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Abstract: One of the critical warehousing processes is the order-picking process. This activity
consists of retrieving items from their storage locations to fulfill the demand specified in the pick lists.
Therefore, the storage location assignment affects the picking time and, consequently, reduces the
operating costs of the warehouse. This work presents two alternative mixed-integer linear models and
an adaptive multi-start heuristic (AMH) for solving the integrated storage location and picker-routing
problem. The problem considers a warehouse with a general layout and precedence constraints for
picking according to the products weight. Experimental work confirms the efficiency of the proposed
reformulations since we found out a total of 334 tested instances and optimal solutions for 51 new
cases and 62 new feasible solutions. The proposed AMH improved more than 29% of the best-known
solutions and required an average execution time of 117 s. Consequently, our proposed algorithm
is an attractive decision-making tool to achieve efficiency when solving practical situations in a
warehouse.

Keywords: warehousing; picker-routing problem; storage location; mixed-integer linear programming;
heuristic; precedence constraints

1. Introduction

Companies need to perform supply chain management to satisfy customer demand
and provide high-quality service. Therefore, all the involved activities must be aligned to
this end, maintaining a balance between cost and efficiency. According to [1,2], warehouses
are critical components of supply chains responsible for reception, warehousing, picking,
packing, and shipping products between suppliers and customers. Hence, warehouse man-
agement is important for the proper operation of an organization, and any improvement
that reduces costs will contribute to the efficiency and effectiveness of the supply chain.

Order picking is the highest-priority process in warehouses, representing around 60%
of operational costs [3,4]. Hence, any performance improvement in this activity will allow
us to reduce these costs. According to [5–7], one strategy to improve the order-picking
process is to reduce the total picking time (or travel time) by simultaneously making
decisions for the storage location assignment (tactical planning) and the picker-routing
problem (operational planning). A correct product location facilitates and accelerates the
retrieval of orders and improves the productivity of other warehouse activities [8], allowing
better customer service.

Although much of the research focuses on studying both decisions independently,
based on the literature [9,10], optimizing each problem separately may lead to a suboptimal
solution for the entire warehouse. Since new trends in the logistics industry require even
more efficient picking operations, these problems must be considered simultaneously to be
competitive in the market.
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According to [11], even though studying both problems simultaneously is not new,
some researchers oppose this method and believe that the integrated model can be useless
due to the different time horizons of both problems since the routing is an operational
problem with short time horizons while the storage location has a more extended period.
Nevertheless, in [12], the simultaneous method presented better results than the inde-
pendent method. In the same way, authors from [11] mentioned that integrating storage
location and picker-routing decisions is a well-practice that has demonstrated its advan-
tages to improve picking efficiency, mainly when the demand of each product and the
products contained in each order are known.

Significant efforts have been made throughout the past 30 years to improve the order-
picking process [4,13]. Based on [14–17], the weight of the products is a barely considered
feature, which may be a key consideration when retrieving the products from the orders
since it avoids impacts or damages on the items. The main motivation to consider the
weight of the products is that planning the retrieval routes of the orders does not consider
this factor. Consequently, pickers choose alternative routes to keep a good presentation
of the final product (customer order). However, this deviation from the planning routes
carries out an increment in the picking times. Therefore, the company employs additional
labor to deliver customer orders at the right time and in the right condition. See Section 3
for more details about the case study.

In this work, we integrate storage location and picker-routing decisions with prece-
dence constraints (according to the weight of the products) to solve a warehouse man-
agement problem recently introduced by [18]. The aim is to propose new mathematical
reformulations by adding valid inequalities and sub-tour elimination constraints based on
the flow of a single commodity proposed by [19] to improve the computational performance
of the existing optimization model proposed by [18]. Similarly, we propose a heuristic that
can generate high-quality solutions (close to optimal) for all instances tested.

The next part of this work is structured as follows: Section 2 provides a brief review
of the related work. Section 3 presents a general description of the case study. Section 4
describes the proposed reformulations and the adaptive multi-start heuristics. Section 5
shows experimental results and discussion regarding the performance of the proposed
models and algorithm. Finally, Section 6 presents our conclusions.

2. Related Work

In the literature [9], three main problems were established: the planning of customer
orders, batching, storage location assignment, and order picker routing. They mentioned
that the storage location and routing are among the top-performing excellent planning
problem combinations to minimize the picking time. However, even though several
authors have widely studied these problems in the literature, such as [5–7,14,20,21], most
of their methodologies focus on developing solution methods in the warehouse with
rectangular or block layouts. Nevertheless, other non-traditional layouts exist, such as
the fishbone used in [22–24], U-shape in [25], an unusual layout presented in [17], an
irregular layout used in [26], a layout of the robotic mobile fulfillment system (RMFS)
in [27,28], or the general warehouse studied by [18], which is used in this work. On the
other hand, although our case study company does not use a radio-frequency identification
system (RFID), in the literature [29], the authors developed an interesting contribution
for the optimized RFID system for different warehouses with an L-shape and U-shape.
Additionally, they mentioned the importance of studying other warehouse shapes rather
than the rectangular shape.

To determine the total picking time, [1] identified four main activities, setup, searching,
picking, and travel, where travel is the most expensive activity (representing 55% of the
picking time). Furthermore, based on [3], travel represents the only variable part since it
depends on the total length of the picker routing [30], while the other activities can be taken
as constants.
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According to [9,30–32], the picker-routing problem belongs to the NP-Hard class of
issues since it can be interpreted as a special case of the traveling salesman problem (TSP)
or the vehicle routing problem (VRP), depending on the features of the problem. Hence,
solving the storage location and the picker-routing problem could be very difficult. There-
fore, exact methods [30,33], heuristics [14,20,22,34,35], metaheuristics [5,11,16], genetic
algorithms [7,36], and stochastic models [24,28] have been proposed to solve both problems
sequentially or integrated.

