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Abstract: Quantile regression is one of the alternative regression techniques used when the assump-
tions of classical regression analysis are not met, and it estimates the values of the study variable in
various quantiles of the distribution. This study proposes ratio-type estimators of a population mean
using the information on quantile regression for stratified random sampling. The proposed ratio-type
estimators are investigated with the help of the mean square error equations. Efficiency comparisons
between the proposed estimators and classical estimators are presented in certain conditions. Under
these obtained conditions, it is seen that the proposed estimators outperform the classical estimators.
In addition, the theoretical results are supported by a real data application.
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1. Introduction

Sampling theory is recognized as the creation of a sample set. Today, the sampling
method is used in many research fields, such as science, engineering, health and social
sciences, opinion polls, and marketing research. It is easy to control the sample compared
to the population. For these reasons, researchers prefer to work on the sample instead of
the population. There are many sampling methods that can be used in applications. If the
population is homogeneous, simple random sampling is the most frequently used sampling
method, and if the population is heterogeneous, stratified random sampling is the most
frequently used [1]. Stratified sampling is used when there are substrata or subunit groups
in a framed population. With stratified sampling, inferences are made on the population in
terms of the presence of substrates. This method ensures that a heterogeneous population
is divided into homogeneous stratums and increases its sensitivity [2]. Also, stratified
sampling is useful for comparing estimates among various groups of the population [3].

In sample research, it is very common to use auxiliary information to increase the
precision and efficiency of estimators in estimating sum, mean, and variance for finite pop-
ulations. Auxiliary information is used in ratio, multiplicative, regression, and difference
estimators because of precision. These estimators provide an advantage in terms of the
correlation between the auxiliary variable and the variable of study. Under some conditions,
they give more sensitive estimations with small variance than estimators based on the
simple mean [4]. The ratio-type estimator is one of the most commonly used estimators in
estimating the sum of the finite population with the help of the auxiliary variable when
the correlation coefficients between two variables are positive [5]. There are many studies
on ratio-type estimators in the literature. Kadilar and Cingi [6] proposed a ratio estimator
in stratified random sampling based on the Prasad [7] estimator. They showed that their
proposed estimator gave more efficient results than the combined ratio estimation. Shabbir
and Gupta [8] proposed an estimator using a simple transformation introduced by Bedi [9].
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They demonstrated by theoretical and numerical results that the proposed estimator is more
efficient than the classical combined ratio estimator and the Kadılar and Cingi [6] ratio esti-
mator. On the other hand, Singh et al. [10], using the estimators of Bahl and Tuteja [11] and
Kadilar and Cingi [12], proposed a ratio estimator for the estimation of population mean in
stratified random sampling. They found that the proposed estimators are more efficient
than other estimators with theoretical findings, and they supported it with a numerical
example. Shahzad et al. [13] proposed an estimator for the estimation of the population
mean for stratified randomness. Hussain et al. [14] proposed two estimators to estimate the
finite population distribution function using additional information about the distribution
function and the mean of the auxiliary variable under simple sampling. Muneer et al. [15]
proposed a family of exponential ratio-type estimators for estimating the finite population
mean in stratified random sampling. Cekim and Kadilar [16] proposed a new rate estimator
for population variance using the ln function in stratified random sampling. Especially in
recent years, there are many estimators proposed depending on the data structure. For
example, when there is an outlier in the data, it has a negative effect on the estimators.
Robust methods are used to eliminate this negative effect on estimators (Kadilar et al. [17],
Subzar et al. [18], Zaman and Bulut [19], Zaman and Bulut [20], Zaman [21], Ali et al. [22],
and Grover and Kaur [23]); Koc [24] providing a class of estimators for population mean
using Poisson regression is a case of count data.

