ≤ b̃, then τ̃b ⊂ τã.
(3) τã =

⋂
b̃<ã

τ̃b, where ã 6= 0.

(4) τ∗ã is a soft topology.
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(5) If ã ≤ b̃, then τ∗
b̃
⊂ τ∗ã .

(6) τ∗ã . =
⋃

ã<b̃
τ∗

b̃
, where ã 6= 1.

Thus each interval-valued fuzzy topology is a descending family of soft topologies.

Proof. The proofs of (1), (2), (4) and (5) are clear.
(3) From (2), {τã}ã 6=0 is a descending family of soft topologies. Then for each ã 6= 0,

SS(X, E)
τã ⊂

⋂
b̃<ã

τ̃b . (i)

Suppose that (F, E) /∈ τã. Then τ(F, E) < ã. Hence there exists b̃ 6= 0 such that
τ(F, E) < b̃ < ã. So (F, E) /∈ τ̃b for b̃ < ã. Thus (F, E) /∈ ⋂

b̃<ã
τ̃b is obtained, i.e.,

⋂
b̃<ã

τ̃b ⊂ τã. (ii)

Hence from (i) and (ii), τã =
⋂

b̃<ã
τ̃b, where ã 6= 0.

(6) The proof is obtained similarly to the proof of (3).

Remark 1. It is clear that for each τ ∈ IVFT, {τã}ã∈[I] is a descending family of soft topologies.

Proposition 4. Let {τã}ã∈[I] be a descending family of soft topologies on X. We define the mapping
τ : SS(X, E)→ [I] as follows: for each (F, E) ∈ SSS(X, E),

τ(F, E) =
∨

(F,E)∈τã

ã.

Then τ ∈ IVFT.

Proof. Obviously τ(Φ) = τ
(

X̃
)
= 1 is met.

Suppose (F, E), (G, E) ∈ SS(X, E) such that τ(F, E) = ã and τ(G, E) = b̃. If ã = 0 or
b̃ = 0, then

τ−((F, E) ∩ (G, E)) ≥ τ−(F, E) ∧ τ−(G, E),

τ+((F, E) ∩ (G, E)) ≥ τ+(F, E) ∧ τ+(G, E).

Thus τ((F, E) ∩ (G, E)) ≥ τ(F, E) ∧ τ(G, E). Since

τ(F, E) =
∨

(F,E)∈τã

ã =
∨

(F,E)∈τã

[a−, a+],

we can find ε > 0, c̃1 and c̃2 such that

a− − ε < c−1 ≤ a−, a+ − ε < c+1 ≤ a+,

b− − ε < c−2 ≤ b−, b+ − ε < c+2 ≤ b+

and (F, E) ∈ ττc−1
, (G, E) ∈ ττc−2

. Let

c− = c−1 ∧ c−2 , c+ = c+1 ∧ c+2 ,

d− = a− ∧ b−, d+ = a+ ∧ b+.
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Then c̃ ≤ ã, c̃ ≤ b̃. Since {τã}ã∈[I] is a descending family, then τã, τ̃b ⊂ τc̃. Since (F, E) ∈ τã,
(G, E) ∈ τ̃b, then (F, E) ∩ (G, E) ∈ τc̃. So we have

τ−((F, E) ∩ (G, E)) ≥ c− > d− − ε,

τ+((F, E) ∩ (G, E)) ≥ d+ > d+ − ε.

Since ε > 0 was arbitrary,

τ−((F, E) ∩ (G, E)) ≥ c− ≥ d− = a− ∧ b−,

τ+((F, E) ∩ (G, E)) ≥ d+ = a+ ∧ b+.

Hence τ((F, E) ∩ (G, E)) ≥ τ(F, E) ∧ τ(G, E) is obtained.
Finally, let {(Fi, E)}i∈J ⊂ SS(X, E) and τ(Fi, E) = ãi, ã =

∧
i∈J

ãi. If ã = 0, then obviously

τ

⋃
i∈J

(Fi, E)

 ≥ 0 =
∧
i∈J

τ(Fi, E).

If ã > 0, choose ε > 0 such that ã > ε. Then for i ∈ J, 0 < a− − ε < a−i and 0 < a+ − ε <

a+i . Thus (Fi, E) ∈ τ[a−−ε,a+−ε]. So
⋃
i∈J

(Fi, E) ∈ τ[a−−ε,a+−ε] and τ−
(⋃

i∈J
(Fi, E)

)
≥ a− − ε,

τ+

(⋃
i∈J

(Fi, E)

)
≥ a+ − ε. Since ε > 0 was arbitrary,

τ−

⋃
i∈J

(Fi, E)

 ≥ a− =
∧
i∈J

τ−(Fi, E),

τ+

⋃
i∈J

(Fi, E)

 ≥ a+ =
∧
i∈J

τ+(Fi, E).

Hence τ

(⋃
i∈J

(Fi, E)

)
≥ ∧

i∈J
τ(Fi, E) is met.