Some related work to integrating location assignment and order picker-routing de-
cisions can be found in [5,7,11,18]. In the literature [5], although the authors proposed a
mathematical model and a metaheuristic algorithm, they did not consider the weight of
the products in the routing, and a single product was assigned to multiple locations within
the warehouse. However, in [7], the authors did not consider the criterion of the weight of
the products when assigning them to the locations. For the routing, they contemplated the
concept of the shortest order-picking routes in the proposed genetic algorithms. On the
other hand, in the literature [11], although the authors presented different non-linear mod-
els, their respective linearizations, and a GNV metaheuristic, the authors did not consider
the weight of the products in the routing policies used. Finally, in [18], even though the
authors proposed a mathematical model, where precedence constraints were considered
based on the weight of the products in the routing and a unique location for each product
in a warehouse with a general design, it was not possible to find the optimal solutions for
all the analyzed instances, leaving the way for the proposal of more efficient algorithms to
address this issue. Therefore, since this last work deals with the characteristics of the case
study, the mathematical model called SLAUPR by the authors is used as a framework in the
present research. See Section 4.1 for more details about the SLAUPR model. Table 1 depicts
an overview of works related to combining the storage location assignment problem and
picker-routing problem.

It is noteworthy that factors such as inventory level, uncertain demand, or product
deterioration are criteria that affect storage policies. See, for instance, Refs. [37,38], where
the authors studied the topic of strategic planning in a multi-period multi-product inventory
model under uncertain demand to minimize the storage locations and developed inventory
models with conditions of deterioration of products, respectively. However, in this work,
these criteria are omitted, given the characteristics of our case study.

Table 1. Overview of works related to combining the storage location assignment problem and
picker-routing problem.

Works Picking
System Warehouse Layout Integrated

Solution

Stored in
Multiple
Locations

Considered Factors Method

Daniels et al. [5] Low-level - ! ! Demand Mathematical model.
Metaheuristic (Tabu search)

Dekker et al. [14] Low-level Multiple blocks X X Demand. Type of product Heuristics

Dijkstra and Roodbergen [21] Low-level Single block X X Demand Dynamic programming

Žulj et al. [15] Low-level Single block X X Weight of product Exact algorithm

Bolaños-Zuñiga et al. [18] Low-level General ! X Demand. Weight of product Mathematical model

Kordos et al. [7] - - ! X Demand Genetic algorithms

Silva et al. [11] - Single block ! X Demand Mathematical model.
Metaheuristic (GVNS)

Cai et al. [27] Robot RMFS ! X Demand Mathematical model

Keung et al. [28] Robot RMFS X X Demand
Deterministic and stochastic

models. Shortest
path heuristics

Xu and Ren [35] Low-level Single block ! !
Demand correlations.
Congestion of pickers

Mathematical model.
Heuristic

Zhou et al. [24] Low-level Fishbone X X Demand Stochastic model
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Table 1. Cont.

Works Picking
System Warehouse Layout Integrated

Solution

Stored in
Multiple
Locations

Considered Factors Method

Lee [39] Low-level Single and
two blocks ! X Frequency and relation

of SKUs Analytical models

Alqahtani [40] High-level - X X Picking frequency Analytical formulas

This work Low-level General ! X Demand. Frequency and
weight of product

Mathematical model.
Heuristic

Although several heuristics or algorithms have been proposed to simultaneously or
sequentially solve the above-referenced problem with different variants (as seen in [41–43]),
as far as we know, no other work in the literature has improved the results reported by [18].
However, when we try to solve the problem with a commercial solver like CPLEX, it
struggles to find even feasible solutions when the instance size is medium or large.

Therefore, to improve the computational performance of the SLAUPR, the main contri-
bution of this research is the development of mathematical reformulations considering valid
inequalities and single commodity flow constraints for sub-tours elimination, as well as the
design of an adaptive multi-start heuristic (AMH) as an approximation method to solve
real-size or large instances in a short computation time. The AMH is a relatively simple
heuristic based on articles such as [44–46]. It consists of two main phases, construction and
improvement, which require few parameters to be tuned, and it performs well on many
combinatorial optimization problems [47,48].

3. Case Study Description

The proposed method is motivated by a situation presented in the warehouse of
products sent abroad (called exportation warehouse) of a company in the food sector
located in Monterrey, Mexico. The company is well known for its excellent delivery service
and presentation of customer orders, and keeping this standard is very important. The
company owns the production and supply echelons of its supply chain. Thus, in this
work, we do not consider a transportation disruption that occurs within the transportation.
Nevertheless, in practice, there are some companies whose suppliers and transportation
belong to different companies, and there are risks in the transport and manufacturing
of products. See, for instance, Ref. [49], where the authors proposed some strategies to
address the transportation hazard problem.

