
Citation: Sief, M.; Liu, X.; Hosny, M.;

Abd El-Raheem, A.E.-R.M.

Constant-Stress Modeling of

Log-Normal Data under Progressive

Type-I Interval Censoring: Maximum

Likelihood and Bayesian Estimation

Approaches. Axioms 2023, 12, 710.

https://doi.org/10.3390/

axioms12070710

Academic Editor: Ehsan Nazemi

Received: 22 June 2023

Revised: 15 July 2023

Accepted: 17 July 2023

Published: 21 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Constant-Stress Modeling of Log-Normal Data under
Progressive Type-I Interval Censoring: Maximum Likelihood
and Bayesian Estimation Approaches
Mohamed Sief 1,2 , Xinsheng Liu 1,* , Mona Hosny 3 and Abd El-Raheem M. Abd El-Raheem 4

1 State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nano Science and
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
mgr00@nuaa.edu.cn or mgr00@fayoum.edu.eg

2 Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
3 Department of Mathematics, Faculty of Science for Girls, King Khalid University, Abha 61413, Saudi Arabia;

maly@kku.edu.sa
4 Department of Mathematics, Faculty of Education, Ain Shams University, Cairo 11566, Egypt;

abdelrahimmohamed@edu.asu.edu.eg
* Correspondence: xsliu@nuaa.edu.cn

Abstract: This paper discusses inferential approaches for the problem of constant-stress accelerated
life testing when the failure data are progressive type-I interval censored. Both frequentist and
Bayesian estimations are carried out under the assumption that the log-normal location parameter
is nonconstant and follows a log-linear life-stress model. The confidence intervals of unknown
parameters are also constructed based on asymptotic theory and Bayesian techniques. An analysis of
a real data set is combined with a Monte Carlo simulation to provide a thorough assessment of the
proposed methods.
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1. Introduction

Accelerated life testing (ALT) is a valuable technique used in manufacturing design
to test the reliability and longevity of products in a cost-effective and efficient manner.
ALTs involve subjecting the units to higher-than-use stress conditions, thereby accelerating
the aging and failure processes, and then estimating the lifetime distribution features at
the use condition through a statistically appropriate model. The constant-stress ALT (CS-
ALT) model is one of the two main methods used in ALTs. In this method, the units are
subjected to a constant stress level throughout the test cycle. The second method is the
step-stress model, which involves subjecting the units to a series of increasing stress levels
in a stepwise manner. For an extensive coverage of various aspects of the ALT models,
including test designs, data analysis methods, and reliability estimation, one can consult the
monographs written by Nelson [1], Meeker and Escobar [2], Bagdonavicius and Nikulin [3],
and Limon et al. [4].

Most test plans that are published use the concepts of type-I or type-II censoring for
testing items under design stress in an accelerated setting. Type-I censoring involves stop-
ping testing after a fixed duration, which provides the advantage of a precise experiment
duration but leads to uncertainty about the number of failures observed. On the other
hand, type-II censoring involves stopping testing after a predetermined number of failures,
which provides certainty about the number of failures but leads to uncertainty about the
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experiment’s duration. In reliability testing, type-II censoring schemes are often employed
when conducting experiments to determine the reliability or failure rate of a product or
system. Type-II censoring occurs when the experiment is terminated after a predetermined
number of failures, and the remaining items are considered censored observations. In this
context, Zheng [5] expressed the asymptotic Fisher information for type-II censored data,
relating it to the hazard function. Additionally, they demonstrated that the factorization of
the hazard function can be characterized by the linear property of the Fisher information
in the context of type-II censoring. Moreover, Xu and Fei [6] explored theories related to
the approximate optimal design for a simplified step-stress ALT method under type-II
censoring. The researchers develop statistically approximated optimal ALT plans with the
objective of minimizing the asymptotic variance of the maximum likelihood estimators
for the p-th percentile of lifetime at the design stress level. Utilizing data from CS-ALT
experiments with type-II censoring, Wenhui et al. [7] studied the interval estimate of the
two-parameter exponential distribution. Furthermore, they derived generalized confidence
intervals for the parameters in the life-stress model, including the location parameter, as
well as the mean and reliability function at the designed stress level.

These two types of censoring are more distinct with smaller sample sizes, but their
differences become less noticeable as the sample size increases. In this regard, several
studies that are relevant to this issue at hand are present in Nelson and Kielpinski [8],
Bai et al. [9], and Tang et al. [10], while the two types of censoring both have benefits, they
share a significant disadvantage in that they permit the elimination of units solely after
the conclusion of an experiment. In contrast, “progressive censoring”, which is a more
comprehensive censoring approach, permits units to be removed during a test before its
completion. For a more in-depth examination of progressive censoring, Balakrishnan and
Aggarwala’s research [11] can be referenced. In certain situations, continuous monitoring of
experiments to observe failure times is necessary. However, this may not always be feasible
due to time and cost constraints. In such cases, the number of failures is recorded at prede-
termined time intervals, which is known as interval censoring. Aggarwala [12] developed
a more generalized interval censoring scheme called progressive type-I interval censoring
by combining interval censoring and progressive type-I censoring. In this scheme, the
experimental units are observed at predetermined intervals, and only those units that have
not failed up to a certain point are subjected to more frequent monitoring. This approach
allows for more efficient use of resources and provides more precise estimates of failure
times. Progressive type-I interval censoring has been the focus of significant attention by
many authors in recent years. For instance, Chandrakant and Tripathi [13], Singh and
Tripathi [14], Chen et al. [15], and Arabi Belaghi et al. [16] have conducted research and
developed various methods for estimating the unknown parameters of different lifetime
models under progressive type-I interval censoring scheme.

Several studies have been conducted on statistical inference for ALT models under
different types of censoring schemes, such as type-I, type-II, and hybrid censoring (see,
Abd El-Raheem [17–19], Sief et al. [20], Feng et al. [21], Balakrishnan et al. [22], and Nassar
et al. [23]). However, the study of ALT models under a progressive type-I interval censoring
scheme is still lacking in the literature, and as such, we aim to address this gap by exploring
inferential approaches for CS-ALT models when the failure data are progressive type-I
interval censored and are log-normally distributed.

The log-normal distribution is indeed widely used in failure time analysis and has
proven to be a flexible and effective model for analyzing various physical phenomena. One
notable characteristic of the log-normal distribution is that its hazard rate starts at zero,
indicating a low failure rate at the beginning, then gradually increases to its maximum
value, and eventually approaches zero as the variable x approaches infinity. This behavior
makes the log-normal distribution suitable for modeling phenomena that exhibit initial
low failure rates, followed by an increasing failure rate, and then a declining failure rate as
time progresses. The applications of the log-normal distribution extend to various fields of
study, including actuarial science, business, economics, and lifetime analysis of electronic
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components. Moreover, the log-normal distribution is valuable for analyzing both homoge-
neous and heterogeneous data. It can handle skewed data that may deviate from a normal
distribution, making it suitable for modeling real-world datasets that exhibit asymmetry.
This versatility has led to its application in a wide range of practical studies. One can refer
to [24–26] for further insights into the applications of the log-normal distribution in various
fields and to demonstrate its usefulness in analyzing different types of data.

Assuming that the lifetime of the test units represented by a random variable T follows
a log-normal distribution with a nonconstant location parameter −∞ < µ < ∞ is affected
by stress and a scale parameter σ > 0, then probability density function (PDF) and the
cumulative distribution function (CDF) of the log-normal distribution can be expressed
as follows:

f (t) =
1√

2πσt
exp

(
− (ln(t)− µ)2

2σ2

)
, t > 0, (1)

F(t) = Φ
(

ln(t)− µ√
2σ

)
. (2)

where Φ(·) is the standard normal CDF.
The article is structured into several sections, which are summarized as follows:

Section 2 provides a description of the test process and the assumptions that underlie it.
In Section 3, the maximum likelihood estimates along with their associated asymptotic
standard error are discussed. Section 4 focuses on the discussion of Bayesian estimation
techniques. The proposed methods in Sections 3 and 4 are then evaluated in Section 5 using
simulation studies. Finally, Section 6 provides a summary of the findings as a conclusion.

2. Model and Underlying Assumptions
2.1. Model Description

In the CS-ALT method, the test units are divided into groups and each group is
subjected to a higher stress level than the typical stress level. The stress levels are denoted
as S0 for the standard stress level and S1 < S2 < . . . < Sk for k different test stress levels.
The data is collected using a progressive type-I interval censored sampling approach for
each stress level Si, i = 1, 2, . . . , k.

