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Abstract: In this paper, we explore how to use topological tools to compare dimension reduction
methods. We first make a brief overview of some of the methods often used in dimension reduction
such as isometric feature mapping, Laplacian Eigenmaps, fast independent component analysis,
kernel ridge regression, and t-distributed stochastic neighbor embedding. We then give a brief
overview of some of the topological notions used in topological data analysis, such as barcodes,
persistent homology, and Wasserstein distance. Theoretically, when these methods are applied
on a data set, they can be interpreted differently. From EEG data embedded into a manifold of
high dimension, we discuss these methods and we compare them across persistent homologies of
dimensions 0, 1, and 2, that is, across connected components, tunnels and holes, shells around voids,
or cavities. We find that from three dimension clouds of points, it is not clear how distinct from each
other the methods are, but Wasserstein and Bottleneck distances, topological tests of hypothesis, and
various methods show that the methods qualitatively and significantly differ across homologies. We
can infer from this analysis that topological persistent homologies do change dramatically at seizure,
a finding already obtained in previous analyses. This suggests that looking at changes in homology
landscapes could be a predictor of seizure.
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1. Introduction

In topological data analysis, one is interested in understanding high dimensional struc-
tures from low dimensional ones and how discrete structures can be aggregated to form a
global structure. It can be a difficult task to even think or believe that high dimensional
objects exist beyond three dimensions since we can not visualize objects beyond a three-
dimensional space. However, embedding theorems clearly show that these high dimension
structures do, in fact, exist, for instance, Whitney [1] and Takens [2] embedding theorems.
From a practical point of view, to make inferences on structures embedded in high dimen-
sional ambient spaces, some kind of dimensional reduction needs to occur. From a data
analysis point of view, dimension reduction amounts to data compression where a certain
amount of information may be lost. This dimension reduction is part of manifold learn-
ing, which can be understood as a collection of algorithms for recovering low dimension
manifolds embedded into high dimensional ambient spaces while preserving meaningful
information, see Ma and Fu [3]. The algorithms for dimension reduction may be classified
into linear and nonlinear methods or parametric or nonparametric methods, where the goal
is to select or extract coarse features from high dimensional data. Among the pioneering
linear methods is the principal component analysis (PCA) introduced by Hotelling in [4].
Its primary goal is to reduce the data to a set of orthogonal linear projections ordered by
decreasing variances. Another linear method is multidimensional scaling (MSD), where the
data are aggregated using a measure of proximity, which could be a distance or a measure
of association such as correlation or any other method describing how close entities can
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be, see, for instance, Ramsey and Silverman [5]. Linear discriminant analysis (LDA) is
a linear method similar to PCA consisting of writing a categorical dependent variable
as a linear combination of continuous independent variables, see, for instance, Cohen
et al. [6], Friedman [7], or Yu and Yang [8]. As such, it is opposite to an analysis of variance
(ANOVA) where the dependent variable is continuous and the independent variables are
categorical. The focus of this paper will be on nonlinear techniques, which, similar to their
linear counterparts, aim to extract or select low dimensional features while preserving
important information. Since there are many such methods, our focus will be on isometric
feature mapping (ISOMAP) [9], Laplacian Eigenmaps [10], fast independent component
analysis, (Fast-ICA) [11], kernel ridge regression [12], and t-distributed stochastic neighbor
embedding (t-SNE) [13]. We will compare them using persistent homology (PH). PH is one
the many techniques of topological data analysis (TDA) that can be used to identify features
in data that remain persistent over multiple and different scales. This tool can provide new
insights into seemingly known or unknown data and has the potential to uncover interest-
ing hidden information embedded within data. For instance, PH was used to provide new
insights on the topology of deep neural networks, see [14]. PH was successfully used to
provide new perspectives on viral evolution, see [15]. The following examples of successful
applications can be found in [16], including but not limited to better understanding of
sensor-network coverage, see [17]; proteins, see [18,19]; dimensional structure of DNA,
see [20]; cell development, see [21]; robotics, see [22–24]; signal processing, see [25,26];
spread of contagions, see [27]; financial networks, see [28]; applications in neuroscience,
see [29,30]; time-series output of dynamical systems, see [31]; and EEG epilepsy, see [32].
The approach in the last reference is of particular interest to us. Indeed, in that paper,
the authors considered the EEG measured in a healthy person during sleep. They used
the method of false nearest neighbors to estimate the embedding dimension. From there,
persistent barcode diagrams were obtained and revealed that topological noise persisted at
certain dimensions and vanished at some others. This paper has a similar approach and is
organized as follows: in Section 2, we review theories behind some dimension reduction
methods; then, in Section 3, we give an overview of the essentials of persistent homology;
in Section 4, we discuss how to apply persistent homology to the data and compare the
methods on an EEG data set using persistent homology. Finally. in Section 5, we make
some concluding remarks.

2. Materials and Methods

Let us note that some of the review methods below are extensively described in [3].
To have all of our ideas self-contained, we reintroduce a few concepts. In the sequel, ‖·‖
is the euclidian norm in Rd, for some d ≥ 3. In the sequel, topological spaces M will
considered to be second-countable Hausdorff; that is, (a) every pair of distinct points has
a corresponding pair of disjoint neighborhoods. (b) Its topology has a countable basis of
open sets. This assumption is satisfied in most topological spaces and seems reasonable.

2.1. Preliminaries

Definition 1. A topological space M is called a (topological) manifold if, locally, it resembles a real
n-dimensional Euclidian space, that is, there exists n ∈ N such that for all x ∈ M , there exists
a neighborhood Ux of x and a homeomorphism f : Ux → Rn. The pair (Ux, f ) is referred to as a
chart on M and f is called a parametrization at x.