The company has a warehouse with a general layout (see Figure 1) and stable product
demand per period, mainly dependent on the seasons of the year. For that reason, the
storage locations of products may change periodically. The warehouse has 185 available
storage locations divided into four areas (A, B, C, and D). Each stock-keeping unit (SKU) is
based on its request frequency (the request frequency of a product is the number of times
the product is demanded during a specific period.) or demand and assigned to a unique
storage location within a specific area. Each SKU represents a box with the same type of
product (i.e., cookies and bread). The SKUs in areas A, B, and C are stored on pallets, and
in area D, the product is stored in boxes. The company does not have any issue to fulfill
the demand, but the storage locations in the warehouse have different physical capacities.
These capacities are sufficient to satisfy the demand for any product and are known in
terms of boxes, contingent upon the type of product assigned.

In the studied problem, warehouse management is performed through a warehouse
management system (WMS). The system generates the route or sequence that the picker
must follow through the warehouse to retrieve the requested product (low-level picking).
However, when planning these routes, which must start and end at the depot, the system
does not consider the weight of the SKUs boxes (even though it is known), so pickers choose
alternate routes to keep a good presentation of the customer orders. Usually, these decisions
increase the picking time since the products do not have an appropriate storage location.
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Consequently, the company allows extra labor hours to keep customer satisfaction,
representing more cost and decreasing productivity. Based on [50], minimizing travel time
is essential in reducing costs and delays. The research of [18] proposed a mathematical
model to solve the increase in picking time problem. However, due to the complexity of
the problem, for some real-size instances, there is no known feasible solution. Therefore, in
this research, we propose new models and a heuristic to improve the best-known solutions
and to have a decision-support algorithm that can be used in practice.

Figure 1. Warehouse layout of the case study from the literature [18].

4. Materials and Methods

Due to the low performance achieved with the SLAUPR proposed by [18], it is hard to
solve instances with medium and large sizes. Therefore, we propose two reformulations for
the SLAUPR (see Section 4.1) and an adaptive multi-start heuristic (see Section 4.2). Table 2
provides the notation employed in the mathematical models and the proposed heuristic.

Table 2. Notation used in mathematical models and the heuristic approach.

Index Sets

I Store locations including the depot
K Available products in the warehouse
P Requested orders
X ⊆ K Products to assign

Parameters

dkp Demand of product k ∈ K in order p ∈ P
Qjk Physical capacity of location j ∈ I to store product k ∈ K
tij Time matrix between locations (i, j ∈ I)
wk Weight of product k ∈ K
Mpjk min {dkp, Qjk}
M max

k∈K
{wk}

Decision variables

upij =

{
1, if a picker visits location j after location i(i, j ∈ I) while picking order p ∈ P
0, otherwise

ejk =

{
1, if location j ∈ I stores product k ∈ K
0, otherwise

vpjk Number of boxes of product k ∈ K for picking in order p ∈ P at location j ∈ I .

sjp
Auxiliary variable for subtour elimination constraints, it keeps the position in which
location j ∈ I is visited while picking order p ∈ P
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4.1. Proposed Reformulations

First, we describe the formulation introduced by [18] (SLAUPR), followed by the
proposed reformulations. For the first reformulation, we propose valid inequalities for the
SLAUPR model and better bounds for some constraints. We propose another formulation
for the sub-tour elimination constraints for the second reformulation.

The SLAUPR formulation is the following:

min ∑
i∈I

∑
j∈I

∑
p∈P

tijupij (1)

s.t : ∑
j∈I

vpjk ≥ dkp ∀ k ∈ X, p ∈ P (2)

∑
p∈P

vpjk ≤ Qjk ∀ j ∈ I, k ∈ X (3)

∑
j∈I\{0}

up0j = 1 ∀ p ∈ P (4)

∑
k∈X

ejk ≤ 1 ∀ j ∈ I (5)

∑
j∈I\{0}

ejk = 1 ∀ k ∈ X (6)

vpjk ≤ Mpjk ∑
i∈I

upij ∀ k ∈ X, p ∈ P, j ∈ I (7)

vpjk ≤ Mpjk ejk ∀ k ∈ X, p ∈ P, j ∈ I (8)

∑
j∈I

upij ≤ 1 ∀ i ∈ I, p ∈ P, i 6= j (9)

∑
j∈I

upji ≤ 1 ∀ i ∈ I, p ∈ P, i 6= j (10)

sip − sjp + |I|upij ≤ |I| − 1 ∀ i, j ∈ I\{0}, p ∈ P, i 6= j (11)

upii = 0 ∀ i ∈ I, p ∈ P (12)

∑
i∈I

upij = ∑
i∈I

upji ∀ j ∈ I, p ∈ P, i 6= j (13)

∑
k∈X

eikwk − ∑
l∈X

ejlwl ≥ M(upij − 1) ∀ i, j ∈ I\{0}, p ∈ P (14)

upij ∈ {0, 1} ∀ i, j ∈ I, p ∈ P (15)

ejk ∈ {0, 1} ∀ j ∈ I, k ∈ X (16)

sjp ≥ 0 ∀ j ∈ I, p ∈ P (17)

vpjk ∈ Z+
0 ∀ p ∈ P, j ∈ I, k ∈ X. (18)

The objective function (1) minimizes the travel time. Constraints (2) and (3) guarantee
the satisfaction of the demand and the capacity of the storage locations, respectively.
Condition (4) defines the depot as the beginning point for each route. Constraints (5) and (6)
assign each product to a unique storage location, but not all locations need to be allocated.
Constraints (7) and (8) link the retrieved products to the assignment and routing variables.
Constraints (9) and (10) guarantee that each location is visited at most once on each
route. Conditions (11) and (12) correspond to the sub-tours elimination constraints (MTZ)
proposed by [51]. These sets of constraints are needed since some products have the same
weight. Constraint (13) guarantees the flow conservation by order. Precedence constraints
based on the weight of the products (14). Finally, Constraints (15)–(18) correspond to the
variables domain. However, the main difficulty presented by SLAUPR is that when a
general-purpose solver tries to solve the problem using this model, it struggles to find even
feasible solutions.
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Then, with the aim of strengthening the SLAUPR performance, we analyzed the
existing formulation, derived valid inequalities, and reformulated the sub-tour elimination
constraints as follows:

• Constraints (3) and (8) were merged since it is possible to guarantee with a single
constraint that the product is retrieved without exceeding the capacity (inventory) of
the corresponding storage location:

∑
p∈P

vpjk ≤ Qjk ejk ∀j ∈ I, k ∈ X. (19)

• Redundant constraints (10) were removed.
• Constraints (11) were replaced by

sip − sjp + (Mp + 1) upij ≤ Mp ∀ i, j ∈ I\{0}, p ∈ P, i 6= j, (20)

where Mp corresponds to the number of different products in order p ∈ P. Mp is a new
parameter that is created to bound |I| without losing feasibility in Constraints (11).

• In Constraint (14), parameter M is set as M = max
k∈X
{wk} to bound the value in this

parameter.

Considering the previous modifications, the first proposed reformulation, referred to
as SLAUPR_V2, is composed of expressions (1), (2), (4)–(7), (9), (12)–(18), (19), and (20).
Therefore, SLAUPR_V2 has two fewer sets of constraints than the SLAUPR.

Based on the empirical results from literature [52], the elimination of sub-tours pro-
posed by [19] presents better performance than other analyzed formulations. Therefore,
according to the structure of the SLAUPR, it is proposed to replace Constraint (20) and
perform a reformulation using constraints presented by [19]. Variables gpij are added to
describe the flow between location i ∈ I and j ∈ I in each order p ∈ P. The proposed
sub-tour elimination constraints are the following:

gpij ≤ Mp upij ∀ i, j ∈ I, p ∈ P, j 6= 0, (21)

∑
j∈I

gpji − ∑
j∈I\{0}

gpij = ∑
j∈I\{0}

upji ∀ i ∈ I\{0}, p ∈ P. (22)

Constraints (21) guarantee the flow corresponding to the number of products to be
retrieved, and constraints (22) ensure that in each location included in the route, a single
unit of the flow is left.

Based on the above, the second mathematical reformulation proposed, which we
named SLAUPR_V3, is composed of expressions (1), (2), (4)–(7), (9), (12)–(18), (19), (21)
and (22). Hence, the proposed model SLAUPR_V3 has one fewer set of constraints than the
SLAUPR but one more than the SLAUPR_V2.

4.2. Proposed Heuristic

It is well known in the literature that using heuristics or metaheuristics can accelerate
the convergence of exact methods and provide a favorable time solution to complex or
real-size problems. Therefore, due to the complexity of the SLAUPR, we also designed an
adaptive multi-start heuristic (AMH) based on the greedy randomized adaptive search
procedure (GRASP). One of the main advantages is the ease of implementation and the
construction of high-quality solutions that are later improved, usually with a local search
procedure that starts from the constructed solution by exploring a defined neighborhood
iteratively. Also, the AMH has been plenty employed due to its efficiency in sorting out
complex vehicle routing problems as mentioned in the works of [53–55].

We focused on the design of each AMH phase to generate high-quality solutions
in a short computational time. Furthermore, to restrict the candidate lists (RCL), in the
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constructive phase, the value of the quality parameter (α) is automatically tuned during the
solution process, depending on the instance on hand.

A general scheme of the proposed AMH can be seen in Algorithm 1. Let iter_1 be
the maximum number of iterations of the constructive improvement cycle; instance is the
instance on hand; α ∈ {0, 1} is a quality parameter; f(S) represents the objective function
value or total picking time; and lsIter and lsTime are the consecutive non-improvement
solutions and the execution time limit for the improvement phase, respectively.

Algorithm 1 Adaptive multi-start heuristic (AMH).

Input: instance, iter_1, lsTime, lsIter α
Output: S∗: the best solution found

1: for i = 0 to Iter_1 do
2: S← Constructive phase(instance, α)
3: S∗ ← S
4: counter ← 0
5: while time ≤ lsTime & counter ≤ lsIter do
6: S′ ← Improvement phase (S∗, lsIter, lsTime)
7: if f(S∗) > f(S′) then
8: S∗ ← S′

9: counter ← 0
10: else
11: counter ← counter + 1
12: end if
13: end while
14: i← i + 1
15: end for

4.2.1. Constructive Phase

The proposed algorithm for the constructive phase consists of a randomized con-
struction heuristic (RCH) composed of two steps: the first one is related to the storage
location assignment, and the second one to the sequence of order retrieval and total picking
time by considering the constraints of the problem. Algorithm 2 depicts the procedure for
the first step.

A candidate list (CL) is generated with the evaluation function values, denoted as fa[k],
of each product k ∈ X to determine the first product that will be assigned. Subsequently,
a restricted candidate list (RCL) is created. The elements to include are determined by
CL[k] ∈ {CLmin, CLmin + α(CLmax − CLmin)}, where α is a quality parameter, and CLmin and
CLmax are the minimum and maximum values of the CL, respectively.

Notice that if α = 0, the RCL only contains the CLmin element. While if α = 1, the
RCL will include all the elements of the CL, which implies that the final solution could
be completely random. So, the α value helps to restrict the selection of the best elements
during the construction of the solutions.