Quantile regression is useful for visualizing changes in the conditional distribution
of datasets and is a very effective method, especially when there are extreme values [25].
Shahzad et al. [26] proposed a class of quantile regression–ratio-type estimators for the pop-
ulation mean when the data are non-normal and contaminated with outliers. Anas et al. [27]
presented a class of quantile regression–ratio-type estimators using L-moments to estimate
the population mean for the non-normal dataset having outliers in simple random sam-
pling. Anas et al. [28] have presented a modified class of estimators by adapting the idea of
Zaman and Bulut [19,20]. Subsequently, they have defined a class of quantile regression-
type estimators, which is an effective technique in the presence of extreme observations.
Thus, the utilization of quantile regression from Zaman and Bulut’s work has empowered
the proposed class of estimators, especially for estimating the population mean in the
presence of missing data. Shahzad et al. [29] introduced a robust class of separate-type
quantile regression estimators specifically designed to estimate the population means under
a stratified random sampling design. Rueda and Arcos [30] investigated the application
of the exponentiation method in estimating population quantiles. They developed a mod-
ified ratio estimator that is applicable to any sampling design. This modified estimator
exhibits a smaller mean squared error when compared to both the conventional estimator
and the ratio estimator. Shahzad et al. [31] proposed a robust estimation technique for
the population mean utilizing quantile regression in the context of systematic sampling.
Shahzad et al. [32] proposed the utilization of quantile regression with minimum covariance
determinant-based measures of the location to derive a class of quantile regression-type
mean estimators.

This study proposes ratio-type estimators of a population mean using the information
on quantile regression for stratified random sampling.

Let the N-sized population consist of L stratum, as in N1, N2, . . . , NL, which do not
intersect and form the whole population. We denote the stratum with the h and the unit
with the i. The subscript “st” represents “stratified”. Let n1, n2. . . nL L samples be drawn
from these stratums, each of which is considered as a separate population. In stratified
random sampling, the mean estimators of study variable Y and auxiliary variable X are
as follows:

yst = ∑L
h=1 Whyh, (1)

xst = ∑L
h=1 Whxh, (2)
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where yh = 1
nh

∑nh
i=1 yhi is the sample mean of the study variable in the hth stratum,

xh = 1
nh

∑nh
i=1 xhi is the sample mean of the auxiliary variable in the hth stratum, and

Wh = Nh
N is the stratum weight. The population mean for the variable of study Y and the

auxiliary variable X are as given below:

Y = Yst = ∑L
h=1 WhYh, (3)

X = Xst = ∑L
h=1 WhXh, (4)

where Yh = 1
Nh

∑Nh
i=1 Yhi is the population mean of the study variable in the hth stratum

and Xh = 1
Nh

∑Nh
i=1 Xhi is the population mean of the auxiliary variable in the hth stratum.

The combined regression estimator in stratified random sampling is given in Equation (5),
as follows:

Ŷlrc = yst + bc
(
X− xst

)
, (5)

where bc is the coefficient of stratified random sampling and is obtained with the classical
covariance matrix

bc =
∑L

h=1 W2
hλhsyxh

∑L
h=1 W2

hλhs2
xh

. (6)

The mean square error of the stratified random sampling combined regression estima-
tor given in Equations (1) and (2) is as given in Equation (7).

MSE(Ŷlrc) ∼= ∑L
h=1 W2

hλhS2
yh + β2

c ∑L
h=1 W2

hλhS2
xh − 2βc ∑L

h=1 W2
hλhSyxh, (7)

where βc =
∑L

h=1 W2
hλhSyxh

∑L
h=1 W2

hλhS2
xh

is computed by the classic covariance matrix for population and

λh =
1− nh

Nh
nh

denotes the correction term, nh indicates the number of units in the stratum hth.

Also, S2
yh is the population variances of the variables of study in the stratum hth, S2

xh is the
population variances of auxiliary variables in the stratum hth, and Syxh is the population
covariance in the stratum hth.

In stratified random sampling, the separate regression estimator is as given in Equation (8).

Ŷlrs = ∑L
h=1 Wh

(
yh + bh

(
Xh − xh

))
, (8)

where bh =
sxyh

s2
xh

is obtained by the least squares method. Also, for the auxiliary variable,

s2
xh is the sample variance in the hth stratum and sxyh is the sample covariance in the hth

stratum. The mean square error of the separate regression estimator given in Equation (8)
is as given in Equation (9).