Definition 2. Let M be a manifold. M is said to be smooth if given x ∈M , the parametrization
f at x has smooth or continuous partial derivatives of any order and can be extended to a smooth
function F : M → Rn such that F

∣∣
M∩Ux

= f .

Definition 3. Let M and N be differentiable manifolds. A function ψ : M → N is an embedding
if ψ is an injective immersion.
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Next, we introduce the notion of the boundary of the topological manifold, which will
be important in the sequel.

Definition 4. Consider a Hausdorff topological manifold M homeomorphic to an open subset of
the half-euclidian space Rn

+. Let the interior Int(M ) of M be the subspace of M formed by all
points s that have a neighborhood homeomorphic to Rn. Then, the boundary of M is defined as a
complement of Int(M ) in M , that is, M \ Int(M ), which is an n− 1-dimensional topological
manifold.

2.2. ISOMAP

Isometric feature mapping (ISOMAP) was introduced by Tanenbaum et al. in [9]. The
data are considered to be a finite sample {vi} from a smooth manifold M . The two key
assumptions are: (a) an isometric embedding ψ : M → X exists where X = Rd, where
the distance on M is the geodesic distance or the shortest curve connecting two points;
(b) the smooth manifold M is a convex region of Rm, where m << d. The implementation
phase has three main steps.

1. For a fixed integer K and real number ε > 0, perform an ε−K-nearest neighbor search
using the fact that the geodesic distance DM (vi, vj) between two points on M is the
same (by isometry) as their euclidian distance

∥∥vi − vj
∥∥ in Rd. K is the number of data

points selected within a ball of radius ε.
2. Having calculated the distance between points as above, the entire data set can be

considered as a weighted graph with vertices v = {vi} and edges e =
{

eij
}

, where eij

connects vi with vj with a distance wij = DM (vi, vj), considered an associated weight.
The geodesic distance between two data points vi and vj is estimated as the graph
distance between the two edges, that is, the number of edges in the shortest path
connecting them. We observe that this shortest path is found by minimizing the sum
of the weights of its constituent edges.

3. Having calculated the geodesic distances DG =
{

wij
}

as above, we observe that
DG is a symmetric matrix, so we can apply the classical multidimensional scaling
algorithm (MDS) (see [33]) to DG by mapping (embedding) them into a feature space
Y of dimension d while preserving the geodesic distance on M . Y is generated by a
d×m matrix whose i-th column represents the coordinates of vi in Y .

2.3. Laplacian Eigenmaps

The Laplacian Eigenmaps (LEIM) algorithm was introduced by Belkin and Niyogi
in [10]. As above, the data v = {vi} are supposed to be from a smooth manifold M . It also
has three main steps:

1. For a fixed integer K and real number ε > 0, perform a K-nearest neighbor search
on symmetric neighborhoods. Note that given two points vi, vj, their respective
K-neighborhood NK

i and NK
j are symmetric if and only vi ∈ NK

j ⇐⇒ vj ∈ NK
i .

2. For a given real number σ > 0 and each pair of points (vi, vj), calculate the weight

wij = e−
‖ui−vj‖2

2σ2 if vi ∈ NK
j and wij = 0 if vi /∈ NK

j . Obtain the adjacency matrix
W = (wij). The data now form a weighted graph with vertices v, with edges e =

{
eij
}

,
and weights W =

{
wij
}

, where eij connects vi with vj with distance wij.
3. Consider Λ =

{
λij
}

to be a diagonal matrix with λii = ∑
j

wij and define the graph

Laplacian as L = Λ−W . Then, L is positive definite so let Ŷ be the d× n matrix
that minimizes ∑

i,j
wij
∥∥yi − yj

∥∥2
= tr(TLYT). Then, Ŷ can used to embed M into a

d-dimensional space Y , whose i-th column represents the coordinates of vi in Y .
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2.4. Fast ICA

The fast independent component analysis (Fast-ICA) algorithms were introduced by
Hyvärinen in [11]. As above, the data v are considered to be from a smooth manifold
M . It is assumed that the data v are represented as an n × m matrix (vij) that can be
flattened into a n×m vector. As in principal component analysis (PCA), in factor analysis,
projection pursuit, or independent component analysis (ICA), by considering the data as an
n×m-dimensional observed random variable, the goal is to determine a matrix W such that
s = W T v, where s is a n×m-dimensional random variable having desirable properties
such as optimal dimension reduction or other interesting statistical properties such as mini-
mal variance. Optimally, the components of s should provide source separation (the original
data source v is assumed to be corrupted with noise) and feature extraction and be inde-
pendent of each other. In a regular ICA, the matrix W is found by minimizing the mutual
information, a measure of dependence between given random variables. In fast-ICA algo-
rithms, the matrix W is found by using a Newton fixed point approach, with an objective
function taken as the differential entropy, given as JG(W) =

(
E[G(W TW)]−E[G(z)]

)2,
where it is assumed that W is such that E[(W TW)2] = 1, and z is the standard normal
distribution. G is a function referred to as the contrast function, which includes but is
not limited to G(u) = α−1 log(cosh(αu)), G(u) = −σ−1e−0.5σu2

, G(u) = 0.25u4, where
α ∈ [1, 2] and σ ≈ 1. From a dynamical system point of view, the fixed point is locally
asymptotically stable with the exception of G(u) = 0.25u4, where stability becomes global.
For simplification purposes, let g(x) = G′(x). The key steps are:

1. Data preparation: it consists of centering the data v with respect to the column to

obtain vc. That is, vc
ij = vij −

1
m

m

∑
j=1

vij, for i = 1, 2, · · · , n. The centered data are then

whitened; that is, vc is linearly transformed into vc
w, a matrix of uncorrelated compo-

nents. This is accomplished through an eigenvalue decomposition of the covariance
matrix C = vc(vc)T to obtain two matrices V , E, respectively, of eigenvectors and
eigenvalues so that E[C] = V EV T . The whitened data are found as vc

w = E−1/2V T vc

and simply referred to again as v for simplicity.
2. Component extraction: Let F(W) = E[vg(W T v)] − βW for a given constant β =

E[W T
a vg(W T

a v)], where Wa is the optimal weight matrix. Applying the Newton
scheme (xn+1 = xn − F(xn)[F′(xn)]−1) to the differentiable function JG, we

• Select a random starting vector W0.
• For n ≥ 0, Wn+1 = E[vg(W T

n v)]−E[g′(W T
n v)]Wn.