In this approach, a set of ni identical units is simultaneously tested at time ti0 = 0 for
each stress level Si. Inspections are performed at predetermined times ti1 < ti2 < . . . < timi ,
with timi being the planned end time of the experiment. During each inspection, the number
of failed units Xij within the interval (ti(j−1), tij] is recorded. Additionally, at each inspection
time tij, a random selection process eliminates Rij surviving units from the test, where Rij
should not exceed the number of remaining units Yij. The value of Rij is determined as a
specified percentage pij of the remaining units at tij, using the formula Rij = bpij × yijc,
where j = 1, 2, . . . , mi. The percentage values pij are pre-specified, with pimi = 1, indicating
that all remaining units are eliminated at the final inspection time.

In this scenario, a progressive type-I interval censored sample of size ni can be repre-
sented as:

D =
{(

Xij, Rij, tij
)
, i = 1, 2, . . . , k, j = 1, 2, . . . , mi

}
. (3)

Here, the total sample size n is given by the sum of the number of units in each stress
level, which is defined as n = ∑k

i=1 ni = ∑k
i=1 ∑mi

j=1(Xij + Rij).

2.2. Basic Assumptions

In the CS-ALT context, the following assumptions are considered:

1. The lifetime of test units follows a log-normal distribution at stress level Si, with PDF
given by

fi(t) =
1√

2πσt
exp

(
− (ln(t)− µi)

2

2σ2

)
.
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2. For the log-normal location parameter µi, the life-stress model is assumed to be log-
linear, i.e., it is described as

log(µi) = a + bSi, i = 0, 1, . . . , k. (4)

Here, a and b (where b < 0) are unknown coefficients that dependent on the product’s
nature and the test method used. Using this log-linear model, µi can be further expressed
as µi = µ0eb(Si−S0) = µ0θhi , where µ0 represents the location parameter of the log-normal
distribution under the reference stress level S0. Additionally, θ = eb(Sk−S0) = µk

µ0
< 1, and

hi =
Si−S0
Sk−S0

satisfies hk > hk−1 > · · · > h1 = 1. These assumptions provide the basis for
analyzing and modeling the lifetime behavior of test units under different stress levels in
CS-ALT experiments. Further details can be found in Chapter 2 of Nelson’s book [1].

3. Maximum Likelihood Estimation

Based on the observed lifetime data D and the assumptions 1 and 2, the likelihood
function for µ0, σ and θ is given by:

L(µ0, σ, θ|D) ∝
k

∏
i=1

mi

∏
j=1

{
F
(
tij; µ0, σ, θ

)
− F

(
ti(j−1); µ0, σ, θ

)}Xij{
1− F

(
tij; µ0, σ, θ

)}Rij

∝
k

∏
i=1

mi

∏
j=1

{
Φ
(
τij
)
−Φ

(
τi(j−1)

)}Xij{
1−Φ

(
τij
)}Rij

, (5)

where τij =
ln(tij)−µi

σ .
The corresponding log-likelihood function denoted by L = ln L(µ0, σ, θ|D). When the

partial derivatives of L with respect to µ0, σ, and θ are set to zero, the maximum likelihood
estimators (MLEs) of µ0, σ, and θ can then be obtained by simultaneously solving the
following equations:

∂L
∂µ0

= − 1
σ

k

∑
i=1

Xi1θhi
φ(τi1)

Φ(τi1)
− 1

σ

k

∑
i=1

mi

∑
j=2

Xijθ
hi
(

ψij − ψi(j−1)

)
+

1
σ

k

∑
i=1

mi

∑
j=1

Rijθ
hi ϕij = 0,

∂L
∂θ

= − 1
σθ

k

∑
i=1

Xi1hiµi
φ(τi1)

Φ(τi1)
− 1

σθ

k

∑
i=1

mi

∑
j=2

Xijhiµi

(
ψij − ψi(j−1)

)
+

1
σθ

k

∑
i=1

mi

∑
j=1

Rijhiµi ϕij = 0,

∂L
∂σ

= − 1
σ

k

∑
i=1

Xi1τi1
φ(τi1)

Φ(τi1)
− 1

σ

k

∑
i=1

mi

∑
j=2

Xij

(
τijψij − τi(j−1)ψi(j−1)

)
+

1
σ

k

∑
i=1

mi

∑
j=1

Rijτij ϕij = 0.

To simplify the expressions, we used the notations ψij =
φ(τij)

Φ(τij)−Φ(τi(j−1))
and ϕij =

φ(τij)
1−Φ(τij)

. Here, φ(·) represents the standard normal PDF. Since the solutions to the afore-

mentioned equations cannot be found in a closed form, the Newton–Raphson method is
frequently employed in these circumstances to obtain the desired MLEs.

3.1. EM Algorithm

The expectation–maximization (EM) algorithm is a widely used tool for handling
missing or incomplete data situations. It is a powerful iterative algorithm that seeks to
maximize the likelihood function by estimating the missing data and the model parameters
in an iterative manner. The EM algorithm is particularly useful when dealing with large
amounts of missing data. Compared to other optimization methods such as the Newton–
Raphson method, the EM algorithm is generally slower but more reliable in such cases.

The EM algorithm was first introduced by Dempster et al. [27], and has since been
widely used in many different fields. McLachlan and Krishnan [28] provide a compre-
hensive treatment of the EM algorithm, while Little and Rubin [29] have highlighted the
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advantages of the EM algorithm over other methods for handling missing data. Consider-
ing progressive type-I interval censoring, the complete sample Wi under stress level Si can
be expressed as Wi =

(
Wij, W∗ij

)
, where Wij = (ωij1, ωij2, . . . , ωijXij) represent the lifetimes

of the units within the jth interval (ti(j−1), tij] and W∗ij = (ω∗ij1, ω∗ij2, . . . , ω∗ijRij
) denote to the

lifetimes for the units that were removed at time tij, for j = 1, 2, . . . , mi. As a result, we can
express the log-likelihood function of the complete data set as

LC(W; µ0, σ, θ) ∝
k

∑
i=1

mi

∑
j=1

{ Xij

∑
x=1

ln f (ωijx; µ0, σ, θ) +

Rij

∑
r=1

ln f (ω∗ijr; µ0, σ, θ)

}

=− n ln(σ)−
µ2

0
2σ2

k

∑
i=1

niθ
2hi +

µ0

σ2
0

k

∑
i=1

mi

∑
j=1

θhi

 Xij

∑
x=1

ln
(
ωijx

)
+

Rij

∑
r=1

ln
(

ω∗ijr

)
− 1

2σ2
0

k

∑
i=1

mi

∑
j=1

 Xij

∑
x=1

ln2(ωijx
)
+

Rij

∑
r=1

ln2
(

ω∗ijr

)
−

k

∑
i=1

mi

∑
j=1

 Xij

∑
x=1

ln
(
ωijx

)
+

Rij

∑
r=1

ln
(

ω∗ijr

). (6)

By taking partial derivatives of Equation (6) with respect to µ0, σ, and θ, we can obtain
the associated log-likelihood equations as follows:

µ0

k

∑
i=1

niθ
2hi =

k

∑
i=1

mi

∑
j=1

θhi

 Xij

∑
x=1

ln
(
ωijx

)
+

Rij

∑
r=1

ln
(

ω∗ijr

), (7)

µ0

k

∑
i=1

nihiθ
2hi =

k

∑
i=1

mi

∑
j=1

hiθ
hi

 Xij

∑
x=1

ln
(
ωijx

)
+

Rij

∑
r=1

ln
(

ω∗ijr

), (8)

nσ2 + µ2
0

k

∑
i=1

niθ
2hi =

k

∑
i=1

mi

∑
j=1

 Xij

∑
x=1

ln2(ωijx
)
+

Rij

∑
r=1

ln2
(

ω∗ijr

). (9)

In the EM algorithm, two main steps are involved: The expectation step (E-step) and
the maximization step (M-step). In the E-step, the observed and censored observations are
replaced by their respective expected values. This step helps in estimating the missing or
censored data. The process of finding the expected values in the E-step of the EM algorithm
in our case involves calculating the expectations of four quantities

E1ij[µ0, σ, θ] = E
[

ln[Wij]|ti(j−1) < Wij ≤ tij; µ0, σ, θ
]
,

E2ij[µ0, σ, θ] = E
[

ln[W∗ij ]|W∗ij > tij; µ0, σ, θ
]
,

E3ij[µ0, σ, θ] = E
[

ln2[Wij]|ti(j−1) < Wij ≤ tij; µ0, σ, θ
]
,

E4ij[µ0, σ, θ] = E
[

ln2[W∗ij ]|W∗ij > tij; µ0, σ, θ
]
.

Since Wij and W∗ij are independent (see Ng et al. [30]), the process can be simplified
using the following lemma (see Ng and Wang [31]).