The evaluation function used in our AMH is defined by Equation (23):

fa[k] =
wk
f pk

, (23)

where f pk is the request frequency of the product k ∈ X, i.e., the number of pick lists where
product k ∈ X is demanded.

Once the elements in the RCL are determined, one product is randomly chosen and
removed from the CL. To decide the storage location j, we use the nearest neighbor criterion;
based on tij, we calculate timeNeighbor[i, j, 0] ∀ i ∈ I, j ∈ I\{0}, which is the traveling
time from location i ∈ I to location j ∈ I\{0} and returning to location 0, defined as the
starting and ending location (depot). Hence, the best storage location to assign the first
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product will be the one with the smallest value of timeNeighbor[0, j, 0], where j ∈ I\{0}
is the nearest free adjacent location to location 0.

For the next product to be assigned, the RCL starts over. One product is randomly
chosen and removed from the CL. To decide the location assignment, a free adjacent location
to the last assigned location i ∈ I is the one with the smallest value of timeNeighbor[i, j, 0].
In the event of a timeNeighbor[i, j, 0] tie between several free adjacent locations, one of
them is randomly chosen. The previous process is repeated until all the products k ∈ X
are assigned to a unique storage location j ∈ I\{0}, where assignProductToLocation
represents the relation of products to storage locations.

Algorithm 2 First step of the RCH: storage location assignment.

Input: Instance, α.
Output: assignProductToLocation

1: Compute fa[k] ∀ k ∈ X
2: Generate CL
3: Calculate timeNeighbor[i, j, 0] ∀ i ∈ I, j ∈ I\{0}
4: l ← 0
5: while CL 6= ∅ do
6: Create RCL← {r ∈ CL, r ≤ CLmin + α(CLmax − CLmin)}
7: Randomly choose r∗

8: Remove r∗ from CL
9: j← arg min

l∈I\{0}
timeNeighbor[l, j, 0]

10: assignProductToLocation(r∗, j∗)
11: l ← j∗

12: end while

After assigning products to storage locations, the second step of the RCH consists of
determining the routes the picker must follow to retrieve the products from each order. The
products from each order are collected by following a decreasing arrangement of the weight
of the products. Finally, f(S) is the resulting sum of the picking time of the generated routes.

4.2.2. Improvement Phase

The proposed improvement phase is a local search procedure, in which an initial
solution is obtained from the RCH. The neighborhood is explored based on the first
improvement, which moves to the first feasible solution that improves the value of the
current solution.

For building the neighborhood, we propose a strategy that switches the storage
location of a pair of products with similar weights to minimize the total picking time.
To determine which products k1 and k2 are exchanged, the first one, k1, is randomly
chosen. Subsequently, a product k2 of equal or similar weight is identified, and storage
locations are exchanged. AMH stops when it reaches a maximum number of iterations
(lsIter = 200) or a maximum time limit (lsTime = 60 s). The process is repeated until a
stopping criterion is met, and the best-found solution is reported.

The lsIter and lsTime values are determined based on the results of a design of
experiments. For lsIter, the heuristic shows that after 200 iterations, the value of the
solution found by the local search does not improve. For lsTime, it shows that for the local
search, the execution time of each analyzed instance is less than 60 s.

4.2.3. Adaptive Process

To avoid the manual calibration of the quality parameter α used to create the
RCL, the value of this parameter is automatically tuned according to the results in the
previous iterations. Therefore, the parameter α can take any value from a discrete set
Λ = {α1, α2, . . . , αm} of possible values with a probability of pi. Then, in the first iteration
of the AMH, each value has the same probability of being selected pi =

1
m , i = 1, 2, . . . m.
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According to [48,56], after a definite number of iterations, the probabilities for each α
are periodically recomputed using Equation (24):

pi =
qi

∑m
j=1 qj

, (24)

where qi =
1
Ai

, and Ai represents the average objective value of all solutions found by
using αi ∈ Λ. According to the definition of qi, it can be deduced that if the selected αm has
found good solutions, then its pm will be higher.

Let Iter_2 be the number of iterations to recompute the probabilities pi. Matching
some of the most commonly used methodologies in the literature and a design of experi-
ments, ten possible values for α are utilized for the AMH and the value of Iter_2 = 100.

5. Results and Discussion

The performance of our proposed solution methods are evaluated in the instances pre-
sented by [18]. The instances are categorized into four scenarios and four different sizes. The
main characteristics of the instances are displayed in Table 3. Column Storage location (|I|)
represents the number of available storage locations. Column Requested products shows
the range of the total number of the requested products. Column Products to assign (|X|)
displays the range of the number of different products to be assigned. Column Order to
pick (|P|) shows the number of requested orders. Finally, Column Number of instances
represents the number of instances available in the literature. See [18] for more details.

Table 3. Instance description from [18].

Instance Size Storage Location |I| Requested
Products Products to Assign |X| Orders to Pick |P| Number of

Instances

Small 10–16 4 1–16 2–4 90

Medium type_1 32 8–16 5–32 1–5 144

Medium type_2 61 15–30 12–61 1–5 75

Large 121–185 30 25–104 1–6 25

The proposed SLAUPR_V2 and SLAUPR_V3 were developed in GAMS software
version 23.7.0 Cplex 12. We considered the same stopping time proposed by [18]: 3600 s for
instances of up to 32 locations, 7200 s with 61 locations, 10,800 s with 121 locations, and
14,400 s for instances with the 185 locations available in the warehouse.