Theorem 1. Let (X, τ, E) be an IVFTS and let Y ⊂ X. We define the mapping τY : SS(Y, E)→
[I] as follows: for each (F, E) ∈ SS(Y, E),

τY(F, E) =
∧

(G, E) ∈ SS(X, E)
(F, E) = (G, E) ∩ Ỹ

τ(G, E).

Then (X, τ, E) ∈ IVFT and τY(F, E) ≥ τ(F, E) for each (F, E) ∈ SS(Y, E). Then (Y, τY, E) is
said to be an interval-valued fuzzy subspace of (X, τ, E), and τY is said to be induced interval-valued
fuzzy topology on Y by τ.

Proof. It is obvious that τY(Φ) = τY

(
Ỹ
)
= 1. Let (F, E), (G, E) ∈ SS(Y, E). Then
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τY(F, E) ∧ τY(G, E) =


∧

(C1, E) ∈ SS(X, E)
(F, E) = (C1, E) ∩ Ỹ

τ(C1, E)



∧


∧

(C2, E) ∈ SS(X, E)
(G, E) = (C2, E) ∩ Ỹ

τ(C2, E)


=

∧
(C1, E), (C2, E) ∈ SS(X, E)

(F, E) ∩ (G, E) = ((C1, E) ∩ (C2, E)) ∩ Ỹ

[τ(C1, E) ∧ τ(C2, E)]

≤
∧

(C1, E), (C2, E) ∈ SS(X, E)
(F, E) ∩ (G, E) = ((C1, E) ∩ (C2, E)) ∩ Ỹ

[τ((C1, E) ∩ (C2, E))]

= τY((F, E) ∩ (G, E)).

Now, let {(Fi, E)}i∈J ⊂ SS(Y, E). Then

τY

⋃
i∈J

(Fi, E)

 =
∧

(Bi, E) ∈ SS(X, E)⋃
i∈J

(Fi, E) =
⋃
i∈J

(Bi, E) ∩ Ỹ

τ

⋃
i∈J

(Bi, E)



≥
∧

(Bi, E) ∈ SS(X, E)⋃
i∈J

(Fi, E) =
⋃
i∈J

(Bi, E) ∩ Ỹ

∧
i∈J

τ(Bi, E)



=
∧
i∈J


∧

(Bi, E) ∈ SS(X, E)⋃
i∈J

(Fi, E) =
⋃
i∈J

(Bi, E) ∩ Ỹ

τ(Bi, E)


=

∧
i∈J

τY(Fi, E).

Also, for each (F, E) ∈ SS(Y, E), τY(F, E) ≥ τ(F, E) is satisfied.

4. Interval-Valued Neighborhood Structures

In this section we define and study the concept of interval-valued fuzzy neighborhood
system of a soft point.

Definition 11. Let (X, τ, E) be an IVFTS and let xe be a soft point. Then a mapping Nxe :
SS(X, E)→ [I] is called the interval-valued fuzzy neighborhood system of xe if for each (F, E) ∈
SS(X, E),

Nxe =
∨

xe∈(G,E)⊂(F,E)

τ(G, E).
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Proposition 5. Let (X, τ, E) be an IVFTS and let (F, E) ∈ SS(X, E). Then∧
xe∈(F,E)

∨
xe∈(G,E)⊂(F,E)

τ(G, E) = τ(F, E).

Proof. Since (F, E) =
⋃

xe∈(F,E)
{xe}, it is clear that

∧
xe∈(F,E)

 ∨
xe∈(G,E)⊂(F,E)

τ(G, E)

 ≥ τ(F, E).

Let Gxe = {(G, E) ∈ SS(X, E) : xe ∈ (G, E) ⊂ (F, E)}. If f ∈ ∏
xe∈(F,E)

Gxe , then obviously⋃
xe∈(F,E)

f (xe) = (F, E). Then

∧
xe∈(F,E)

τ( f (xe)) ≤ τ

 ⋃
xe∈(F,E)

f (xe)

 = τ(F, E).

So ∧
xe∈(F,E)

 ∨
xe∈(G,E)⊂(F,E)

τ(G, E)

 =
∨

f∈ ∏
xe∈(F,E)

Gxe

 ∧
xe∈(F,E)

τ( f (xe))

 ≤ τ(F, E).

Hence ∧
xe∈(F,E)

 ∨
xe∈(G,E)⊂(F,E)

τ(G, E)

 = τ(F, E).

Definition 12. Let (X, τ, E) be an IVFTS.
(1) β : SS(X, E) → [I] is called a base of τ if β satisfies the following condition: (F, E) ∈

SS(X, E)
τ(F, E) =

∨
⋃

i∈J
(Gi ,E)=(F,E)

∧
i∈J

β(Gi, E).

(2) ϕ : SS(X, E)→ [I] is called a subbase of τ if ϕ̃ : SS(X, E)→ [I] is a base of τ, where

ϕ̃(F, E) =
∨

⋂
i∈J

(Gi ,E)=(F,E)

∧
i∈J

ϕ(Gi, E)

and J is a finite set.

We now give an example of a base for a topology.