• Normalize Wn+1 as
Wn+1

‖Wn+1‖
.

• Repeat until a suitable convergence level is reached.
• From the last matrix W obtained, let s = W T v.

2.5. Kernel Ridge Regression

The kernel ridge regression (KRR) is constructed as follows: as above, the data v are
considered to be from a smooth manifold M of dimension d. It is assumed that the data v
are represented as an n×m matrix

{
vij
}

that can be flattened into a n×m vector. Suppose
we are in possession of u = (u1, u2, · · · , un) data corresponding to a response variable and
covariates given as v = (v1, v2, · · ·, vn), where vi = (vij)

T for j = 1, 2, · · · , m. With the least
square method, we can find the best linear model between the covariates v = (vi) and the

response u = (ui) by minimizing the objective function L(W) =
1
2

L

∑
i=1

(ui −W T vi)
2, where

W is a 1× n vector. Similar approaches include maximum likelihood approaches, see, for
instance, [34] or perpendicular offsets [35]. However, regression methods are notorious for
overfitting. Overfitting occurs when a model closely fits a training data set but fails to do
so on a test data set. In practice, this can lead to dire consequences, see, for instance, the
book by Nate Silver [36] for illustrative examples in real life. Numerous solutions were
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proposed to overcome overfitting; these include but are not limited to training with more
data, data augmentation, cross-validation, feature selection, regularization, or penalization
(Lasso, Ridge, Elastic net). The ridge regression is a compromise that uses a penalized

objective function such as L(W) =
1
2

L

∑
i=1

(ui −W T vi)
2 +

λ

2
‖W‖2. The solution can be

found as W =

(
λI +

n

∑
i=1

vivT
i

)−1( n

∑
i=1

uivi

)
. In case the true nature of the relationship

between the response and covariates is nonlinear, we can replace vi with ϕ(vi), where
ϕ is a nonlinear function Rm → R. In particular, if the response is qualitative, that is,
labels, then we have a classification problem, and ϕ is referred to as a feature map. Note
that when using ϕ, the number of dimensions of the problem is considerably high. Put
Φ = ϕ(v) = (ϕ(v1), ϕ(v2), · · · , ϕ(vn)). Replacing vi with ϕ(vi), the solution above be-

comes W =

(
λI +

n

∑
i=1

ϕ(vi)ϕ(vi)
T

)−1( n

∑
i=1

ui ϕ(vi)

)
= (λI + ΦΦT)−1ΦuT . Consider the

following identity ABT(C + BABT)−1 = (A−1 + BTC−1B)−1BTC−1 for the given invert-
ible matrices A, C, and a matrix B. Applying this with A = C = I and B = Φ, we have
W T = u

[
ΦT(λI + ΦTΦ)−1] = u

[
(λI + ΦTΦ)−1ΦT]. Therefore, given a new value vn,

the predicted value is yn = W TΦ(vn) = u(ΦTΦ + λI)−1ΦTΦ(vn) = u(K + λI)−1κ(vn),

where K = K(vi, vi) = ΦTΦ =
n

∑
i=1

ϕ(vi)
T ϕ(vi) and κ(vn) = K(vi, vn). K is referred to

as the kernel, which is the only quantity needed to be calculated, thereby significantly
reducing the computational time and dimensionality of the problem. In practice, we may
use a linear kernel K(x, y) = xTy or a Gaussian kernel K(x, y) = e−σ‖x−y‖2

, for some σ > 0,
where ‖·‖ is a norm in Rm and σ is given a real constant.

2.6. t-SNE

Stochastic neighbor embedding (SNE) was proposed by Hinston and Roweis in [37].
t-SNE followed later and was proposed by van der Maaten and Hinton in [13]. t-distributed
stochastic neighbor embedding (t-SNE) is a dimension reduction method that amounts
to assigning data to two or three dimensional maps. As above, we consider the data
v = (vij) = (vk) (k = 1, 2, · · · , N with N = n× m) to be from a smooth manifold M of
high dimension, d. The main steps of the method are:

• Calculate the asymmetrical probabilities pkl as pkl =
e−δkl

∑k 6=l e−δkl
, where δkl =

‖vk−vl‖2

2σi

represents the dissimilarity between vk and vl , and σi is a parameter selected by
the experimenter or by a binary search. pkl represents the conditional probability
that datapoint vl is the neighborhood of datapoint vk if neighbors were selected
proportionally to their probability density under a normal distribution centered at vk
and variance σi.

• Assuming that the low dimensional data are u = (uk), k = 1, 2, · · · , N, the corre-
sponding dissimilarity probabilities qkl are calculated under constant variance as

qkl =
e−dkl

∑k 6=l e−dkl
, where dkl = ‖uk − ul‖2 in the case of SNE, and qkl =

(1 + dkl)
−1

∑k 6=l (1 + dkl)−1

for t-SNE.
• Then, we minimize the Kullback–Leibler divergence between pkl and qkl , given as

L =
N

∑
k=1

N

∑
l=1

pkl log
(

pkl
qkl

)
, using the gradient descent method with a momentum

term with the scheme wt = wt−1 + η
∂L
∂u

+ α(t)(wt−1 − wt−2) for t = 2, 3, · · · , T

for some given T. Note that w0 = (u1, u2, · · · , uN) ∼ N(0, 10−4 I), where I is the
N × N identity matrix, η is a constant representing a learning rate, and α(t) is t-
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th momentum iteration. We note that
∂L
∂u

=

(
∂L
∂uk

)
for k = 1, 2, · · · , N where

∂L
∂uk

= 4
N

∑
l=1

(pkl − qkl)(uk − ul)(1 + dkl)
−1.