Lemma 1. Given tij and ti(j−1) for i = 1, 2, . . . , k and j = 1, 2, . . . , mi, the conditional distribu-
tions of W and W∗ can be expressed as follows:
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fWij(w) =
f (w)

F(tij)− F(ti(j−1))
, ti(j−1) < w ≤ tij,

fW∗ij
(w∗) =

f (w∗)
1− F(tij)

, w∗ > tij.

Proof. The conditional distribution of Wij: the probability of W falling within the interval
(ti(j−1), tij] is given by:

P
(

ti(j−1) < W ≤ tij

)
= F(tij)− F(ti(j−1)),

where F(·) is CDF of W. To normalize the distribution within this interval, the PDF of W is
divided by the probability of W falling within the interval:

fWij(w) =
f (w)

F(tij)− F(ti(j−1))
, ti(j−1) < w ≤ tij.

This expression represents the conditional distribution of Wij. Similarly, we can directly
deduce the conditional distribution of W∗ij using a similar approach.

Thus, based on this result, we can readily acquire the necessary expected values in the
following formulas.

E1ij[µ0, σ, θ] = µi + σ
[
ψi(j−1) − ψij

]
, (10)

E2ij[µ0, σ, θ] = µi + σϕij, (11)

E3ij[µ0, σ, θ] = µ2
i + 2µiσ

[
ψi(j−1) − ψij

]
+ σ2

[
τi(j−1)ψi(j−1) − τijψij + 1

]
, (12)

E4ij[µ0, σ, θ], = µ2
i + 2µiσϕij + σ2[τij ϕij + 1

]
. (13)

Subsequently, during the M-step, the goal is to maximize the results obtained from
the E-step. Thus, if we denote the estimate of (µ0, σ, θ) at the o-th stage as (µ(o)

0 , σ(o), θ(o)),
applying the M-step will lead to updated estimates at the (o + 1)-th stage. The updated
estimates µ

(o+1)
0 , θ(o+1) can be derived as the solution of the following equations.

µ
(o+1)
0

k

∑
i=1

ni(θ
(o+1))2hi =

k

∑
i=1

mi

∑
j=1

(θ(o+1))hiP (o)
ij ,

µ
(o+1)
0

k

∑
i=1

nihi(θ
(o+1))2hi =

k

∑
i=1

mi

∑
j=1

hi(θ
(o+1))hiP (o)

ij ,

where P (o)
ij = XijE1ij

[
µ
(o)
0 , σ(o), θ(o)

]
+ RijE2ij

[
µ
(o)
0 , σ(o), θ(o)

]
. While the updated value

σ(o+1) can be obtained as

σ(o+1) =
1√
n

( k

∑
i=1

mi

∑
j=1
Q(o)

ij − (µ
(ι+1)
0 )2

k

∑
i=1

ni(θ
(ι+1))2hi

) 1
2

,

where Q(o)
ij = XijE3ij

[
µ
(o)
0 , σ(o), θ(o)

]
+ RijE4ij

[
µ
(o)
0 , σ(o), θ(o)

]
. The iterative process contin-

ues until the desired convergence is achieved, which is determined by checking if the
absolute differences between the updated and the previous values of µ0, σ, and θ are all less
than or equal to a predefined value threshold ε > 0. In mathematical terms, the convergence
criterion is given by |µ(o+1)

0 − µ
(o)
0 |+ |σ(o+1) − σ(o)|+ |θ(o+1) − θ(o)| ≤ ε.

3.2. Midpoint Approximation Method

In this context, we assume that Xij of failures within each subinterval (ti(j−1), tij]

occurred at the midpoint of the interval, denoted as ςij =
1
2

(
tij + ti(j−1)

)
. Additionally,
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there are censored items Rij withdrawn at the censoring time tij. Hence, the likelihood
function can be approximated as:

L∗(µ0, σ, θ|D) ∝
k

∏
i=1

mi

∏
j=1

{
f
(
ςij; µ0, σ, θ

)}Xij{
1− F

(
tij; µ0, σ, θ

)}Rij

. (14)

The associated log-likelihood function for (µ0, σ, θ) is denoted asL∗ = ln L∗(µ0, σ, θ|D).
To find the midpoint (MP) estimators of µ0, σ, and θ, we set the partial derivatives of L∗
with respect to µ0, σ, and θ to zero.

∂L∗
∂µ0

=
1
σ

k

∑
i=1

mi

∑
j=1

θhi
(

Xijτ
∗
ij + Rij ϕij

)
= 0, (15)

∂L∗
∂θ

=
1

σθ

k

∑
i=1

mi

∑
j=1

hiµi

(
Xijτ

∗
ij + Rij ϕij

)
= 0, (16)

∂L∗
∂σ

=
1
σ

k

∑
i=1

mi

∑
j=1

(
Xij(τ

∗2
ij − 1) + Rijτij ϕij

)
= 0, (17)

where τ∗ij =
ln(ςij)−µi

σ . By simultaneously solving Equations (15)–(17), we can obtain the
MP estimators for the parameters µ0, σ, and θ.

The advantage of the MP likelihood equations over the original likelihood equations
is that they are often less complex and may lead to simpler numerical optimization proce-
dures. This can enhance computational efficiency and facilitate the implementation of the
estimation process.

3.3. Asymptotic Standard Errors

According to the missing information principle of Louis [32], the observed Fisher
information matrix can be obtained as

ID(Θ) = IW(Θ)− IW|D(Θ), (18)

where Θ = (µ0, σ, θ), ID(Θ), IW(Θ), and IW|D(Θ) represent observed information, com-
plete, and missing information matrices. The complete information matrix, IW(Θ), for the
data from a log-normal distribution is provided by

IW(Θ) = −E
[∂2Lc(W; Θ)

∂Θ2

]
=

1
σ2

 ∑k
i=1 niθ

hi 0 1
θ ∑k

i=1 nihiµiθ
hi

0 n 0
1
θ ∑k

i=1 nihiµiθ
hi 0 1

θ2 ∑k
i=1 nih2

i µ2
i


Moreover, the missing information matrix IW|D(Θ) can be expressed as

IW|D(Θ)
k

∑
i=1

mi

∑
j=1

Xij I
ij
W|D(Θ) +

k

∑
i=1

mi

∑
j=1

Rij I
ij
W∗ |D(Θ).

Here, Iij
W|D(Θ) represents the information matrix for a single observation, conditioned

on the event where ti(j−1) < W ≤ tij. Additionally, Iij
W∗ |D(Θ) denotes the information

matrix for a single observation that is censored at the failure time, tij, conditioned on the
event where W > tij. The elements of both matrices can be obtained easily by utilizing
Lemma 1 in the following manner:

Iij
W|D(Θ) =− E

[∂2 log( fW(w; Θ))

∂Θ2

]
=

p11 p12 p13
p21 p22 p23
p31 p32 p33


where
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p11 =
θ2hi

σ2

[
1 +

(
τi(j−1)ψi(j−1) − τijψij

)
−
(

ψi(j−1) − ψij

)2
]

,

p12 =
θhi

σ2

[(
ψi(j−1) − ψij

)
+
(

τ2
i(j−1)ψi(j−1) − τ2

ijψij

)
−
(

ψi(j−1) − ψij

)(
τi(j−1)ψi(j−1) − τijψij

)]
,

p13 =
hiµiθ

hi

σ2θ

[
1 +

(
τi(j−1)ψi(j−1) − τijψij

)
−
(

ψi(j−1) − ψij

)2
]

,

p22 =
1
σ2

[
2 +

(
τi(j−1)ψi(j−1) − τijψij

)
+
(

τ3
i(j−1)ψi(j−1) − τ3

ijψij

)
−
(

ψi(j−1) − ψij

)2
]

,

p23 =
hiµi
σ2θ

[(
ψi(j−1) − ψij

)
+
(

τ2
i(j−1)ψi(j−1) − τ2

ijψij

)
−
(

ψi(j−1) − ψij

)(
τi(j−1)ψi(j−1) − τijψij

)]
,

p33 =
h2

i µ2
i

σ2θ2

[
1 +

(
τi(j−1)ψi(j−1) − τijψij

)
−
(

ψi(j−1) − ψij

)2
]

,

and

Iij
W∗ |D(Θ) =− E

[∂2 log( fW∗(w; Θ))

∂Θ2

]
=

j11 j12 j13
j12 j22 j23
j13 j23 j33


where

j11 =
θ2hi

σ2

[
1 + τij ϕij − ϕ2

ij

]
, j12 =

θhi

σ2

[
ϕij + τ2

ij ϕij − τij ϕ
2
ij

]
,

j13 =
hiµiθ

hi

σ2θ

[
1 + τij ϕij − ϕ2

ij

]
, j22 =

1
σ2

[
2 + τij ϕij − τ2

ij ϕij + τ3
ij ϕij

]
,

j23 =
hiµi
σ2θ

[
ϕij + τ2

ij ϕij − τij ϕ
2
ij

]
, j33 =

h2
i µ2

i
σ2θ2

[
1 + τij ϕij − ϕ2

ij

]
.