Example 3. Let X = {x}, E = {e1, e2, e3}. The set of soft points in X is {xe1 , xe2 , xe3}. Let
ã ∈ [I] be fixed. We define the mapping τ : SS(X, E) → [I] as follows: for (F, E) ∈ SS(X, E)
we set

τ(F, E) =
{

1, if (F, E) ∈ {Φ, X̃, {xe2}, {xe1 , xe2}, {xe2 , xe3}},
ã, otherwise.

The mapping β : SS(X, E)→ [I] defined by

β(F, E) = 1, if (F, E) ∈ {{xe2}, {xe1 , xe2}, {xe2 , xe3}}
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is a base for τ.

Theorem 2. Let (X, τ, E) be an IVFTS and let β : SS(X, E) → [I] be a mapping such that
β ⊂ τ. Then β is an interval-valued fuzzy base for τ if and only if for each soft point xe and each
(F, E) ∈ SS(X, E),

Nxe(F, E) ≤
∨

xe∈(G,E)⊂(F,E)

β(G, E).

Proof. Let β be an interval-valued fuzzy base for τ, xe be a soft point and (F, E) ∈
SS(X, E), xe ∈ (F, E). Thus from the definition of interval-valued fuzzy neighborhood
system of xe,

Nxe(F, E) =
∨

xe∈(G,E)⊂(F,E)

τ(G, E)

=
∨

xe∈(G,E)⊂(F,E)

∨
⋃

i∈J
(Gi ,E)=(G,E)

∧
i∈J

β(Gi, E).

If xe ∈ (G, E) =
⋃
i∈J

(Gi, E), then there is i0 ∈ J such that xe ∈
(
Gi0 , E

)
. Hence

∧
i∈J

β(Gi, E) ≤ β
(
Gi0 , E

)
≤

∨
xe∈(G,E)⊂(F,E)

β(G, E).

So
Nxe(F, E) ≤

∨
xe∈(G,E)⊂(F,E)

β(G, E)

is obtained.
Conversely, suppose the condition of necessary holds and for (F, E) ∈ SS(X, E),

(F, E) =
⋃
i∈J

(Gi, E).

Then
τ(F, E) ≥

∧
i∈J

τ(Gi, E) ≥
∧
i∈J

β(Gi, E).

Hence
τ(F, E) ≥

∨
⋃

i∈J
(Gi ,E)=(F,E)

∧
i∈J

β(Gi, E) (i)

On the other hand, from Proposition 5,

τ(F, E) =
∧

xe∈(F,E)

∨
xe∈(G,E)⊂(F,E)

τ(G, E)

=
∧

xe∈(F,E)

Nxe(F, E)

≤
∧

xe∈(F,E)

∨
xe∈(G,E)⊂(F,E)

β(G, E)

=
∨

f∈ ∏
xe∈(F,E)

Gxe

 ∧
xe∈(F,E)

β( f (xe))

.
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So, for each f ∈ ∏
xe∈(F,E)

Gxe , since (F, E) =
⋃

xe∈(F,E)
f (xe),

∨
f∈ ∏

xe∈(F,E)
Gxe

 ∧
xe∈(F,E)

β( f (xe))

 =
∨

⋃
i∈J

(Gi ,E)=(F,E)

∧
i∈J

β(Gi, E).

Therefore
τ(F, E) ≤

∨
⋃

i∈J
(Gi ,E)=(F,E)

∧
i∈J

β(Gi, E). (ii)

Hence from (i) and (ii),
τ(F, E) =

∨
⋃

i∈J
(Gi ,E)=(F,E)

∧
i∈J

β(Gi, E),

i.e., β is an interval-valued fuzzy base for τ.

Theorem 3. If β : SS(X, E)→ [I] satisfies the following conditions:
(1) β(Φ) = β

(
X̃
)
= 1,

(2) β((F, E) ∩ (G, E)) ≥ β(F, E) ∧ β(G, E), ∀(F, E), (G, E) ∈ SS(X, E), then

τβ(F, E) =
∨

⋃
i∈J

(Gi ,E)=(F,E)

∧
i∈J

β(Gi, E)

is an interval-valued fuzzy topology and β is a base of τβ.

Proof. From the condition (1), τβ(Φ) = τβ

(
X̃
)
= 1 hold. For ∀(F, E), (G, E) ∈ SS(X, E),

τβ(F, E) ∧ τβ(G, E) =

 ∨
⋃

i∈J1
(Fi ,E)=(F,E)

∧
i∈J

β(Fi, E)



∧

 ∨
⋃

j∈J2
(Gj ,E)=(G,E)

∧
j∈J

β
(
Gj, E

)


=
∨

⋃
i∈J1

(Fi ,E)=(F,E)

∨
⋃

j∈J2
(Gj ,E)=(G,E)

∧
i∈J1

β(Fi, E)

 ∧
∧

j∈J2

β
(
Gj, E

)

≤
∨

⋃
i∈J1,j∈J2

((Fi ,E)∩(Gj ,E))=(F,E)∩(G,E)

 ∧
i∈J1,j∈J2

β
(
(Fi, E) ∩

(
Gj, E

))

≤
∨

⋃
k∈J3

(Hk ,E)(Hk ,E)=(F,E)∩(G,E)

∧
k∈J3

β(Hk, E)


= τβ((F, E) ∩ (G, E)).
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is obtained. Let let {(Fi, E)}i∈J ⊂ SS(X, E). We consider a family

Bi =

{(Gli , E
)}

: li ∈ Ji :
⋃

li∈Ji

(
Gli , E

)
= (Fi, E)

.