• Then, we use u = wT as the low dimensional representation of v.

3. Persistent Homology

In the sequel, we will introduce the essential ingredients needed to understand and
compute persistent homology.

3.1. Simplex Complex

Definition 5. A real d-simplex S is a topological manifold of dimension d that represents the
convex hull of d + 1 points. In other words:

S =

{
(t0, t1, · · · , td) ∈ Rd : ti ≥ 0 and

d

∑
i=1

ti = 1

}
. (1)

Example 1. A 0-simplex is a point, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is
a tetrahedron, a 4-simplex is a pentachoron, etc., see for instance Figure 1 below.

Figure 1. Anillustration of 0, 1, 2, 3, and 4-simplices.

Remark 1. We observe that a d-simplex S can also be denoted as

S = [V0, V1, · · · , Vd], where Vi = {vertices of Vi }, i = 0, 1, · · · , d .

We also note that the dimension of Vi is i.

Definition 6. Given a simplex S, a face of S is another simplex R such that R ⊆ S and such that
the vertices of R are also the vertices of S.

Example 2. Given a 3-simplex (a tetrahedron), it has 4 different 2-simplex or 2 dimensional faces,
each of them with three 1-simplex or 1-dimensional faces, each with three 0-simplex or 0-dimensional
faces.

Definition 7. A simplicial complex Σ is a topological space formed by different simplices not
necessarily of the same dimension that have to satisfy the gluing condition, that is (see Figure 2):

1. Given Si ∈ Σ, its face Ri ∈ Σ.
2. Given Si, Sj ∈ Σ, either Si ∩ Sj = ∅ or Si ∩ Sj = Ri = Rj, the faces of Si and Sj, respectively.
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A

B

C

D

E

F

G

I

H

J

Figure 2. Example of a simplicial complex. J is 0-simplex; A and D are 1-simplices; B, C, G, and H are
2-simplices; E and F are 3-simplices; and I is a 4-simplex. We note that A∩ B is a 0-simplex. B∩ C is a
1-simplex and a face of B and C, respectively. E∩ F is a 2-simplex and a face of E and F. G∩ H is a
1-simplex and I∩ H is a 1-simplex.

It is important to observe that a simplicial complex can be defined very abstractly.
Indeed,

Definition 8. A simplicial complex Σ = {S : S ⊆ Ω} is a collection of non-empty subsets of a set
Ω such that

1. For all ω ∈ Ω, then {ω} ∈ Σ.
2. For any set U such that S ⊂ U for some S ∈ Σ, then U ∈ Σ.

Example 3. We illustrate the definition above by constructing two simplicial complexes. Let
Ω = {1, 2, 3, 4}. We can define the following simplicial complexes on Ω.
1. Σ1 = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} .
2. Σ2 = P(Ω) \ {∅}, where P(Ω) is the set of all subsets of Ω.

3.2. Homology and Persistent Homology

Definition 9. Let Σ be a simplicial complex.
We define the Abelian group generated by the j-simplices of Σ as Cj(Σ).
We define a boundary operator associated with Cj(Σ) as a homeomorphism

∂j : Cj(Σ)→ Cj−1(Σ) .

We define the chain complex associated with Σ as the collection of pairs

C(Σ) =
{
(Cj(Σ), ∂j), j ∈ Z

}
.

Now, we can define a homology group associated with a simplicial complex.

Definition 10. Given a simplicial complex Σ, put Aj(Σ) := kern(∂j) and Bj(Σ) := Im(∂j+1).
Then, the jth homology group Hj(Σ)of Σ is defined as the quotient group between Aj(Σ) and Bj(Σ);
that is,

Hj(Σ) =
Aj(Σ)
Bj(Σ)

.

What this reveals is the presence of “holes” in a given shape.
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Remark 2. It is important to observe that Hj(Σ) =
< j-dimensional cycles >

< j-dimensional boundaries >
, where <

U > stands for the span of U, and a cycle is simply a shape similar to a loop but necessarily without
a starting point.

Another important remark is that the boundary operator can indeed be defined as

∂j(Σ) :=
j

∑
k=0

(−1)k[V0, · · · , V̂k, · · · , Vj] ,

where V̂k means not counting the vertices of Vk. This shows that ∂j(Σ) lies in a j− 1-simplex.
Another remark is that ∂j−1 ◦ ∂j = 0 for 0 ≤ j ≤ d .

Now that we know that homology reveals the presence of “holes”, we need to find a
way of determining how to count these “holes”.

Definition 11. Given a simplicial complex Σ, the jth Betti number bj(Σ) is the rank of Hj(Σ) or

bj(Σ) = dim(Aj(Σ))− dim(Bj(Σ)) .

In other words, it is the smallest cardinality of a generating set of the group Hj(Σ).
In fact, since the elements of Aj(Σ) are j-dimensional cycles and that of Bj(Σ) are j-dimensional

boundaries, the Betti number counts the number of independent j-cycles not representing the
boundary of any collection of simplices of Σ.

Example 4. Let us be more precise by giving the meaning of the Betti number for three indices
j = 0, 1, 2.

1. b0 is the number of connected components of the complex.
2. b1 is the number of tunnels and holes.
3. b2 is the number of shells around cavities or voids.