Afterward, the asymptotic variance-covariance matrix of the MLEs Θ̂ = (µ̂0, σ̂, θ̂) can
be obtained by inverting the matrix ID(Θ̂). The asymptotic standard errors (ASEs) of MLEs
can be easily obtained by taking the square root of the diagonal elements of the asymptotic
variance-covariance matrix. Furthermore, the asymptotic two-sided confidence interval
(CI) for Θ with a confidence level of 100(1− γ)% where 0 < γ < 1, is given by:

Θ̂± Z1−γ/2

√
Var(Θ̂),

where Zγ corresponds to the γ-th percentile of the standard normal distribution, and
Var(Θ̂) denotes the ASE of the estimated parameter.

4. Bayesian Estimation

In this study, we utilize Markov Chain Monte Carlo (MCMC) and Tierney–Kadane
(T-K) approximation methods to investigate Bayesian estimates (BEs) of unknown param-
eters. The selection of an appropriate decision in decision theory relies on specifying an
appropriate loss function. Therefore, we consider the squared error (SE) loss function,
LINEX loss function, and general entropy (GE) loss function.

The SE loss function is suitable when the effects of overestimation and underestimation
of the same magnitude are considered equally important. This loss function quantifies the
discrepancy between the estimated and true values using the squared difference.

On the other hand, asymmetric loss functions are employed to capture the varying
effects of errors when the true loss is not symmetric in terms of overestimation and under-
estimation. The LINEX loss function is an example of an asymmetric loss function that
allows for different weighting of overestimation and underestimation errors.

Furthermore, the GE loss function takes into account a broader range of loss structures
and provides flexibility in capturing the impact of different errors.
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Under the SE loss function, the BE of the parameter Θ is given by its posterior mean.
In the case of the LINEX and GE loss functions, the BE of Θ is determined differently. For
the LINEX loss function, the BE of Θ is given by:

Θ̂LINEX = −1
ν

ln
[

E
(

e−νΘ
)]

. (19)

Here, the sign of ν indicates the direction of the loss function (whether it penalizes
overestimation or underestimation more), while the magnitude of ν indicates the degree of
symmetry in the loss function.

For the GE loss function, the BE of Θ is given by:

Θ̂GE =
[

E
(
Θ−κ

)]−1/κ
. (20)

In this case, the shape parameter κ of the GE loss function is related to the deviation
from symmetry in the loss function.

By using these specific formulas, we can determine the BE of Θ under the LINEX and
GE loss functions, taking into account their respective characteristics and the implications
of asymmetry or deviation from symmetry in the loss functions.

In situations where it is challenging to select priors in a straightforward manner, Arnold
and Press [33] suggest adopting a piecewise independent approach for specifying priors.
More specifically, we adopt a piecewise independent prior specification for the parameters,
where the parameter µ0 follows a normal prior distribution, σ is assigned a gamma prior
distribution, and θ is assumed to have a uniform prior. Therefore, we can represent the joint
prior distribution of µ0, σ, and θ as follows:

π(µ0, σ, θ) ∝
σλ2−1

µ1
e−

1
2

(
µ0−λ1

µ1

)
2
e−µ2σ. (21)

By incorporating the likelihood function described in Equation (5) with the joint prior
distribution outlined in Equation (21), we can derive the joint posterior distribution for µ0,
σ, and θ in the following manner:

π∗(µ0, σ, θ|D) ∝
σλ2−1

µ1
e−

1
2

(
µ0−λ1

µ1

)
2
e−µ2σ

k

∏
i=1

mi

∏
j=1

{
Φ
(
τij
)
−Φ

(
τi(j−1)

)}Xij{
1−Φ

(
τij
)}Rij

. (22)

The posterior mean of the function g(µ0, σ, θ) in terms of µ0, σ, and θ can be determined
as follows:

E[g(µ0, σ, θ)|D] =

∫ ∞
−∞

∫ ∞
0

∫ 1
0 g(µ0, σ, θ)L(D|µ0, σ, θ)π(µ0, σ, θ)dµ0dσdθ∫ ∞

−∞

∫ ∞
0

∫ 1
0 L(D|µ0, σ, θ)π(µ0, σ, θ)dµ0dσdθ

. (23)

However, it is not feasible to obtain an analytical closed-form solution for the integral
ratio in Equation (23). As a result, it is advisable to employ an approximation technique
to compute the desired estimates. In the subsequent subsections, we will discuss various
approximation methods that can be employed for this purpose.

4.1. MCMC Method

In this approach, we adopt the MCMC method to generate sequences of samples from
the complete conditional distributions of the parameters. Roberts and Smith [34] introduced
the Gibbs sampling method, which is an efficient MCMC technique when the complete con-
ditional distributions can be easily sampled. Alternatively, by using the Metropolis–Hastings
(M-H) algorithm, random samples can be obtained from any complex target distribution of
any dimension, as long as it is known up to a normalizing constant. The original work by
Metropolis et al. [35] and its subsequent extension by Hastings [36] form the foundation of
the M-H algorithm.
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To implement the Gibbs algorithm, the conditional probability densities of the param-
eters µ0, σ, and θ should be determined as follows:

P1(µ0|σ, θ) ∝
1

µ1
e−

1
2

(
µ0−λ1

µ1

)
2
×

k

∏
i=1

mi

∏
j=1

{
Φ
(
τij
)
−Φ

(
τi(j−1)

)}Xij{
1−Φ

(
τij
)}Rij

, (24)

P2(σ|µ0, θ) ∝ σλ2−1e−µ2σ ×
k

∏
i=1

mi

∏
j=1

{
Φ
(
τij
)
−Φ

(
τi(j−1)

)}Xij{
1−Φ

(
τij
)}Rij

, (25)

P3(θ|µ0, σ) ∝
k

∏
i=1

mi

∏
j=1

{
Φ
(
τij
)
−Φ

(
τi(j−1)

)}Xij{
1−Φ

(
τij
)}Rij

. (26)

Since the posterior conditional distributions of µ0, σ, and θ are unknown, we employ
the M-H algorithm to generate random numbers. In this case, we choose a normal distribu-
tion as our proposal density. The process of generating samples using the MCMC method
follows the steps outlined in Algorithm 1.

Algorithm 1 M-H algorithm.

Step 1: Initialize the initial guesses µ
(0)
0 = µ̂0, σ(0) = σ̂, and θ(0) = θ̂.

Step 2: Set the iteration index i = 1.

Step 3: Generate µ∗0 from the proposal distribution N
(

µ
(i−1)
0 , Var(µ(i−1)

0 )
)

.

Step 4: Compute the acceptance ratio r
(

µ
(i−1)
0 |µ∗0

)
= min

[
1, P1(µ

∗
0 |σ(i−1),θ(i−1))

P1(µ
(i−1)
0 |σ(i−1),θ(i−1))

]
.

Step 5: Draw a random number u from a uniform distribution U(0, 1).

Step 6: If u ≤ r(µ(i−1)
0 |µ∗0), set µ

(i)
0 = µ∗0 . Otherwise, set µ

(i)
0 = µ

(i−1)
0 .

Step 7: Do the steps 2 to 6 for the parameters σ and θ.

Step 8: Increment the iteration index, i = i + 1.

Step 9: Repeat steps 3 to 8 a total of N times, generating a chain of parameter values.

After running the algorithm for a sufficient number of iterations, the first Nb simulated
values (burn-in period) are discarded to eliminate the influence of the initial value selection.
The remaining values (µ(i)

0 , σ(i), θ(i)) for i = Nb + 1, . . . , N (where N is the total number of
iterations) form an approximate posterior sample that can be used for Bayesian inference.

Based on this posterior sample, BEs for a function of the parameters g(µ0, σ, θ) are
provided under SE, LINEX, and GE loss functions, respectively, as

gSE =
1

N − Nb

N

∑
i=Nb+1

g
(

µ
(i)
0 , σ(i), θ(i)

)
,

gLINEX =− 1
ν

ln

(
1

N − Nb

N

∑
i=Nb+1

exp
{
−νg

(
µ
(i)
0 , σ(i), θ(i)

)})
,

gGE =

(
1

N − Nb

N

∑
i=Nb+1

gκ
(

µ
(i)
0 , σ(i), θ(i)

))−1/κ

.