Then
(F, E) =

⋃
i∈J

(Fi, E) =
⋃
i∈J

⋃
li∈Ki

(
Gli , E

)
.

For an arbitrary f ∈ ∏
i∈J

Bi, since
⋃
i∈J

⋃(
Gli

,E
)
∈ f (i)

(
Gli , E

)
=
⋃
i∈J

(Fi, E),

τβ(F, E) =
∨

⋃
l∈J

(Gl ,E)=(F,E)

∧
l∈J

β(Gl , E)

≥
∨

f∈∏
i∈J

Bi

∧
i∈J

∧
(

Gli
,E
)
∈ f (i)

β
(
Gli , E

)
=

∧
i∈J

∧
{(

Gli
,E
)

:li∈Ji

}
∧

li∈Ji

β
(
Gli , E

)
=

∧
i∈J

τβ(Fi, E)

is obtained. Thus τβ is an interval-valued fuzzy topology. It is clear that β is a base of τβ.

5. Mappings

In this section we define and study continuous and open mappings between interval-
valued fuzzy topological spaces.

Definition 13. Let (X, τ, E) and (Y, ζ, E∗) be two IVFTSs and ( f , ϕ) : (X, τ, E) → (Y, ζ, E∗)
be a mapping. Then ( f , ϕ) is called a continuous mapping at the soft point xe ∈ (X, E) if for each
arbitrary soft set ( f , ϕ)(xe) = ( f (x))ϕ(e) ∈ (G, E∗) ∈ SS(Y, E∗), there exists (F, E) ∈ SS(X, E)
such that

τ(F, E) ≥ ζ(G, E∗) and ( f , ϕ)(F, E) ⊂ (G, E∗).

( f , ϕ) is called a continuous mapping if ( f , ϕ) is a continuous mapping for each soft point.

The following example illustrates the definition of continuity.

Example 4. Let X = {x, y}, E = {e}. The set of all soft points in X is {xe, ye}, and the soft
sets are

F1(e) = {x}, F2(e) = {y}, F3(e) = Φ, F4(e) = X̃.

Let Y = {u}, E′ = {e′1, e′2}. The soft sets in Y are:

G1(e′1) = u, G1(e′2) = Φ,
G2(e′1) = Φ, G2(e′2) = u,

G3(e′1) = G3(e′2) = Ỹ,
G4(e′1) = G4(e′2) = Φ.

Define τ : SS(X, E)→ [I] and τ′ : SS(Y, E′)→ [I] by

τ(F1, E) = [0.1, 0.6], τ(F2, E) = [0.3, 0.5], τ(F3, E) = τ(F4, E) = 1;
τ′(G1, E′) = [0.2, 0.7], τ′(G2, E′) = [0.4, 0.6], τ′(G3, E′) = τ′(G4, E′) = 1.

Consider mappings f : X → Y and ϕ : E→ E′ defined by
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f (x) = f (y) = u,
ϕ(e) = e′1.

Then ( f , ϕ) : (X, τ, E)→ (Y, τ′, E′) is a continuous mapping. Indeed, we have

( f , ϕ)−1(G1, E′)(e) = f−1(G1(ϕ(e))) = f−1(u) = {x, y},
τ
(
( f , ϕ)−1(G1, E′)

)
= 1 ≥ τ′(G1, E′);

( f , ϕ)−1(G2, E′)(e) = f−1(G2(ϕ(e))) = f−1(Φ) = Φ,
τ
(
( f , ϕ)−1(G2, E′)

)
= 1 ≥ τ′(G2, E′).

Theorem 4. Let (X, τ, E) and (Y, ζ, E∗) be two IVFTSs and ( f , ϕ) : (X, τ, E)→ (Y, ζ, E∗) be
a mapping. Then ( f , ϕ) is a continuous mapping if and only if

τ
(
( f , ϕ)−1(G, E∗)

)
≥ ζ(G, E∗)

is satisfied for each (G, E∗) ∈ SS(Y, E∗).

Proof. Let ( f , ϕ) be a continuous mapping and ∀(G, E∗) ∈ SS(Y, E∗). Suppose xe ∈
( f , ϕ)−1(G, E∗) be an arbitrary soft point. Since ( f , ϕ) is a continuous mapping, there
exists xe ∈ (F, E) ∈ SS(X, E) such that

τ(F, E) ≥ ζ(G, E∗) and ( f , ϕ)(F, E) ⊂ (G, E∗).

Then

( f , ϕ)−1(G, E∗) =
⋃

xe∈( f ,ϕ)−1(G,E∗)

xe ⊂
⋃

xe∈( f ,ϕ)−1(G,E∗)

(F, E) ⊂ ( f , ϕ)−1(G, E∗).