The proposed AMH was coded in C++, the maximum number of iterations was set to
1000, and the set of values of the quality parameter α was defined as
Λ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

The experiments were carried out on a computer with a 2.4 GHz Intel Xenon processor,
64 GB RAM, and a hard disk with a 2 TB capacity.

5.1. Proposed Reformulations

Table 4 shows a summary of the obtained results. The F/O columns describe the
number of solutions and the number of optimal ones reported in the literature (SLAPR)
and found with SLAUPR_V2 and SLAUPR_V3, respectively. The Average optimality gap
(%) columns represent the average percentage of the optimality gap reported by CPLEX of
each method.

According to the results shown in [18], for the small and medium type_1 instances,
scenario_1 and scenario_2 are the least complex. In contrast, scenario_3 and scenario_4
are the ones that present the highest complexity, except when only one order must be
picked. Moreover, all scenarios are complex for the medium type_2 and large instances to
be optimally solved. Therefore, [18] does not report feasible solutions from scenario_4 of
medium type_2 and scenario_1 of the large size.
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Table 4 shows that the solutions found by the proposed SLAUPR_V2 and SLAUPR_V3
are competitive compared to the results by SLAUPR. Notice that for small instances, both
proposed models find six new cases with optimal solutions for scenario_3 and scenario_4,
respectively. However, the average optimality gap obtained by the SLAUPR_V3 model for
the instances of these scenarios (3.83% and 8.48%, respectively) is better than that reached
by SLAUPR_V2 (19.24% and 23.27%, respectively), as well as for those reported in the
literature (33.47% and 35.92%, respectively).

Table 4. Summary solutions reported by [18] against the ones obtained by the proposed mathematical
reformulations.

Size
Instance Scenarios

SLAUPR SLAUPR_V2 SLAUPR_V3

F/O Average
Optimality Gap (%) F/O Average

Optimality Gap (%) F/O Average
Optimality Gap (%)

Small

1 24/24 0.00 24/24 0.00 24/24 0.00
2 24/24 0.00 24/24 0.00 24/24 0.00
3 18/6 33.47 18/12 19.24 18/12 3.83
4 24/6 35.92 24/12 23.27 24/12 8.48

Totals 90/60 90/72 90/72

Medium
type_1

1 30/3 32.11 31/23 7.68 34/25 6.15
2 30/16 22.62 33/24 13.13 36/24 15.63
3 17/12 14.21 17/12 15.20 27/12 23.54
4 6/0 63.49 14/0 74.43 19/0 54.98

Totals 83/32 95/59 116/61

Medium
type_2

1 18/0 81.81 17/0 57.15 25/0 34.94
2 24/0 88.51 26/0 73.17 25/0 57.53
3 7/1 53.41 7/4 22.44 8/3 37.78
4 0/0 - 0/0 1/0 81.04

Totals 49/1 50/4 59/3

Large
1 0/0 - 0/0 - 0/0 -
2 3/0 94.68 6/0 99.29 0/0 -
3 2/0 83.16 1/0 98.23 4/0 87.55

Totals 5/0 7/0 4/0

Totals 227/87 242/135 269/136

For medium type_1 instances, both models find better results than those reported in the
literature. SLAUPR_V2 obtains 12 new cases with a feasible solution and 27 with an optimal
solution, while SLAUPR_V3 finds 33 new cases with a feasible solution and 29 with an
optimal solution. Similarly, the average optimality gap achieved by the SLAUPR_V3 model
for the instances of the four scenarios (6.15%, 15.63%, 23.54%, and 54.98%, respectively)
is better than the average achieved by SLAUPR_V2 (7.68%, 13.13%, 15.20%, and 74.43%,
respectively), as well as for those reported in the literature (32.11%, 22.62%, 14.21%, and
63.49%, respectively). In scenario_3, it is observed that SLAUPR_V3 reports a higher
average value of the optimality gap since this model achieves finding ten new cases with
a feasible solution, more than those found with SLAUPR_V2 and those reported in the
literature. It should be noted that, for this scenario, the instances where the optimum is
reported and found are those where only one order is requested. However, in scenario_4,
despite the SLAUPR_V3 finding a more significant number of new cases with a feasible
solution, the average optimality gap is better than SLAUPR_V2 and that reported in the
literature since the minimum and maximum optimality gaps reached by both models
are greater.

For medium type_2 instances, although the SLAUPR_V2 model presents better per-
formance for scenario_3 since it manages to find a greater number of new cases with an
optimal solution and the lowest average optimality gap (22.44%) of the three models, the
SLAUPR_V3 model, in general, finds ten new cases with a feasible solution and two with
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an optimal solution, with the main contribution being able to obtain a case in scenario_4
with a feasible solution.

For large instances, SLAUPR seems to have the best average results; however, in
scenario_2, the SLAUPR_V2 model reports three new feasible solutions. In scenario_3,
the SLAUPR_V3 model finds feasible solutions to two new cases. Nevertheless, a feasible
solution to the instance based on real data is still not found with any of the reformulations,
and feasible solutions continue with an optimality gap greater than 80%.

Finally, another essential aspect to highlight from the results by the proposed SLAUPR_V2
and SLAUPR_V3 models is the execution time compared to the one reported by the
SLAUPR since for the 90 instances analyzed in the small size and the 144 in the medium
type_1 size, the SLAUPR_V3 model reduced the execution time, on average, by 48.47%
and 22.34%, respectively. In contrast, the SLAUPR_V2 had an average reduction of 44.66%
and 26.35%, respectively. For medium type_2 and large instances, the variation was
not significant.