The Bayesian credible CIs for any parameter, such as µ0, can be determined using
the posterior MCMC sample after the burn-in period Nb. The MCMC sample should be
sorted in ascending order as µ

[1]
0 < µ

[2]
0 < · · · < µ

[N−Nb ]
0 . Based on this sorted sample,

the two-sided Bayesian credible CI for µ0 at a confidence level of 100(1− γ)% is given
by
(
µ
[γ/2(N−Nb)]
0 , µ

[(1−γ/2)(N−Nb)]
0

)
. Similarly, we can create Bayesian credible CIs for the

parameters σ and θ in a similar approach.
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4.2. Tierney–Kadane Method

Tierney and Kadane [37] proposed the T-K methodology, which is a technique for
approximating the BE of a target function g(µ0, σ, θ).

The BE of the of a target function g using the T-K methodology is given by:

ĝTK =

√
|Λ∗|
|Λ| exp

[
n
{

δ∗
(
µ̂0δ∗ , σ̂δ∗ , θ̂δ∗

)
− δ
(
µ̂0δ

, σ̂δ, θ̂δ

)}]
. (27)

In this formula, µ̂0δ
, σ̂δ, and θ̂δ are the values that maximize the function δ(µ0, σ, θ),

while µ̂0δ∗ , σ̂δ∗ , and θ̂δ∗ maximize the function δ∗(µ0, σ, θ). The functions δ(µ0, σ, θ) and
δ∗(µ0, σ, θ) are defined as:

δ(µ0, σ, θ) =
1
n

ln
[
π∗(µ0, σ, θ|D)

]
,

δ∗(µ0, σ, θ) = δ(µ0, σ, θ) +
1
n

ln[g(µ0, σ, θ)].

The quantities |Λ| and |Λ∗| in Equation (27) correspond to the determinants of the neg-
ative Hessian matrices of δ(µ0, σ, θ) and δ∗(µ0, σ, θ), respectively, evaluated at

(
µ̂0δ

, σ̂δ, θ̂δ

)
and

(
µ̂0δ∗ , σ̂δ∗ , θ̂δ∗

)
,, respectively.

The T-K methodology provides an approximation for the BE by incorporating the
likelihood, prior, and target function. It utilizes maximum likelihood estimation to find
the values that maximize the δ functions and takes into account the curvature of the
log-likelihood and log-prior functions using Hessian matrices.

Here, in our case, Equation (22) can be directly used to obtain δ(µ0, σ, θ) as follows:

δ(µ0, σ, θ) =
1
n

[
− ln(µ1) + (λ2 − 1) ln(σ)− µ2σ− 1

2

(
µ0 − λ1

µ1

)2

+
k

∑
i=1

mi

∑
j=1

Xij ln
[

Φ
(
τij
)
−Φ

(
τi(j−1)

)]
+

k

∑
i=1

mi

∑
j=1

Rij ln
[

1−Φ
(
τij
)]]

.

Thus, (µ̂0δ
, σ̂δ, θ̂δ) are obtained by solving the following non-linear equations

∂δ

∂µ0
=

1
nµ2

1
(µ0 − λ1)−

1
nσ

k

∑
i=1

mi

∑
j=1

Xijθ
hi
(

ψij − ψi(j−1)

)
+

1
nσ

k

∑
i=1

mi

∑
j=1

Rijθ
hi ϕij = 0,

∂δ

∂σ
=

λ2 − 1
nσ

− 1
nσ

k

∑
i=1

mi

∑
j=1

Xij

(
τijψij − τi(j−1)ψi(j−1)

)
+

1
nσ

k

∑
i=1

mi

∑
j=1

Rijτij ϕij = 0,

∂δ

∂θ
= − 1

nσθ

k

∑
i=1

mi

∑
j=1

Xijhiµi

(
ψij − ψi(j−1)

)
+

1
nσθ

k

∑
i=1

mi

∑
j=1

Rijhiµi ϕij = 0.

We may obtain |Λ| as follows based on the second-order derivative of δ(µ0, σ, θ),

Λ−1 =

δ11 δ12 δ13
δ12 δ22 δ23
δ13 δ23 δ33


(µ0=µ̂0δ

, σ=σ̂δ , θ=θ̂δ)

where
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δ11 =
∂2δ

∂µ2
0
=

1
nµ2

1
+

1
nσ2

k

∑
i=1

mi

∑
j=1

Xijθ
2hi

[(
τi(j−1)ψi(j−1) − τijψij

)
−
(

ψi(j−1) − ψij

)2
]

+
1

nσ2

k

∑
i=1

mi

∑
j=1

Rijθ
2hi
[
τij ϕij − ϕ2

ij

]
,

δ12 =
∂2δ

∂µ0∂σ
= − 1

nσ2

k

∑
i=1

mi

∑
j=1

Xijθ
hi

[(
ψi(j−1) − ψij

)
+
(

ψi(j−1) − ψij

)(
τi(j−1)ψi(j−1) − τijψij

)
−(τ2

i(j−1)ψi(j−1) − τ2
ijψij )

]
− 1

nσ2

k

∑
i=1

mi

∑
j=1

Rijθ
hi
[

ϕij + τij ϕ
2
ij − τ2

ij ϕij

]
,

δ13 =
∂2δ

∂µ0∂θ
=

1
nσ2θ

k

∑
i=1

mi

∑
j=1

Xijhiθ
hi

[
σ
(

ψi(j−1) − ψij

)
+ µi

(
τi(j−1)ψi(j−1) − τijψij

)
−µi(ψi(j−1) − ψij )

2
]
+

1
nσ2θ

k

∑
i=1

mi

∑
j=1

Rijhiθ
hi
[
σϕij + µiτij ϕij − µi ϕ

2
ij

]
,

δ22 =
∂2δ

∂σ2 = −λ2 − 1
nσ2 −

1
nσ2

k

∑
i=1

mi

∑
j=1

Xij

[
2
(

τi(j−1)ψi(j−1) − τijψij

)
+
(

ψi(j−1) − ψij

)2

−(τ3
i(j−1)ψi(j−1) − τ3

ijψij )

]
− 1

nσ2

k

∑
i=1

mi

∑
j=1

Rij

[
2τij ϕij + τ2

ij ϕij − τ3
ij ϕij

]
,

δ23 =
∂2δ

∂σ∂θ
= − 1

nσ2θ

k

∑
i=1

mi

∑
j=1

Xijhiµi

[(
ψi(j−1) − ψij

)
+
(

ψi(j−1) − ψij

)(
τi(j−1)ψi(j−1) − τijψij

)
−(τ2

i(j−1)ψi(j−1) − τ2
ijψij )

]
− 1

nσ2θ

k

∑
i=1

mi

∑
j=1

Rijhiµi

[
ϕij + τij ϕ

2
ij − τ2

ij ϕij

]
,

δ33 =
∂2δ

∂θ2 =
1

nσ2θ2

k

∑
i=1

mi

∑
j=1

Xijhiµi

[
(hi − 1)σ

(
ψi(j−1) − ψij

)
+ hiµi

(
τi(j−1)ψi(j−1) − τijψij

)
−hiµi(ψi(j−1) − ψij

)2
]
+

1
nσ2θ2

k

∑
i=1

mi

∑
j=1

Rijhiµi

[
(hi − 1)σϕij + hiµiτij ϕij − hiµi ϕ

2
ij

]
.

In order to compute the BE of µ0, we set g(µ0, σ, θ) = µ0. So,

δ∗µ0
(µ0, σ, θ) = δ(µ0, σ, θ) +

1
n

ln(µ0).

Further,
(
µ̂0δ∗ , σ̂δ∗ , θ̂δ∗

)
can be obtained by solving the following equations

∂δ∗µ0

∂µ0
=

∂δ

∂µ0
+

1
n µ0

= 0,
∂δ∗µ0

∂σ
=

∂δ

∂σ
= 0,

∂δ∗µ0

∂θ
=

∂δ

∂θ
= 0,

and |Λ∗µ0
| can be computed from

Λ∗
−1

µ0
=

δ∗11 δ∗12 δ∗13
δ∗12 δ∗22 δ∗23
δ∗13 δ∗23 δ∗33


(µ0=µ̂0δ∗ , σ=σ̂δ∗ , θ=θ̂δ∗ )

where

δ∗11 =
∂2δ∗µ0

∂µ2
0

= δ11 −
1

n µ2
0

, δ∗22 = δ22, δ∗33 = δ33, δ∗12 = δ12, δ∗13 = δ13, δ∗23 = δ23.
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Therefore, the BE for µ0 under the SE loss function, using the T-K methodology, can be
expressed as follows:

µ̂0TK =

√
|Λ∗µ0
|

|Λ| exp
[
n
{

δ∗
(
µ̂0δ∗ , σ̂δ∗ , θ̂δ∗

)
− δ
(
µ̂0δ

, σ̂δ, θ̂δ

)}]
.

By following the same reasoning, the BEs for σ and θ under the SE loss function, using
the T-K methodology, can be computed straightforwardly.