Definition 12. Let Σ be the simplicial complex, and let N be a positive integer. A filtration of Σ is
a nested family ΣF

N :=
{

Σp, 0 ≤ p ≤ N
}

of sub-complexes of Σ such that

Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · ⊆ ΣN = Σ .

Now, let F2 be the field with two elements, and let 0 ≤ p ≤ q ≤ N be two integers.
Since Σp ⊆ Σq, the inclusion map Inclpq : Σp → Σq induces an F2-linear map defined as
gpq : Hj(Σp)→ Hj(Σq). We can now define, for any 0 ≤ j ≤ d, the j-th persistent homology
of a simplicial complex Σ.

Definition 13. Consider a simplicial complex Σ with filtration ΣF
N for some positive integer N.

The j-th persistent homology Hp→q
j (Σ) of Σ is defined as the pair:

Hp→q
j (Σ,F2) := (

{
Hj(Σp), 0 ≤ p ≤ N

}
,
{

gpq, 0 ≤ p ≤ q ≤ N
}
) .

In a sense, the j-th persistent homology provides more refined information than the
homology of the simplicial complex in that it informs us of the changes in features such as
connected components, tunnels and holes, and shells around voids through the filtration
process. It can be visualized using a “barcode” or a persistent diagram. The following
definition is borrowed from [38]:

Definition 14. Consider a simplicial complex Σ, a positive integer N, and two integers 0 ≤ p ≤
q ≤ N. The barcode of the j-th persistent homologyHp→q

j (Σ,F2) of Σ is a graphical representation of
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Hp→q
j (Σ,F2) as a collection of horizontal line segments in a plane whose horizontal axis corresponds

to a parameter and whose vertical axis represents an arbitrary ordering of homology generators.

We finish this section with the introduction of the Wasserstein and Bottleneck distances,
used for the comparison of persistent diagrams.

Definition 15. Let X and Y be two diagrams. A matching η between X and Y is a collection of
pairs η = {(x, y) ∈ X×Y} where x and y can occur in at most one pair. It is sometimes denoted
as η : X → Y. x and y are referred to as intervals of X and Y respectively.

Example 5. Suppose X = {(0, 1), [0, 1), (0, 1)} and Y = {(−π, 0], (0, 2)}.
Then, η = {((0, 1), (−π, 0])} is matching between X and Y such that (0, 1) is matched to

(−π, 0]) and [0, 1), (0, 1), and (0, 2) are unmatched.

Definition 16. Let p > 1 be a real number. Given two persistent diagrams X and Y, the p-th
Wasserstein distance Wp(X, Y) between X and Y is defined as

Wp(X, Y) := inf
η:X→Y

∑
x∈X
‖x− η(x)‖p

∞ ,

where η is a perfect matching between the intervals of X and Y.
The Bottleneck distance is obtained when p = ∞; that is, it is given as

W∞(X, Y) := inf
η:X→Y

sup
x∈X
‖x− η(x)‖∞ .

4. Results

In the presence of data, simplicial complexes will be replaced by sets of data indexed
by a parameter, therefore, transforming these sets into parametrized topological entities.
On these parametrized topological entities, the notions of persistent homology introduced
above can be computed, especially the Betti number, in the form of a “barcode”. To see how
this could be calculated, let us consider the following definitions:

Definition 17. For a given collection of points {sδ} in a manifold M of dimension n, its Čech com-
plex Cδ is a simplicial complex formed by d-simplices obtained from a sub-collection{

xδ,k, 0 ≤ k ≤ d, 0 ≤ d ≤ n
}

of points such that taken pairwise, their δ/2-ball neighborhoods
have a point in common.

Definition 18. For a given collection of points {sδ} in a manifold M of dimension n, its Rips com-
plex Rδ is a simplicial complex formed by d-simplices obtained from a sub-collection{

xδ,k, 0 ≤ k ≤ d, 0 ≤ d ≤ n
}

of points that are pairwise within a distance of δ.

Remark 3. 1. It is worth noting that in practice, Rips complexes are easier to compute than Čech
complexes, because the exact definition of the distance on M may not be known.

2. More importantly, from a data analysis point of view, Rips complexes are good approxima-
tions (estimators) of Čech complexes. Indeed, a result from [17] shows that given δ > 0, there exists
a chain of inclusions Rδ ↪→ Cδ/

√
2 ↪→ Rδ/

√
2. 3. Though Rips complexes and barcodes seem to

be challenging objects to wrap one’s head around, there is an ever growing list of algorithms from
various languages that can be used for their visualization. All the analysis below was performed
using R, in particular, the TDA package in R version 4.3.0, 21 April 2023.

4.1. Randomly Generated Data

We generated 100 data points sampled randomly in the square [−5, 5]× [−5, 5]. In
Figures 3 and 4 below, we illustrate the Rips and barcode changes through a filtration.
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Figure 3. Example of the evolution of Rips complexes {Rδ} through a filtration with parameter δ.
As we move from left to right, it shows how sample points (blue dots) first form 0-simplices, then
1-simplices, and so on. In particular, it shows how connected components progressively evolve to
form different types of holes.

4.2. EEG Epilepsy Data
4.2.1. Data Description

The main purpose of the manuscript is to analyze EEG data. We consider a publicly
available (at http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html,
last accessed on 1 June 2023) epilepsy data set. For a thorough description of the data and
their cleaning process, see, for instance, [39]. They consist of five sets: A, B, C, D, and E.
Each contains 100 single-channel EEG segments of 23.6 s, where A and B represent healthy
individuals. Set D represents the data obtained from the epileptogenic zone in patients,
and set C represents data obtained from the hippocampus zone. Set E represents the data
from seizure prone patients.