We have

τ
(
( f , ϕ)−1(G, E∗)

)
= τ

 ⋃
xe∈( f ,ϕ)−1(G,E∗)

(F, E)

 ≥ ∧τ(F, E) ≥ ζ(G, E∗).

Conversely, let xe ∈ SS(X, E) be an arbitrary soft point and ( f , ϕ)(xe) ∈ (G, E∗). From
the condition of the theorem, xe ∈ ( f , ϕ)−1(G, E∗),

τ
(
( f , ϕ)−1(G, E∗)

)
≥ ζ(G, E∗),

and ( f , ϕ)
(
( f , ϕ)−1(G, E∗)

)
⊂ (G, E∗) hold. So ( f , ϕ) is a continuous mapping.

Theorem 5. Let (X, τ, E) and (Y, ζ, E∗) be two IVFTSs and ( f , ϕ) : (X, τ, E)→ (Y, ζ, E∗) be
a mapping. Then ( f , ϕ) is a continuous mapping if and only if for ∀ã = [a−, a+] ∈ [I],

( fa− , ϕa−) : (X, τa− , E)→ (Y, ζa− , E∗),

( fa+ , ϕa+) : (X, τa+ , E)→ (Y, ζa+ , E∗)

are soft continuous mappings.

Proof. Let ( f , ϕ) be a continuous mapping and (G, E∗) ∈ ζ ã. Then ζ(G, E∗) ≥ ã. For each
(G, E∗) ∈ SS(Y, E∗), ζ−(G, E∗) ≥ a−, ζ+(G, E∗) ≥ a+. Since

τ
(
( f , ϕ)−1(G, E∗)

)
≥ ζ(G, E∗) ≥ ã,

then

τ−
(
( f , ϕ)−1(G, E∗)

)
≥ a−, τ+

(
( f , ϕ)−1(G, E∗)

)
≥ a+,

( f , ϕ)−1(G, E∗) ∈ τa− , ( f , ϕ)−1(G, E∗) ∈ τa+ .
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Conversely, suppose that for ∀ã = [a−, a+] ∈ [I],

( fa− , ϕa−) : (X, τa− , E)→ (Y, ζa− , E∗),

( fa+ , ϕa+) : (X, τa+ , E)→ (Y, ζa+ , E∗)

are soft continuous mappings. If for each (G, E∗) ∈ SS(Y, E∗), ζ(G, E∗) = ã, then (G, E∗) ∈
ζ ã, so (G, E∗) ∈ ζa− and (G, E∗) ∈ ζa+ . Since ( fa− , ϕa−), ( fa+ , ϕa+) are continuous map-
pings, ( fa− , ϕa−)

−1(G, E∗) ∈ τa− , ( fa+ , ϕa+)
−1(G, E∗) ∈ τa+ . Then

τ
(
( f , ϕ)−1(G, E∗)

)
≥ ã = ζ(G, E∗),

i.e., ( f , ϕ) is a continuous mapping.

Theorem 6. Let (X, τ, E) and (Y, ζ, E∗) be two IVFTSs and β∗ be an interval-valued fuzzy base
for ζ. Then ( f , ϕ) : (X, τ, E) → (Y, ζ, E∗) is a continuous mapping if and only if β∗(G, E∗) ≤
τ
(
( f , ϕ)−1(G, E∗)

)
for each (G, E∗) ∈ SS(Y, E∗).

Proof. Let ( f , ϕ) : (X, τ, E)→ (Y, ζ, E∗) be a continuous mapping and (G, E∗) ∈ SS(Y, E∗).
Then ζ(G, E∗) ≥ β∗(G, E∗). So,

τ
(
( f , ϕ)−1(G, E∗)

)
≥ ζ(G, E∗) ≥ β∗(G, E∗)

is obtained.
Conversely, let β∗(G, E∗) ≤ τ

(
( f , ϕ)−1(G, E∗)

)
for each (G, E∗) ∈ SS(Y, E∗). Let

(G, E∗) =
⋃
i∈J

(
Gj, E∗

)
. Hence

τ
(
( f , ϕ)−1(G, E∗)

)
= τ

( f , ϕ)−1

⋃
i∈J

(
Gj, E∗

)
= τ

⋃
i∈J

( f , ϕ)−1(Gj, E∗
)

≥
∧
i∈J

τ
(
( f , ϕ)−1(Gj, E∗

))
≥

∧
β∗

i∈J

(
Gj, E∗

)
.

So we have τ
(
( f , ϕ)−1(G, E∗)

)
≥ ∨

(G,E∗)=
⋃

i∈J
(Gj ,E∗)

∧
β∗

i∈J

(
Gj, E∗

)
= ζ(G, E∗).