5. Simulation Study and Data Analysis
5.1. Monte Carlo Simulation Study

Based on theoretical principles, it is not possible to directly compare various estimation
methods or censoring schemes. Therefore, the purpose of this section is to evaluate the
performance of several estimates that were discussed in previous sections using Monte
Carlo simulations. The assessment of point estimates is based on their mean square error
(MSE) and relative absolute bias (RAB), while the evaluation of interval estimates is based
on their coverage probability (CP) and average width (AW). These measures provide
insights into the accuracy and precision of the estimates.

To simulate data under progressive type-I interval censoring, we utilize the Aggarwala
algorithm (Aggarwala et al. [12]) for a given set of parameters including the specified
stress level Si, the sample sizes ni, and the number of subintervals mi. We also consider
prefixed inspection times and censoring schemes. Under each stress level Si, i = 1, 2, . . . , k,
starting with a sample of size ni, which is subjected to a life test at time ti0 = 0, we simulate
the number of failed items Xij for each subinterval (ti(j−1), tij] as follows: Let Xi0 = 0 and
Ri0 = 0 and for j = 1, 2, . . . , mi

Xij|Xi(j−1), Ri(j−1), . . . , Xi0, Ri0

∼ Bin

ni −
j−1

∑
l=1

(Xil + Ril),
Φ
(
τij
)
−Φ

(
τi(j−1)

)
1−Φ

(
τij
)

,

Rij =

⌊
pij ×

(
ni −

j−1

∑
l=1

(Xil + Ril)− Xij

)⌋
.

In the simulation study, we examine three distinct removal schemes, denoted as
p1, p2, and p3, each characterized by different probabilities of removing items during
intermediate inspection times where p1 = (0.25, 0.25, 0, 0, 1), p2 = (0, 0, 0.25, 0.25, 1), and
p3 = (0, 0, 0, 0, 1). The third Scheme, p3, resembles a conventional interval censoring
scheme, where no removals occur during the intermediate inspection times. In addition to
the regular stress level S0 = 50, we include four stress levels: S1 = 60, S2 = 70, S3 = 80,
and S4 = 90. These stress levels represent different levels of intensity or severity in the
testing process. Additionally, for each stress level Si, we incorporate the same inspection
times to account for varying durations of observation. The inspection times included are
ti1 = 3, ti2 = 5, ti3 = 9, ti4 = 15, and ti5 = 25. These inspection times correspond to specific
intervals during which the items are assessed or observed.

Furthermore, we consider various sample sizes to assess the impact of the number of
items tested. The sample sizes considered are n = 40, n = 60, n = 80, and n = 100. These
different sample sizes allow us to investigate the influence of the number of tested items on
the estimation performance. The generated data follows a log-normal distribution with
true parameters values µ0 = 2, σ = 1, and θ = 0.95.

For the Bayesian analyses, informative priors are employed with specific hyperparam-
eters. The hyperparameters are chosen such that the prior means correspond to the true
parameter values. The hyperparameters are set as follows: λ1 = 2, µ1 = 0.1, λ2 = 100, and
µ2 = 100. The T-K BEs are calculated under the SE loss function. On the other hand, the
MCMC BEs are computed using the SE loss function as well as the LINEX loss function
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with different values of ν (−2, 0.001, and 2) and the GE loss function with different values
of κ (−2, 0.001, and 2).

In Table 1, the MSE and RAB values are provided for the classical estimators of the
parameters. The table clearly demonstrates that the EM estimators outperform the MLE
and MP estimators in terms of having the lowest MSE and RAB values. This indicates that
the EM estimators provide more accurate and less biased parameter estimates compared to
their counterparts, as clearly demonstrated in Figure 1.

In Table 2, the MSE and RAB values are presented for the BEs of the parameters,
specifically under the SE loss function. The table includes results obtained using the T-K
and MCMC techniques. The tabulated results indicate that the performance of the two
methods under different schemes is almost identical, as visually depicted in Figure 2 as
well. Suggesting that both T-K and MCMC methods yield similar results in terms of MSE
and RAB values.

Table 1. The MSEs of the classical estimates for µ0, σ, and θ, along with their corresponding RAB
values, are provided within brackets.

µ0 σ θ

n CS MLE MP EM MLE MP EM MLE MP EM

40 p1 0.48345 0.38437 0.26390 0.04159 0.14822 0.01222 0.00795 0.00634 0.00101
(0.18292) (0.27032) (0.17876) (0.13258) (0.37055) (0.08386) (0.06153) (0.05826) (0.02718)

p2 0.27676 0.32929 0.21991 0.02434 0.13226 0.01140 0.00694 0.00585 0.00100
(0.18075) (0.25572) (0.16967) (0.12104) (0.35167) (0.08338) (0.06065) (0.05550) (0.02732)

p3 0.19653 0.30132 0.20288 0.02351 0.12777 0.01030 0.00510 0.00430 0.00093
(0.16592) (0.24502) (0.16894) (0.12087) (0.34676) (0.07970) (0.05530) (0.05445) (0.02637)

60 p1 0.22157 0.28766 0.19152 0.02118 0.14385 0.00718 0.00546 0.00485 0.00085
(0.15658) (0.24018) (0.15182) (0.11214) (0.37033) (0.06819) (0.05385) (0.05231) (0.02601)

p2 0.16201 0.23724 0.12269 0.01723 0.13064 0.00662 0.00327 0.00403 0.00083
(0.14385) (0.21936) (0.13442) (0.10188) (0.35426) (0.06392) (0.04689) (0.04914) (0.02549)

p3 0.13278 0.19047 0.11819 0.01449 0.12324 0.00673 0.00399 0.00290 0.00081
(0.13819) (0.12115) (0.11269) (0.09458) (0.34376) (0.06484) (0.05024) (0.04505) (0.02521)

80 p1 0.15822 0.24515 0.13522 0.01580 0.14225 0.00544 0.00401 0.00338 0.00079
(0.13113) (0.22474) (0.12670) (0.09824) (0.37088) (0.05839) (0.04583) (0.04441) (0.02553)

p2 0.12900 0.20886 0.12976 0.01305 0.13066 0.00523 0.00330 0.00337 0.00081
(0.12442) (0.20909) (0.12596) (0.08884) (0.35602) (0.05533) (0.04412) (0.04229) (0.02565)

p3 0.09420 0.21711 0.09083 0.01235 0.12027 0.00510 0.00251 0.00232 0.00079
(0.12033) (0.21439) (0.11865) (0.08875) (0.34112) (0.05743) (0.04272) (0.04124) (0.02501)

100 p1 0.09723 0.21292 0.08704 0.01275 0.14167 0.00471 0.00273 0.00245 0.00077
(0.12076) (0.21116) (0.11555) (0.08828) (0.37121) (0.05429) (0.04357) (0.04163) (0.02500)

p2 0.08692 0.19848 0.07887 0.01062 0.12906 0.00432 0.00237 0.00207 0.00075
(0.11444) (0.20703) (0.11012) (0.08211) (0.35498) (0.05233) (0.04050) (0.03829) (0.02471)

p3 0.08407 0.18521 0.07826 0.01055 0.12062 0.00391 0.00232 0.00205 0.00071
(0.11034) (0.19890) (0.10737) (0.08157) (0.34267) (0.04979) (0.03967) (0.03762) (0.02363)
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Figure 1. Comparison of classical estimators: MSE values for different parameters estimators.
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Table 2. The MSEs of the BEs evaluated using the SE loss function, along with their corresponding
RABs (shown in parentheses).

µ0 σ θ

n CS T-K MCMC T-K MCMC T-K MCMC

40 p1 0.00096 0.00098 0.00287 0.00286 0.00430 0.00130
(0.01220) (0.01233) (0.04270) (0.04257) (0.05445) (0.03025)

p2 0.00092 0.00095 0.00263 0.00263 0.00128 0.00130
(0.01218) (0.01225) (0.04125) (0.04125) (0.03001) (0.02917)

p3 0.00083 0.00084 0.00244 0.00244 0.00127 0.00103
(0.01152) (0.01161) (0.03925) (0.03933) (0.02888) (0.02729)

60 p1 0.00076 0.00077 0.00269 0.00270 0.00088 0.00089
(0.01104) (0.01106) (0.04187) (0.04198) (0.02477) (0.02489)

p2 0.00072 0.00073 0.00240 0.00240 0.00074 0.00075
(0.01062) (0.01072) (0.03883) (0.03890) (0.02272) (0.02290)

p3 0.00063 0.00064 0.00234 0.00235 0.00070 0.00071
(0.00999) (0.01008) (0.03861) (0.03861) (0.02210) (0.02219)

80 p1 0.00059 0.00060 0.00241 0.00242 0.00073 0.00074
(0.00968) (0.00972) (0.03861) (0.03876) (0.02237) (0.02247)

p2 0.00055 0.00057 0.00236 0.00236 0.00063 0.00063
(0.00930) (0.00938) (0.03897) (0.03894) (0.02099) (0.02105)

p3 0.00053 0.00054 0.00209 0.00209 0.00060 0.00060
(0.00908) (0.00914) (0.03675) (0.03679) (0.02030) (0.02036)

100 p1 0.00042 0.00046 0.00231 0.00231 0.00056 0.00056
(0.00802) (0.00900) (0.03885) (0.03889) (0.01983) (0.01985)

p2 0.00039 0.00043 0.00212 0.00216 0.00050 0.00050
(0.00798) (0.00816) (0.03672) (0.03689) (0.01886) (0.01888)

p3 0.00034 0.00041 0.00196 0.00214 0.00047 0.00047
(0.00735) (0.00806) (0.03522) (0.03564) (0.01806) (0.01815)
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Figure 2. Comparison of BEs under SE loss function: MSE values for different parameters estimators.