4.2.2. Data Analysis

The approach is to first embed the data into a manifold of high dimension. This
was already performed in [39]. The dimension d = 12 was found using the method
of false nearest neighbors. Depending on the set used, the size of the data can be very
large: for example (4097× 100× 5 = 2, 048, 500), making it very challenging to analyze
holistically. In [39], we proposed to construct a complex structure (using all 100 channels
for all 5 groups) whose volume changes per group. We would like to analyze the data

http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
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further from a persistent homology point of view. This would mean analyzing 500 different
persistent diagrams and making an inference. We note that simplicial complexes of these
data sets are very large (2 Millions+). Fortunately, we can use the Wasserstein distance to
compare persistent diagrams. To clarify, we use each of the dimension reduction methods
introduced earlier, then proceed with the construction of persistent diagrams. We then
compare them by method and by sets (A, B, C, D, and E).

0.0 0.2 0.4 0.6 0.8

time

δ = 0.8

IHI0

IHI1

0.0 0.5 1.0 1.5

time

δ = 1.5

IHI0
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0.0 0.5 1.0 1.5

time

δ = 1.7

IHI0

IHI1

0.0 0.5 1.0 1.5

time

δ = 1.8

IHI0

IHI1

0.0 0.5 1.0 1.5

time

δ = 1.9

IHI0

IHI1

0 1 2 3 4

time

δ = 4.2

IHI0

IHI1

Figure 4. Example of the evolution of barcodes through a filtration with parameter δ for the same
data as above. As we move from left to right, from top to bottom, it shows the appearance and
disappearance of lines (H0) and holes (H1) as the parameter δ changes. It shows that certain lines and
holes persist through the filtration process.

Single-channel Analysis:

Suppose we select at random one channel among the 100 from set D, Figure 5 be-
low represents a three dimensional representation of the embedded data using Takens
embedding method (Tak), plotted using the first three delayed coordinates x = x(t), y =
x(t− ρ), z = x(t− 2ρ), where ρ = 1∆t, with ∆t = 1

f s = 5.76 ms in Figure 5a; then, the
first three coordinates in the case of kernel ridge regression (KRRi) in Figure 5b; ISOMAP
(iso.i) in Figure 5c; Laplacian Eigenmaps (LEIMi) in Figure 5d; fast independent component
analysis (ICAi) in Figure 5e; and t-distributed stochastic neighbor embedding (t-SNEi) in
Figure 5f. From these three dimensional scatter plots, we can visually observe that the
t-SNE plot (Figure 5f) is relatively different from the other five since it seems to have more
larger voids. How different is difficult to tell with the naked eye. Figure 6 represents their
corresponding barcodes. It is much clearer looking at the the persistent diagram for t-SNE
(Figure 6f) that it is very different from the other five when looking at H0,H1, and H2.
Now, a visual comparison is not enough to really assert a significant difference. Using the
Bottleneck distance, we calculate the distance between the respective persistent diagrams
for H0 and H1 in Table 1a and H2 in Table 1b below. We observe from the first table that
the Bottleneck distances at H0 and H2 for t-SNE are almost twice as large as for the other
methods. They are comparable to that of LEIM at H1. The other methods have comparable
Bottleneck distances at H0,H1, and H2, confirming what we already suspected visually in
Figures 5 and 6.
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Figure 5. Scatterplots for a Takens projection method (a), KRR method (b), ISOMAP (c), LEIM (d),
ICA (e), and t-SNE (f).

The analysis above was performed using a single channel, selected at random from the
set D. It seems to suggest that the t-SNE method is different from the other five dimension
reduction methods discussed above. Strictly speaking, non zero Bottleneck distances are
an indication of structural topological differences. What they do not say, however, is if the
differences observed are significant. To address the issue of significance, we perform a pair-
wise permutation test. Practically, from set j and channel i, we obtain a persistent diagram
D

(j)
i ∼ P(j) where j ∈ {1, 2, 3, 4, 5}, i ∈ {1, 2, · · · , 15}, and P(j) is the true underlying

distribution of persistent diagrams; see [40] for the existence of these distributions. We
conduct a pairwise permutation test with null hypothesis H0 : P(j) = P(j′) and alternative
hypothesis H1 : P(j) 6= P(j′). We use landscape functions (see [41]) to obtain test statistics.
The p.values obtained were found to be very small, suggesting that the differences above
are indeed all significant across H0,H1, and H2.



Axioms 2023, 12, 699 13 of 17

(a)

0.0 0.1 0.2 0.3 0.4 0.5
time

IHI0

IHI1

IHI2

(b)

0.0 0.1 0.2 0.3 0.4 0.5
time

IHI0

IHI1

IHI2

(c)

0.0 0.1 0.2 0.3 0.4 0.5
time

IHI0

IHI1

IHI2

(d)

0.0 0.1 0.2 0.3 0.4 0.5
time

IHI0

IHI1

IHI2

(e)

0.0 0.1 0.2 0.3 0.4 0.5
time

IHI0

IHI1

IHI2

(f)

0.0 0.1 0.2 0.3 0.4 0.5
time

IHI0

IHI1

IHI2

Figure 6. Barcodes for a Takens projection method (a), KRR method (b), ISOMAP (c), LEIM (d), ICA
(e), and t-SNE (f).

Table 1. Bottleneck distance between the persistent diagrams above at H0 (a), at H1 and at H2 (b).