Theorem 7. Let (X, τ, E) and (Y, ζζ, E∗) be two IVFTSs and δ∗ be a subbase for ζ. Then ( f , ϕ) :

(X, τ, E)→ (Y, ζ, E∗) is a continuous mapping if δ∗(G, E∗) ≤ τ
(
( f , ϕ)−1(G, E∗)

)
is satisfied,

for each (G, E∗) ∈ SS(Y, E∗).
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Proof. For each (G, E∗) ∈ SS(Y, E∗),

δ∗(G, E∗) =
∨

⋃
i∈J

(Gi ,E∗)=(G,E∗)

∧
i∈J

∨
⋂

µ∈A
(Fi ,E∗)=(Gi ,E∗)

∧
µ∈A

ζ
(

Fµ, E∗
)

≤
∨

⋃
i∈J

(Gi ,E∗)=(G,E∗)

∧
i∈J

∨
⋂

µ∈A
(Fi ,E∗)=(Gi ,E∗)

∧
µ∈A

τ
(
( f , ϕ)−1(Fµ, E∗

))

≤
∨

⋃
i∈J

(Gi ,E∗)=(G,E∗)

∧
i∈J

τ
(
( f , ϕ)−1(Gi, E∗)

)

≤
∨

⋃
i∈J

(Gi ,E∗)=(G,E∗)

τ

( f , ϕ)−1

⋃
i∈J

(Gi, E∗)


= τ

(
( f , ϕ)−1(G, E∗)

)
is obtained.

Definition 14. Let (X, τ, E) and (Y, ζ, E∗) be two IVFTSs and ( f , ϕ) : (X, τ, E) → (Y, ζ, E∗)
be a mapping. Then ( f , ϕ) is called an open mapping if it the following condition

τ(F, E) ≤ ζ(( f , ϕ)(F, E))

is satisfied for each (F, E) ∈ SS(X, E).

Now we give an example of an open mapping.

Example 5. Let X = {x}, E = {e1, e2}; Y = {u, v}, E′ = {e′}.
The soft sets in X are

F1(e1) = {x}, F1(e2) = Φ,
F2(e1) = Φ, F2(e2) = {x},

F3(e1) = F3(e2) = {x},
F4(e1) = F4(e2) = Φ,

and the soft sets in Y are

G1(e′) = {u}, G2(e′) = {v}, G3(e′) = Ỹ, G4(e′) = Φ.

Define topologies τ on X and τ′ on Y by

τ(F1, E) = [0.2, 0.5], τ(F2, E) = [0.1, 0.7], τ(F3, E) = τ(F4, E) = 1;
τ′(G1, E′) = 1, τ′(G2, E′) = [0.4, 0.8], τ′(G3, E′) = τ′(G4, E′) = 1.

Consider mappings f : X → Y and ϕ : E→ E′ given by

f (x) = u,
ϕ(e1) = ϕ(e2) = e′.

Then

( f , ϕ)(F1, E)(e′) = f (F1(e1)) ∪ f (F1(e2)) = f (x) = u = G1(e′),
τ(F1, E) = [0.2, 0.5] ≤ τ′(G1, e′) = [1, 1];

( f , ϕ)(F2, E)(e′) = f (F2(e1)) ∪ f (F2(e2)) = f (x) = u = G1(e′),
τ(F2, E) = [0.1, 0.7] ≤ τ′(G1, e′) = [1, 1].

It follows that ( f , ϕ) is an open mapping.
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Theorem 8. Let (X, τ, E) and (Y, ζ, E∗) be two IVFTSs and ( f , ϕ) : (X, τ, E)→ (Y, ζ, E∗) be
a mapping and β be a base of τ. If

β(F, E) ≤ ζ(( f , ϕ)(F, E))

is satisfied for each (F, E) ∈ SS(X, E), then ( f , ϕ) is an open mapping.

Proof. For each (F, E) ∈ SS(X, E),

τ(F, E) = τ(F, E) =
∨

⋃
i∈J

(Fi ,E)=(F,E)

∧
i∈J

β(Fi, E)

≤
∨

⋃
i∈J

(Fi ,E)=(F,E)

∧
i∈J

ζ(( f , ϕ)(Fi, E))

≤
∨

⋃
i∈J

(Fi ,E)=(F,E)

ζ

( f , ϕ)

⋃
i∈J

(Fi, E)


= ζ(( f , ϕ)(F, E))

is satisfied.

Theorem 9. Let (Y, ζ, E∗) be an IVFTS and ( f , ϕ) : SS(X, E)→ (Y, ζ, E∗) be a mapping of soft
sets. Then define τ : SS(X, E)→ [I] as follows:

τ(F, E) =
∨

ζ(G, E∗).
( f ,ϕ)−1(G,E∗)=(F,E)

Then τ is an interval-valued fuzzy topology over SS(X, E) and ( f , ϕ) is a continuous mapping.

Proof. It is obvious that τ(Φ) = τ
(

X̃
)
= 1.