Additionally, in Tables 3 and 4, the MSE and RAB values are presented for the MCMC
BEs of the parameters for three distinct choices of the shape parameter for the LINEX and
GE loss functions. Table 3 corresponds to the LINEX. Based on the tabulated results, we
can conclude that, for the parameters µ0 and σ under the LINEX loss function, the MCMC
BE shows higher accuracy when the parameter ν is set to 2. This means that for a specific
value of ν (in this case, ν = 2), the MCMC BE provides more precise and reliable estimates
for µ0 and σ under the LINEX loss function compared to other values of ν. On the other
hand, for the parameter θ under the same LINEX loss function, the MCMC BE performs
better (i.e., shows higher accuracy) when ν is set to −2.

Moreover, when considering the GE loss function, the MCMC BE of µ0 shows higher
accuracy when κ is assigned a value of 2. Similarly, for the parameter σ, the MCMC BE
exhibits better performance in terms of lower MSE and RAB values when κ is set to 0.001.
On the other hand, for the parameter θ, the MCMC BE demonstrates better performance
when κ is set to −2.
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Table 3. The MSEs of the BEs evaluated under LINEX loss function with different values of ν (−2,
0.001, and 2), along with their corresponding RABs (shown in parentheses).

µ0 σ θ

n CS ν = −2 ν = 0.001 ν = 2 ν = −2 ν = 0.001 ν = 2 ν = −2 ν = 0.001 ν = 2

40 p1 0.00126 0.00098 0.00085 0.00293 0.00286 0.00284 0.00126 0.00130 0.00134
(0.01422) (0.01233) (0.01150) (0.04296) (0.04257) (0.04248) (0.02983) (0.03025) (0.03073)

p2 0.00119 0.00095 0.00086 0.00277 0.00263 0.00255 0.00125 0.00130 0.00136
(0.01376) (0.01225) (0.01179) (0.04233) (0.04125) (0.04061) (0.02866) (0.02917) (0.02973)

p3 0.00106 0.00084 0.00078 0.00253 0.00244 0.00241 0.00101 0.00106 0.00111
(0.01314) (0.01161) (0.01121) (0.04012) (0.03933) (0.03902) (0.02705) (0.02761) (0.02821)

60 p1 0.00105 0.00077 0.00065 0.00282 0.00270 0.00265 0.00086 0.00089 0.00092
(0.01306) (0.01105) (0.01018) (0.04273) (0.04198) (0.04161) (0.02455) (0.02489) (0.02527)

p2 0.00099 0.00073 0.00064 0.00254 0.00240 0.00233 0.00073 0.00075 0.00078
(0.01267) (0.01072) (0.01004) (0.03977) (0.03890) (0.03822) (0.02254) (0.02290) (0.02330)

p3 0.00087 0.00064 0.00057 0.00249 0.00235 0.00229 0.00069 0.00071 0.00073
(0.01177) (0.01008) (0.00962) (0.03974) (0.03861) (0.03857) (0.02185) (0.02219) (0.02257)

80 p1 0.00088 0.00060 0.00049 0.00246 0.00236 0.00233 0.00072 0.00074 0.00076
(0.01198) (0.00972) (0.00884) (0.03993) (0.03894) (0.03862) (0.02224) (0.02247) (0.02273)

p2 0.00081 0.00057 0.00049 0.00256 0.00242 0.00236 0.00061 0.00063 0.00065
(0.01142) (0.00938) (0.00883) (0.039810 (0.03876) (0.03847) (0.02080) (0.02105) (0.02132)

p3 0.00078 0.00054 0.00048 0.00222 0.00209 0.00205 0.00059 0.00060 0.00062
(0.01113) (0.00914) (0.00871) (0.03772) (0.03679) (0.03656) (0.02010) (0.02036) (0.02065)

100 p1 0.00073 0.00050 0.00045 0.00231 0.00216 0.00214 0.00055 0.00056 0.00057
(0.01096) (0.00901) (0.00867) (0.03677) (0.03564) (0.03557) (0.01964) (0.01985) (0.02008)

p2 0.00070 0.00043 0.00035 0.00243 0.00231 0.00229 0.00049 0.00050 0.00051
(0.01055) (0.00816) (0.00761) (0.03972) (0.03889) (0.03885) (0.01865) (0.01888) (0.01913)

p3 0.00066 0.00041 0.00034 0.00227 0.00214 0.00212 0.00046 0.00047 0.00049
(0.01040) (0.00806) (0.00746) (0.03813) (0.03689) (0.03663) (0.01797) (0.01815) (0.01834)

Table 4. The MSEs of the BEs evaluated under GE loss function with different values of κ (−2, 0.001,
and 2), along with their corresponding RABs (shown in parentheses).

µ0 σ θ

n CS κ = −2 κ = 0.001 κ = 2 κ = −2 κ = 0.001 κ = 2 κ = −2 κ = 0.001 κ = 2

40 p1 0.00194 0.00187 0.00185 0.00288 0.00286 0.00288 0.00127 0.00133 0.00141
(0.01338) (0.01307) (0.01211) (0.04262) (0.04260) (0.04285) (0.02999) (0.03053) (0.03114)

p2 0.00103 0.00093 0.00087 0.00268 0.00260 0.00257 0.00127 0.00132 0.00139
(0.01269) (0.01205) (0.01164) (0.04164) (0.04097) (0.04075) (0.02886) (0.02949) (0.03020)

p3 0.00099 0.00091 0.00087 0.00220 0.00215 0.00221 0.00103 0.00108 0.00115
(0.01252) (0.01203) (0.01184) (0.03596) (0.03566) (0.03631) (0.02728) (0.02794) (0.02868)

60 p1 0.00088 0.00081 0.00078 0.00274 0.00268 0.00268 0.00087 0.00091 0.00094
(0.01189) (0.01141) (0.01124) (0.04219) (0.04185) (0.04189) (0.02469) (0.02511) (0.02558)

p2 0.00078 0.00069 0.00065 0.00245 0.00237 0.00236 0.00074 0.00077 0.00080
(0.01107) (0.01044) (0.01013) (0.03915) (0.03878) (0.03890) (0.02269) (0.02313) (0.02361)

p3 0.00068 0.00061 0.00058 0.00239 0.00232 0.00233 0.00070 0.00072 0.00075
(0.01035) (0.00988) (0.00968) (0.03895) (0.03846) (0.03860) (0.02199) (0.02240) (0.02286)

80 p1 0.00082 0.00072 0.00067 0.00238 0.00235 0.00239 0.00073 0.00075 0.00077
(0.01145) (0.01073) (0.01033) (0.03923) (0.03881) (0.03904) (0.02233) (0.02262) (0.02294)

p2 0.00061 0.00053 0.00050 0.00246 0.00239 0.00240 0.00062 0.00064 0.00066
(0.00976) (0.00910) (0.00884) (0.03907) (0.03865) (0.03890) (0.02126) (0.02120) (0.02153)

p3 0.00058 0.00051 0.00048 0.00212 0.00207 0.00211 0.00059 0.00061 0.00063
(0.00949) (0.00889) (0.00869) (0.03701) (0.03672) (0.03709) (0.02090) (0.02052) (0.02086)

100 p1 0.00065 0.00055 0.00050 0.00246 0.00243 0.00246 0.00055 0.00057 0.00058
(0.01015) (0.00937) (0.00895) (0.03955) (0.03921) (0.03942) (0.01973) (0.01998) (0.02025)

p2 0.00048 0.00040 0.00036 0.00234 0.00231 0.00237 0.00049 0.00051 0.00052
(0.00857) (0.00788) (0.00763) (0.03907) (0.03889) (0.03950) (0.01875) (0.01902) (0.01931)

p3 0.00045 0.00038 0.00034 0.00118 0.00113 0.00119 0.00047 0.00048 0.00050
(0.00850) (0.00772) (0.00746) (0.03723) (0.03682) (0.03718) (0.01804) (0.01825) (0.01849)

Moreover, Table 5 presents the AWs and coverage probabilities (CPs) of the 95% asymp-
totic and Bayesian credible CIs for the parameters µ0, σ, and θ. The table clearly indicates that
the Bayesian credible CIs have narrower widths compared to the asymptotic CIs. This sug-
gests that the Bayesian credible CIs provide more precise and tighter estimation intervals for
the parameters. Also, the Bayesian credible CIs demonstrate better overall performance, as
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indicated by the higher coverage probabilities, implying that they achieve a higher proportion
of correctly capturing the true parameter values within the confidence intervals.