(a)

H0 Tak Iso KRR ICA LEIM TSNE

Tak

Iso 0.0945019

KRR 0.0957546 0.0200035

ICA 0.0982795 0.0157002 0.0071899

LEIM 0.1678820 0.1182656 0.1247918 0.1205499

TSNE 0.2238167 0.1730406 0.1817924 0.1759454 0.1162392

(b)

H1/H2 Tak Iso KRR ICA LEIM TSNE

Tak 0.0363205 0.0301992 0.0292631 0.0291247 0.0551774

Iso 0.0340282 0.0330687 0.0290406 0.0236890 0.0598517

KRR 0.0317261 0.0279460 0.0207599 0.0212138 0.0647935

ICA 0.0310771 0.0270919 0.0208086 0.0242277 0.0611090

LEIM 0.0607389 0.0725585 0.0702695 0.0682761 0.0542615

TSNE 0.0757815 0.0959521 0.0864587 0.0861522 0.0785030
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Multiple-channel Analysis:

(a) Within set analysis

In each set, we make a random selection of 15 channels, and we compare the Bottleneck
distances obtained. This means having 15 tables of distance, such as Table 1b above. There is
consistency if the cell value k(i, j) in Table k, where k ∈ {1, 2, · · · , 15} and i, j ∈ {1, 2, 3, 4, 5},
is barely different from k′(i, j) of Table k′. Large differences are an indication of topological
differences between the methods within the sets. In Figure 7 below, the y-axis represents
Bottleneck distances, and the x-axis represents channels indices. The red color is indicative
of the Bottleneck distance between persistent diagrams on H1 and the blue color on H2
from the data generated from each of the methods above. We see that overall, while there
are small fluctuations from channels to channels on H1, the largest fluctuations actually
occur on H2. A deeper analysis reveals that in fact, the large fluctuations are due to a large
distance between t-SNE and the other five methods. This confirms the earlier observations
(refer to Figure 6 and Table 1 above) that persistent diagrams are really different on H2.
Topologically, this means that shells around cavities or voids that persist are not the same
when using different dimension reduction methods. However, the small fluctuations on H1
do not mean that tunnels and holes that persist are the same. Rather, what they do indicate
is that they may not be all very different.

(b) Between set analysis

To analyze the data of the Bottleneck distances between sets, we need summary
statistics for each set from the data above. It is clear from Figure 7 that the mean would
not be a great summary statistic for H1, as there seem to be too many outliers. We will use
the median instead and perform a pairwise Wilcoxon–Mann–Whitney test. Table 2 below
shows the p.value on H1 and H2. The take-away is that the last row of the table suggests
that set E is statistically topologically different from others on H1, at a significance level
of 0.05. In a way, this is a confirmation of the results obtained in [39] where set E (seizure)
was already shown to be statistically different from other sets.

Table 2. P values of Wilcoxon–Mann–Whitney tests between sets of median Bottleneck distances.

H1/H2 A B C D E

A 0.1975936 0.3049497 0.2467548 0.7432987

B 0.3202554 0.3835209 0.5066311 0.1707835

C 0.0832231 0.1322987 0.8356690 0.7088614

D 0.2012797 0.6292608 0.6292608 0.5067258

E 0.0049325 0.0157855 0.0157855 0.0114901
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Figure 7. Bottleneck distances between the persistent diagrams for 15 channels within each set
(A–E) on H1 and H2 for each of the methods introduced above. The red lines represent the Bottleneck
distances between persistent diagrams on H1 and the blue are their counterparts on H2.

5. Concluding Remarks

In this paper, we have revisited the mathematical descriptions of six dimension re-
duction methods. We have given a brief introduction to the very vast topic of persistent
homology. We discussed how to apply persistent homology to the data. In the presence of
data (say in three dimensions) obtained either by projecting the data from a high dimension
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into a smaller dimension (as in Takens) or by performing some sort of dimension reduction,
it is not always clear what we see or how different one method is compared to another.
From their mathematical description, they seem to represent different objects. Furthermore,
obtaining theoretically a clear discrimination procedure between these procedures seems a
daunting, if not an outright impossible, task. Topology may offer a solution by looking at
persistent artifacts through filtration. From Figure 5, it seems clear that the methods were
different, but Figure 6 offers a different perspective. In the end, through the calculation
of Bottleneck distances and hypothesis tests, we can safely conclude that the methods are
different, topologically speaking, in that the connected components, the tunnels and holes
and the shells around cavities or voids, do not match perfectly. Since these methods are
indiscriminately used in many applications, the message is that the replication of results
from one method to the next may not be guaranteed in the grand scheme of things. It
does not, however, render them useless. In fact, our analysis is limited to one data set,
meaning that another data set may yield different conclusions. Furthermore, due to the cost
in calculation, we were limited to only a handful of samples. Additionally, the Wasserstein
distances for p < ∞ are extremely costly in time to calculate on a regular computer. Even for
p = ∞, the Bottleneck distance is also very costly in time to calculate, especially for H0. This
explains why, at some point, we did not provide the comparison for H0. Given that some
EEG epilepsy data are known to contain some deterministic chaos, it might be worthwhile
to study whether persistent homology can also be used for the better understanding of
chaotic data in dynamical systems.

Funding: This research received no external funding.

Data Availability Statement: The data from EEG are available at http://www.meb.unibonn.de/
epileptologie/science/physik/eegdata.html, last accessed on 1 June 2023.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Whitney, H. Differentiable manifolds. Ann. Math. 1936, 37, 645–680. [CrossRef]
2. Takens, F. Detecting strange attractors in turbulence dynamical systems and turbulence. Lect. Notes Math. 1981, 898, 366–381.
3. Ma, Y.; Fu, Y. Manifold Learning: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2012.
4. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 498–520.