Considering the information described above, although the proposed models SLAUPR_V2
and SLAUPR_V3, on average, improve the results reported in the literature, it is still
not possible to find all the instances with feasible solutions in the established execution
time. Nevertheless, the proposed SLAUPR_V3 model finds a more significant number of
cases with feasible solutions, mainly in the medium type_1 size of 80.5% (116/144) and
medium type_2 size 78.7% (59/75), which suggests that using the sub-tour elimination con-
straints based on the flow of commodities proposed by [19] presents a better computational
performance compared to the MTZ restrictions proposed by [51] on this type of problem.

5.2. AMH Performance

The AMH was tested with all the instances studied in the literature, and it was able to
find feasible solutions for all of them. However, when using the optimization models, there
are some instances for which the solver did not report a feasible solution. Therefore, to gain
insight into the quality of the AMH solutions, we analyzed only the instances for which
there is a best-known solution. The best-known is the best solution reported by CPLEX in
the SLAUPR, SLAUPR_V2, or SLAUPR_V3 models.

Table 5 shows the proposed AMH performance. Column Best-known F/O describes
the number of instances with the best-known feasible solutions and the number of optimal
ones found. Column AMH F/O describes the number of instances with a feasible solution
and the number of instances solved optimally by our AMH. Column Average time (s)
represents the average execution time to find the best-known solution and to report feasible
solutions to the proposed AMH, respectively. Column Average GapE, A (%) is the average
gap between the best-known feasible solutions and the best-found solution generated by
AMH. The GapE, A (%) is calculated as follows:

GapE,A(%) = 100× ZE − ZA
ZE

, (25)

where ZE and ZA represent the value of the best-known solution when solving the mathe-
matical models with CPLEX and the AMH, respectively. A negative GapE, A indicates that
the results by the models are better. Otherwise, the AMH reports better results.

Table 5 shows that the solutions found by the proposed algorithm are competitive
compared to the results with the best-known solutions. Note that the best performance of
the AMH was in the set of small and medium type_1 instances since 100% (72/72) and
86.9% (53/61) of the known optimal solutions were obtained, respectively. For the medium
instances type_2, although the AMH did not find any optimal solution, it improved more
than 27% and 59% of the best-known feasible solutions in scenario_2 and scenario_4,
respectively. For large instances, the AMH enhances approximately 78% and 67% solutions
in scenario_2 and scenario_3, respectively.

One of the main advantages of the proposed AMH is that, for the first time, we could
find a feasible solution for the most complex instances reported in the literature. Although
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the AMH did not find all the optimal solutions, this algorithm considerably improves more
than 29% of the best-known feasible solutions, besides finding the same solution in 40% of
the cases. For all the tested instances, the average general execution time to report feasible
solutions is 117 s.

Table 5. Gap between the best-known feasible solutions and the proposed AMH.

Size
Instance Scenarios

Best-Known AMH
Average

GapE, A (%)F/O Average
Time (s) F/O Average

Time (s)

Small

1 24/24 0 24/24 8 0
2 24/24 0 24/24 4 0
3 18/12 1209 18/12 12 −2.46
4 24/12 1833 24/12 16 0.16

Totals 90/72 731 90/72 10

Medium
type_1

1 36/25 1145 36/24 19 −3.12
2 36/24 1211 36/23 13 3.15
3 27/12 2047 36/6 53 −5.57
4 25/0 3600 36/0 78 27.42

Totals 124/61 1855 144/53 41

Medium
type_2

1 26/0 7200 28/0 47 5.47
2 28/0 7054 28/0 37 27.89
3 9/5 5882 11/0 202 −7.91
4 1/0 7200 8/0 496 59.87

Totals 64/5 6951 75/0 114

Large
1 0/0 4/0 107
2 6/0 11,040 15/0 121 78.72
3 5/0 10,800 6/0 114 66.92

Totals 11/0 10,800 25/0 117

Totals 289/138 334/125

5.3. MIPStart Analysis

To accelerate the solver convergence and increase the number of instances with optimal
solutions, we used the solution reported by our AMH as an initial solution to feed the solver
when solving the problem with the different models we have. This process is referred to as
MIPStart. Note that we used the same instance set as in the previous section.

The results of the MIPStart process are shown in Table 6. The column Average im-
provement ∆GapE, M (%) refers to the average solution improvement between the original
model and the one MIPStart. ∆GapE, M (%) is computed as follows:

∆GapE, M(%) = 100× ZE − ZM
ZE

, (26)

where ZE and ZM represent the value of the solution when solving the mathematical
models without an initial solution and with an initial solution, respectively.

Figure 2 shows the relative gap reported by CPLEX of the best-found feasible solu-
tion (without including optimal ones) when solving the SLAUPR_V2 or the SLAUPR_V3
with MIPStart.

It can be observed, for small instances, that scenario_1 and scenario_2 are the least
complex, and the initial solution matches the optimal solution. Therefore, there are no
improvements due to the MIPStart. Although this size presents a low complexity, the
scenarios that show greater complexity are 3 and 4. Based on Figure 2a, the optimality gap
remains below 30% in most instances, with maximums of 11% and 27% for scenario_3 and
scenario_4, respectively.
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MIPStart significantly improved the solution found for the medium type_1, medium
type_2, and large instances compared to the models without initial conditions. MIPStart
of the SLAUPR model presents a greater impact on the convergence of the optimizer for
the medium type_1 and medium type_2 size instances. In contrast, for the large instances,
the highest percentage of the average improvement of the solution is reached by MIPStart
of the SLAUPR_V2 model (82.29%) in scenario_2 and the SLAUPR_V3 model (73.69%) in
scenario_3.