τ((F1, E) ∩ (F2, E)) =
∨{

ζ(G, E∗) : ( f , ϕ)−1(G, E∗) = (F1, E) ∩ (F2, E)
}

≥ ∨{ζ((G1, E∗) ∩ (G2, E∗)) : ( f , ϕ)−1((G1, E∗) ∩ (G2, E∗)) = (F1, E) ∩ (F2, E)
}

≥
(∨{

ζ(G1, E∗) : ( f , ϕ)−1(G1, E∗) = (F1, E)
})

∧∨{ζ(G2, E∗) : ( f , ϕ)−1(G2, E∗) = (F2, E)
}

= τ(F1, E) ∧ τ(F2, E)
is obtained. Also,

τ

(⋃
i∈J

(Fi, E)

)
=
∨{

ζ(G, E∗) : ( f , ϕ)−1(G, E∗) =
⋃
i∈J

(Fi, E)

}

≥ ∨
{

ζ

(⋃
i∈J

(Gi, E∗)

)
: ( f , ϕ)−1

(⋃
i∈J

(Gi, E∗)

)
=
⋃
i∈J

(Fi, E)

}

≥ ∨
{(∧

i∈J
ζ(Gi, E∗)

)
: ( f , ϕ)−1(Gi, E∗) = (Fi, E)

}
=
∧
i∈J

(∨{
ζ(Gi, E∗) : ( f , ϕ)−1(Gi, E∗) = (Fi, E)

})
=
∧
i∈J

τ(Fi, E).

So τ is an interval-valued fuzzy topology over SS(X, E) and ( f , ϕ) is a continuous
mapping.
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Theorem 10. Let (X, τ, E) be an IVFTS and ( f , ϕ) : (X, τ, E) → SS(Y, E∗) be a mapping of
soft sets. Then define ζ : SS(Y, E∗)→ [I] as follows:

ζ(G, E∗) = τ
(
( f , ϕ)−1(Gi, E∗)

)
.

Then ζ is an interval-valued fuzzy topology over SS(Y, E∗) and ( f , ϕ) is a continuous mapping.

Proof. It is clear that ζ(Φ) = ζ
(

Ỹ
)
= 1.

ζ((G1, E∗) ∩ (G2, E∗)) = τ
(
( f , ϕ)−1((G1, E∗) ∩ (G2, E∗))

)
= τ

((
( f , ϕ)−1(G1, E∗)

)
∩
(
( f , ϕ)−1(G2, E∗)

))
≥ τ

(
( f , ϕ)−1(G1, E∗)

)
∧ τ
(
( f , ϕ)−1(G2, E∗)

)
= ζ(G1, E∗) ∧ ζ(G2, E∗)

is obtained. Furthermore,

ζ

(⋃
i∈J

(Gi, E∗)

)
= τ

(
( f , ϕ)−1

(⋃
i∈J

(Gi, E∗)

))
= τ

(⋃
i∈J

( f , ϕ)−1(Gi, E∗)

)
≥ ∧

i∈J
τ
(
( f , ϕ)−1(Gi, E∗)

)
=
∧
i∈J

ζ(Gi, E∗).

So ζ is an interval-valued fuzzy topology over SS(Y, E∗) and ( f , ϕ) is a continuous
mapping.

6. Direct Sum

Now let {(Xλ, τλ, Eλ)}λ∈Λ be a family of fuzzy topological spaces, Xλ ∩ Xν = ∅ and
Eλ ∩ Eν = ∅ for λ 6= ν. Let X̃ be union of all soft points which belong to this space and
E =

⋃
λ∈Λ

Eλ. Then
(

X̃, E
)

is the family of soft sets on X =
⋃

λ∈Λ

Xλ with parameters E. For

soft point xe ∈
(

X̃, E
)

if x ∈ Xλ, then e ∈ Eλ. If e ∈ Eλ, then x ∈ Xλ is satisfied. For an

arbitrary (F, E) ∈
(

X̃, E
)

, (F, E)λ = {F(e) ∩ Xλ}λ∈Λ [23].

Theorem 11. Let {(Xλ, τλ, Eλ)}λ∈Λ be a family of interval-valued fuzzy topological spaces, X′λs
be pairwise disjoint. Then τ defined by

τ(F, E) =
∧

λ∈Λ

τλ((F, E)λ),

for each (F, E) ∈
(

X̃, E
)

is an interval-valued fuzzy topology on
(

X̃, E
)

.

Proof. Let (F1, E), (F2, E) ∈
(

X̃, E
)

. Then
τ((F1, E) ∩ (F2, E)) =

∧
λ∈Λ

τλ(((F1, E) ∩ (F2, E))λ)

=
∧

λ∈Λ
τλ((F1, E)λ ∩ (F2, E)λ)

≥ ∧
λ∈Λ

(τλ((F1, E)λ) ∧ τλ((F2, E)λ))

=

( ∧
λ∈Λ

τλ((F1, E)λ)

)
∧
( ∧

λ∈Λ
τλ((F2, E)λ)

)
= τ(F1, E) ∧ τ(F2, E)

holds.
Now, let {(Fi, Ei)}i∈J be a family of soft sets. Then

τ

(⋃
i∈J

(Fi, Ei)

)
=

∧
λ∈Λ

τλ

((⋃
i∈J

(Fi, Ei)

)
λ

)
=

∧
λ∈Λ

τλ

(⋃
i∈J

(Fi, Ei)λ

)
≥ ∧

λ∈Λ

∧
i∈J

τλ((Fi, Ei)λ) =
∧

i∈J

( ∧
λ∈Λ

τλ((Fi, Ei))λ

)
=

∧
i∈J

τ(Fi, Ei)

is satisfied. Hence, (X, τ, E) is an IVFTS.
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Definition 15. The interval-valued fuzzy topological space (X, τ, E) in the previous theorem is
called the direct sum of {(Xλ, τλ, Eλ)}λ∈Λ, denoted by (X, τ, E) = ⊕

λ∈Λ
(Xλ, τλ, Eλ).