[CrossRef]
5. Ramsay, J.O.; Silverman, B.W. Functional Data Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005.
6. Cohen, J.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Lawrence

Erlbaum Associates Publishers: Mahwah, NJ, USA, 2003.
7. Friedman, J.H. Regularized discriminant analysis. J. Am. Stat. Assoc. 1989, 84, 165–175. [CrossRef]
8. Yu, H.; Yang, J. A direct lda algorithm for high-dimensional data—With application to face recognition. Pattern Recognition 2001,

34, 2067–2069. [CrossRef]
9. Tenenbaum, J.B.; de Siva, V.; Langford, J.C. A global geometric frameworkfor nonlinear dimensionality reduction. Science 2000,

290, 2319–2323. [CrossRef]
10. Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural

Information Processing Systems 14; Dietterich, T.G., Becker, S., Ghahramani, Z., Eds.; MIT Press: Cambridge, MA, USA, 2002;
pp. 585–591.

11. Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 1999, 13,
411–430. [CrossRef]

12. Theodoridis, S. (Ed.) Chapter 11—Learning in reproducing kernel hilbert spaces. In Machine Learning, 2nd ed.; Academic Press:
Cambridge, MA, USA, 2020; pp. 531–594. Available online: https://www.sciencedirect.com/science/article/pii/B97801281880
33000222 (accessed on 28 June 2023).

13. van der Maaten, L.J.P.; Hinton, G.E. Visualizing data using t-sne. J. Mach. Learn. Res. 2008, 9, 2579–2605.
14. Naizait, G.; Zhitnikov, A.; Lim, L.-H. Topology of deep neural networks. J. Mach. Learn. Res. 2020, 21, 7503–7542.
15. Chan, J.M.; Carlsson, G.; Rabadan, R. Topology of viral evolution. Proc. Natl. Acad. Sci. USA 2013, 110, 18566–18571. [CrossRef]
16. Otter, N.; Porter, M.A.; Tillman, U.; Grindrod, P.; Harrington, H.A. A roadmap for the computationof persistent homology. EPJ

Data Sci. 2017, 6, 17. [CrossRef]
17. de Silva, V.G.; Ghrist, R. Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 2007, 7, 339–358. [CrossRef]

http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
http://doi.org/10.2307/1968482
http://dx.doi.org/10.1037/h0070888
http://dx.doi.org/10.1080/01621459.1989.10478752
http://dx.doi.org/10.1016/S0031-3203(00)00162-X
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
https://www.sciencedirect.com/science/article/pii/B9780128188033000222
https://www.sciencedirect.com/science/article/pii/B9780128188033000222
http://dx.doi.org/10.1073/pnas.1313480110
http://dx.doi.org/10.1140/epjds/s13688-017-0109-5
http://dx.doi.org/10.2140/agt.2007.7.339


Axioms 2023, 12, 699 17 of 17

18. Gameiro, M.; Hiraoka, Y.; Izumi, S.; Mischaikow, K.M.K.; Nanda, K. A topological measurement of proteincompressibility. Jpn. J.
Ind. Appl. Math. 2015, 32, 1–17. [CrossRef]

19. Xia, K.; Wei, G.-W. Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numer. Methods Biomed. Eng.
2014, 30, 814–844. [CrossRef] [PubMed]

20. Emmett, K.; Schweinhart, N.; Rabadán, R. Multiscale topology of chromatin folding. In Proceedings of the 9th EAIinternational
Conference on Bio-Inspired Information and Communications Technologies, BICT’15, ICST 2016, New York City, NY, USA, 3–5
December 2015; pp. 177–180.

21. Rizvi, A.; Camara, P.; Kandror, E.; Roberts, T.; Schieren, I.; Maniatis, T.; Rabadán, R. Single-cell topological rna-seqanalysis reveals
insights into cellular differentiation and development. Nat. Biotechnol. 2017, 35, 551–560. [CrossRef] [PubMed]

22. Bhattacharya, S.; Ghrist, R.; Kumar, V. Persistent homology for path planning in uncertain environments. IEEE Trans. Robot. 2015,
31, 578–590. [CrossRef]

23. Pokorny, F.T.; Hawasly, M.; Ramamoorthy, S. Topological trajectory classification with filtrations of simplicialcomplexes and
persistent homology. Int. J. Robot. Res. 2016, 35, 204–223. [CrossRef]

24. Vasudevan, R.; Ames, A.; Bajcsy, R. Persistent homology for automatic determination of human-data based costof bipedal
walking. Nonlinear Anal. Hybrid Syst. 2013, 7, 101–115. [CrossRef]

25. Chung, M.K.; Bubenik, P.; Kim, P.T. Persistence diagrams of cortical surface data. In Information Processing in Medical Imaging.
Lecture Notes in Computer Science; Prince, J.L., Pham, D.L., Myers, K.J., Eds.; Springer: Berlin, Germany, 2009; Volume 5636,
pp. 386–397.

26. Guillemard, M.; Boche, H.; Kutyniok, G.; Philipp, F. Persistence diagrams of cortical surface data. In Proceedings of the 10th
International Conference on Sampling Theory and Applications, Bremen, Germany, 1–5 July 2013; pp. 309–312.

27. Taylor, D.; Klimm, F.; Harrington, H.A.; Kramár, M.; Mischaikow, K.; Porter, M.A.; Mucha, P.J. Topological data analysis
ofcontagion maps for examining spreading processes on networks. Nat. Commun. 2015, 6, 7723. [CrossRef]

28. Leibon, G.; Pauls, S.; Rockmore, D.; Savell, R. Topological structures in the equities market network. Proc. Natl. Acad. Sci. USA
2008, 105, 20589–20594. [CrossRef]

29. Giusti, C.; Ghrist, R.; Bassett, D. Two’s company and three (or more) is a simplex. J. Comput. Neurosci. 2016, 41, 1–14. [CrossRef]
[PubMed]

30. Sizemore, A.E.; Phillips-Cremins, J.E.; Ghrist, R.; Bassett, D.S. The importance of the whole: Topological data analysis for the
network neuroscientist. Netw. Neurosci. 2019, 3, 656–673. [CrossRef]
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