Table 6. Summary results of MIPStart models.

Size
Instance Scenarios

Average Improvement
∆GapE, M (%)

SLAUPR SLAUPR_V2 SLAUPR_V3

Small

1 0 0 0
2 0 0 0
3 5.84 0.50 0.28
4 2.72 1.67 0.80

Medium
type_1

1 8.8 0.41 1.98
2 12.52 3.67 8.12
3 1.42 2.83 10.75
4 30.11 35.03 26.08

Medium
type_2

1 59.01 16.03 15.9
2 74.1 35.87 35.95
3 47.52 15.41 31.46
4 - - 59.87

Large 2 75.97 82.29 -
3 60.13 72.01 73.69

(a) (b)

(c) (d)

Figure 2. Optimality gap reported by CPLEX of the best-found solution MIPStart. (a) Small size
instances. (b) Medium type_1 size instances. (c) Medium type_2 size instances. (d) Large size instances.
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Based on the best-found MIPStart solution, Figure 2b shows that for the most complex
scenarios, in this case, scenario_3 and scenario_4 of medium type_1, instances are left
with maximum optimality gaps of 66% and 81% and with minimums of 9% and 19%,
respectively. Although for the medium type_2 and large instances, all four scenarios are
still very complex, Figure 2c shows that for scenario_1, a minimum gap is reported by
CPLEX of 3%, and for 50% of the tested instances it oscillates from 18% to 35%, and for
scenario_2, from 30% to 40%. For scenario_3, around 25% of the instances present an
optimality gap from 65% to 75%. For scenario_4, the minimum gap is 60%. Although
it continues without solving optimality in some large instances, as seen in Figure 2, a
minimum optimality gap of 45% and maximums greater than 50% are reported.

5.4. Comparison of the Real Situation and AMH Solution

To determine the improvements provided by our AMH, we analyze one large in-
stance (based on real data). In Figure 3, we present a comparison of storage location and
travel times based on the current location of the company and the allocation obtained by
our AMH.

(a)

(b)

Figure 3. Location of products in the warehouse. (a) Current assignment of the company—Travel
time: 4.274 s. (b) Assignment proposed by AMH—Travel time: 2.446 s.

Figure 3a shows that with the allocation of the company, there is a dispersion of the
products in the warehouse. In contrast, the allocation obtained by our AMH presents a
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group of the most compact products (see Figure 3b). Therefore, the shortest travel time is
achieved by our proposed algorithm since the relocation of all the analyzed products simul-
taneously considers the assignment of the best candidate product through the evaluation
function described in the expression (23) and the choice of the nearest adjacent location.

The total travel time on the route is reduced by more than 40%, which means this
activity can be carried out faster without affecting the final product (customer order).
Similarly, the pickers will not have to choose alternate routes and will not incur extra costs
to fulfill orders.

The results of this study highlight the importance of integrating storage location and
picker-routing decisions, the same as the work of [11,27]. While previous works have
typically addressed these problems separately, assuming that storage location decisions
are long term and resistant to change, practical considerations in certain industries and
businesses may require more dynamic approaches. Factors such as seasonality and product
life cycles can influence product demand and require periodic reviews of storage location
decisions. Although concerns about relocation costs are an argument to avoid periodic
reassignments of products to storage locations, our experimental findings demonstrate
the benefits of adjusting storage and routing decisions to minimize travel time in the
order-picking process. Therefore, decision makers must acknowledge and consider the
interdependence between the two problems, which may seem intuitive but warrants
careful attention.

6. Conclusions

We studied the storage location and the picker-routing problems, recently introduced
in the literature as SLAUPR. We proposed and tested two different formulations for
SLAUPR: SLAUPR_V2 adds some valid inequalities, and SLAUPR_V3 considers single
commodity flow constraints for sub-tour elimination. Additionally, we proposed one
adaptive multi-start heuristics (AMH) to improve the case study results reported in the
literature.

The results show the excellent performance of our models and algorithm. With the
reformulations, we achieved 62 new feasible and 51 optimal ones for the existing instances
in the literature, which were obtained mainly from the SLAUPR_V3 model, which indicates
the good efficiency of the sub-tour elimination constraints based on flow versus MTZ
constraints for these types of problems. On the other hand, AMH can generate feasible
solutions for all the instances studied in the literature and improves (more than 29%) the
best-known solutions. Moreover, the proposed AMH requires an average general execution
time of 117 s to report feasible solutions. Consequently, we analyzed a MIPStart procedure,
in which we feed the CPLEX solver with the solution reported by AMH to accelerate the
convergence of CPLEX and to be able to compute the optimality gap of solutions.

Finally, comparing the allocated products that the company has with those obtained
by the proposed heuristic, an improvement (more than 40%) in the picking times helps
tactical decision making by providing the correct location of the products in the warehouse.
The proposed AMH is an excellent alternative for any company interested in solving the
storage location assignment and the picker-routing problem in consideration of the weight
of the products.

It is important to point out that decision makers need to analyze the trade-off between
optimal and approximated solutions to speed up their practical implementation since
finding an optimal solution may be impractical due to the complexity of the problem.

Future work could focus on the study of an extension of the problem by integrating
batching decisions and considering stochastic demands or inventory replenishment under
supply uncertainty.
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