Based on the tabulated results in Tables 1–5, the following general concluding remarks
can be drawn:

1. For a fixed censoring scheme, the trend observed in the tabulated results indicates
that as the sample size n increases, the MSE and RAB values of all estimates decrease.
This trend aligns with the statistical theory, which suggests that larger sample sizes
tend to result in more accurate parameter estimates.

2. The Bayesian estimators consistently outperform the MLEs, EM estimators, and MP
estimators in terms of MSE and RAB values. This highlights the superior performance
of the Bayesian approach in estimation tasks.

3. Among the different progressive censoring schemes p1, p2, and p3, all the estimates
obtained under scheme p3 (traditional type-I interval censoring) exhibit the smallest
MSE and RAB values compared to schemes p1 and p2. This result is in line with
expectations, as longer testing duration and lower censoring rates generally lead to
more accurate parameter estimation.

4. The BEs of the parameters under the LINEX loss function display higher accuracy
compared to the estimators under the SE and GE loss functions.

These conclusions provide insights into the behavior and performance of different
estimation methods, sample sizes, censoring schemes, and loss functions based on the
tabulated results.

Table 5. Comparison of AWs and CPs of 95% asymptotic and Bayesian Credible CIs for µ0, σ, and θ.

µ0 σ θ

n CS ACI BCI ACI BCI ACI BCI

40 p1 2.3253 0.3819 0.7481 0.3416 0.3776 0.1604
0.988 0.998 0.950 0.998 0.976 0.976

p2 2.0258 0.3824 0.6322 0.3316 0.3303 0.1541
0.969 0.975 0.912 1.000 0.946 0.993

p3 2.0878 0.3818 0.6215 0.3280 0.3574 0.1542
0.979 1.000 0.916 0.966 0.968 0.968

60 p1 1.8085 0.3785 0.5848 0.3238 0.2948 0.1352
0.972 0.949 0.948 0.978 0.962 0.977

p2 1.5894 0.3773 0.5142 0.3117 0.2710 0.1304
0.976 0.977 0.940 0.994 0.963 0.982

p3 1.5286 0.3771 0.4848 0.3061 0.2553 0.1290
0.969 0.998 0.928 0.999 0.948 0.988

80 p1 1.5169 0.3752 0.5041 0.3088 0.2537 0.1207
0.973 0.945 0.943 0.999 0.962 0.972

p2 1.3455 0.3728 0.4456 0.2953 0.2266 0.1162
0.975 0.985 0.940 0.995 0.958 0.983

p3 1.3270 0.3731 0.4201 0.2878 0.2284 0.1153
0.967 1.000 0.932 0.996 0.961 0.982

100 p1 1.2512 0.3718 0.4443 0.2950 0.2159 0.1108
0.972 0.954 0.938 0.997 0.953 0.982

p2 1.1732 0.3689 0.4005 0.2810 0.2046 0.1069
0.969 0.950 0.942 0.995 0.957 0.984

p3 1.1352 0.3681 0.3692 0.2720 0.1961 0.1057
0.960 0.994 0.905 0.988 0.948 0.985

5.2. Data Analysis

The life data from steel samples, which were randomly divided into groups of 20 items,
indicates that each group experienced varying levels of stress intensity (Kimber [38];
Lawless [39]). Cui et al. [40] demonstrated that the data could be well described by a
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log-normal distribution. Our analysis specifically focused on the data obtained from stress
levels ranging from 35 to 36 MPa, with a normal stress level set at 30 MPa. To facilitate
convenience, the data is replicated in Table 6 for easy reference.

Table 6. Data on steel specimens’ life under different stress levels.

Stress (MPa) Failure Times

35 230, 169, 178, 271, 129, 568, 115, 280, 305, 326, 1101, 285, 734, 177, 493, 218, 342, 431, 143, 381

36 173, 218, 162, 288, 394, 585, 295, 262, 127, 151, 181, 209, 141, 186, 309, 192, 117, 203, 198, 255

37 141, 143, 98, 122, 110, 132, 194, 155, 104, 83, 125, 165, 146, 100, 318, 136, 200, 201, 251, 111

38 100, 90, 59, 80, 128, 117, 177, 98, 158, 107, 125, 118, 99, 186, 66, 132, 97, 87, 69, 109

A progressively type-I interval censored sample is generated randomly from this
dataset, taking into account the predetermined inspection times tij = j ∗ 50, under the
scheme p = (0, 0, 0, 0, 1). The resulting simulated sample is presented in Table 7.

Table 7. The progressively type-I interval censored sample.

Stress Level Xij Rij

S1 (0, 0, 3, 3, 1) (0, 0, 0, 0, 13)
S2 (0, 0, 3, 7, 3) (0, 0, 0, 0, 7)
S3 (0, 3, 10, 4, 1) (0, 0, 0, 0, 2)
S4 (0, 10, 7, 3, 0) (0, 0, 0, 0, 0)

Tables 8–12 provide the corresponding point and interval estimates for the parameters
µ0, σ, and θ. Non-informative priors are utilized to obtain the BEs since there is insufficient
prior information available.

Table 8. The classical point estimates for µ0, σ, and θ of the real data.

µ0 σ θ

MLE MP EM MLE MP EM MLE MP EM

9.6536 × 10−12 1.49323 × 10−12 9.65582 × 10−11 6.53758 6.55732 6.52934 1.8055 × 10−13 2.11906 × 10−12 1.8055 × 10−13

Table 9. The BEs under the SE loss function of the real data.

µ0 σ θ

T-K MCMC T-K MCMC T-K MCMC

9.9638 × 10−10 9.6536 × 10−12 6.51924 6.59627 3.2541 × 10−14 4.54567 × 10−13

Table 10. The BEs under LINEX loss function with different values of ν for the real data.

µ0 σ θ

ν = −2 ν = 0.001 ν = 2 ν = −2 ν = 0.001 ν = 2 ν = −2 ν = 0.001 ν = 2

9.58256 × 10−12 2.22045 × 10−13 9.5825 × 10−12 7.17327 6.59605 6.24409 4.53526 × 10−13 1.0147 × 10−14 4.53415× 10−13

Table 11. The BEs under GE loss function with different values of κ for the real data.

µ0 σ θ

κ = −2 κ = 0.001 κ = 2 κ = −2 κ = 0.001 κ = 2 κ = −2 κ = 0.001 κ = 2

9.6536 × 10−12 9.6536 × 10−12 9.6536 × 10−12 6.62828 6.56482 6.5037 5.33591 × 10−13 3.36419 × 10−13 5.49065× 10−13
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Table 12. The ACI and BCI of µ0, σ, and θ for the real data.

µ0 σ θ

ACI BCI ACI BCI ACI BCI

(−0.221022, 0.221022) (−0.05928, 0.201439) (5.2699, 7.80526) (5.48794, 8.04582) (1.8055 × 10−13,
1.74424 × 10−12)

(2.8756 × 10−14,
9.93455 × 10−13)

6. Conclusions

This article discusses statistical analysis in the context of progressive type-I interval
censoring for the log-normal distribution in a CS-ALT setting. Both classical and Bayesian
inferential procedures are applied to estimate the unknown parameters. To approximate the
MLEs of the model parameters, the EM algorithm and mid-point approximation method are
employed. For the Bayesian approach, the BEs are obtained based on different loss functions,
namely the SE, LINEX, and GE loss functions. The Tierney–Kadane and MCMC methods are
used to obtain approximate BEs. Additionally, the article derives the asymptotic confidence
intervals based on the normality assumption of the MLEs and the Bayesian credible intervals
using the MCMC procedure. The performance of the different estimation methods is
evaluated through a simulation study. The results indicate that the BEs perform well based
on measures such as mean squared error and relative absolute bias of the estimates.

While this article focuses on CS-ALT with progressive type-I interval censoring and
the log-normal distribution, the same methodology can be applied to other lifetime distri-
butions under different censoring schemes as well.

Overall, this article provides a comprehensive analysis of statistical procedures for
estimating parameters in CS-ALT with progressive type-I interval censoring, specifically
for the log-normal distribution.
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