It is obvious that iλ : Xλ → X =
⋃

λ∈Λ

Xλ and jλ : Eλ → E =
⋃

λ∈Λ

Eλ are embedding

mappings for all λ ∈ Λ. Then

(iλ, jλ) : (Xλ, τλ, Eλ)→ (X, τ, E)

is a continuous mapping.

Theorem 12. Let {(Xλ, τλ, Eλ)}λ∈Λ be a family of interval-valued fuzzy topological spaces, X =

∏
λ∈Λ

Xλ be a set, E = ∏
λ∈Λ

Eλ be a parameter set and pλ : X → Xλ, qλ : E→ Eλ be two projections

mappings for ∀λ ∈ Λ. Define β : SS(Y, E)→ [I] as follows:

β(G, E∗) =
∨ n∧

j=1

ταi (Fαi , Eαi ) : (F, E) =
n⋂

j=1

(pαi , qαi )
−1(Fαi , Eαi )

.

Then β is a base of the topology τβR on (X, E), and (pλ, qλ) :
(
X, τβ, E

)
→ (Xλ, τλ, Eλ) are

continuous mapping for ∀λ ∈ Λ.

Proof. We show that β is a base. Indeed,

β
(

X̃
)

=
∨ n∧

j=1

ταi (Fαi , Eαi ) : X̃ =
n⋂

j=1

(pαi , qαi )
−1(Fαi , Eαi )


=

∨ n∧
j=1

ταi (Xαi , Eαi )

 = 1

is satisfied. Similarly, β(Φ) is obtained.

β(F, E) ∧ β(G, E) =

 ∨
(F,E)=

n⋂
j=1
(pαi ,qαi )

−1
(Fαi ,Eαi )

n∧
j=1

ταi (Fαi , Eαi )



∧

 ∨
(G,E)=

k⋂
j=1

(
pδi

,qδi

)−1(
Gδi

,Eδi

)
k∧

j=1
τδi

(
Gδi , Eδi

)


=
∨

(F,E)=
n⋂

j=1
(pαi ,qαi )

−1
(Fαi ,Eαi )

∨
(G,E)=

k⋂
j=1

(
pδi

,qδi

)−1(
Gδi

,Eδi

)
((

n∧
j=1

ταi (Fαi , Eαi )

)

∧
(

k∧
j=1

τδi

(
Gδi , Eδi

)))

=
∨(

n⋂
j=1
(pαi ,qαi )

−1
(Fαi ,Eαi )

)
∩
(

k⋂
j=1

(
pδi

,qδi

)−1(
Gδi

,Eδi

))
=(F,E)∩(G,E)

((
n∧

j=1
ταi (Fαi , Eαi )

)

∧
(

k∧
j=1

τδi

(
Gδi , Eδi

)))
≤ ∨

⋂
λ∈Λ

(pvλ
,qvλ)

−1
(Hvλ

,Evλ)=(F,E)∩(G,E)

τvλ
(Hvλ

, Evλ
) = β((F, E) ∩ (G, E)).
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Hence β is a base.
Now we check that the projection mapping (pλ, qλ) :

(
X, τβ, E

)
→ (Xλ, τλ, Eλ) are

continuous mapping for ∀λ ∈ Λ. Indeed, for each (Fλ, Eλ) ∈ SS(Xλ, Eλ),

τ
(
(pλ, qλ)

−1(Fλ, Eλ)
)
≥ β

(
(pλ, qλ)

−1(Fλ, Eλ)
)

=

{
n∧

j=1
ταi (Fαi , Eαi ) : (pαi , qαi )

−1(Fαi , Eαi ) = (pλ, qλ)
−1(Fλ, Eλ)

}
≥ τλ(Fλ, Eλ)

is satisfied.

Remark 2. In general, we cannot obtain an interval-valued fuzzy topology by utilizing τ− and τ+,
with τ− and τ+ being fuzzy topologies. If τ−, τ+ are two fuzzy topologies and (F, E) ∈ SS(X, E),
τ−(F, E) ≤ τ+(F, E), then τ = [τ−, τ+] is an interval-valued fuzzy topology.

7. Conclusions

We introduce the interval-valued fuzzy set on the family of all soft sets over X. Later
we give interval-valued fuzzy topology (cotopology) on SS(X, E). We obtain that each
interval-valued fuzzy topology is a descending family of soft topologies. In addition
to, we study some topological structures such as interval-valued fuzzy neighborhood
system of a soft point, base and subbase of τ and investigate some relationship between
them. Finally, we give some concepts such as direct sum, open mapping and continuous
mapping,consider relationships between them and illustrate it by examples.

The relations between soft topologies and crisp topologies explained in the paper [19,21]
may be used for the future research in this field. Also, the relations between fuzzy soft and
soft topologies might suggest a new lines of investigation related to our article.
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