MSE(Ŷlrs) ∼= ∑L
h=1 W2

hλhS2
yh + ∑L

h=1 W2
hλhβ

2
hS2

xh − 2 ∑L
h=1 W2

hλhβhSyxh, (9)

where βh =
Sxyh

S2
xh

is the regression coefficient of the least squares method in the hth stratum

and Sxyh denotes the population covariance in the hth stratum.
Section 2 provides a description of the quantile regression model. The structure of the

proposed estimator based on the quantile regression model in stratified random sampling
is presented in Section 3. The efficiency comparisons of the proposed estimator with
the classical estimator for stratified random sampling are given in Section 4. Section 5
provides an application of proposed estimators. Finally, Section 6 summarizes the results
of this study.
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2. Quantile Regression Model

The quantile regression is an alternative regression technique that neglects the nor-
mal distribution of error terms and constant variance assumption in the classical linear
regression model. Since it is a flexible approach, it does not require some assumptions.
Quantile regression is a way of estimating the conditional quantities of the distribution
of the dependent variable in the linear model [33]. In the quantile regression model, the
coefficients are determined depending on the quartiles [34]. In practice, quantile values
are usually taken as 0.25, 0.50, and 0.75 [35]. The classical regression model for the average
response is given below as follows:

yi = β0 + β1xi1 + . . . + βkxik, i = 1, 2, . . . , n, (10)

where yi is the dependent random variable, xij is the jth independent variable for the ith
observation, β0, . . . ,βk are regression parameters, and the βjs are estimated by solving the
least squares minimization problem.

min
β0, . . . ,βk

∑n
i=1

(
yi − β0 −∑k

j=1 xijβj

)2
. (11)

In contrast, the regression model for quantile level τ of the response is

Qτ(yi) = β0(τ) + β1(τ)xi1 + . . . + βk(τ)xik, i = 1, 2, . . . , n, (12)

and the βj(τ) s are estimated by solving the minimization problem

min
β0(τ),β1(τ), . . .βk(τ)

∑n
i=1 ρτ

(
yi − β0(τ)−∑k

j=1 xijβj(τ)
)

, (13)

where ρτ(r) = τ max(r, 0) + (1− τ)max(−r, 0). The ρτ(r) is referred to as the check [36].
The estimation of the covariance matrix in quantile regression models is important due to
the examination of assumptions such as constant variance and symmetry. Let 0 < τ1 <
. . . < τk < 1 and β̂τj be the corresponding estimates of βτj in the quantile regression model
for j = 1,..., k.

Here,
√

n
(
β̂τ − βτ

) L→ N(0, Λτ) is provided. β̂τ has an asymptotic normal distribution [37].
Under alternative assumptions,

Λτ = τ(1− τ)(E[ fUτ(0|xi)xixi′])−1E(xixi′)(E[ fUτ(0|xi)xixi′])−1 (14)

Λτ =
τ(1− τ)

f 2
Uτ(0)

(E(xixi′))−1 (15)

The asymptotic covariance of the estimated β̂τ parameters in the quantile regression
model are derived from the equations provided above. The covariance matrix can be
estimated using various estimators [37].

3. Suggested Estimators

For the estimation of the population mean, we propose the following estimators that
use the quantile regression method and the quantile variance–covariance matrix instead of
the ratio estimators presented in Equations (5) and (8).

For the combined quantile regression estimator

Ŷlrcqi(tk)
=


yst + bcq1

(
X− xst

)
, for q1 = 0.25

yst + bcq2

(
X− xst

)
, for q2 = 0.50

yst + bcq3

(
X− xst

)
, for q3 = 0.75

i = 1, 2, 3, (16)
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where bcqi are obtained from the quantile regression covariance matrix for i = 1, 2, 3. The
mean squared error of the combined quantile regression estimator is as given in Equation (17).

MSE(Ŷlrcqi(tk)
) ∼= ∑L

h=1 W2
hλhS2

yhqi
+ β2

cqi ∑
L
h=1 W2

hλhS2
xhqi
− 2βcqi ∑

L
h=1 W2

hλhSyxhqi
, i = 1, 2, 3. (17)

The mean squared error equations proposed here have the same form as the mean
squared error equations given in Equation (7). However, in this case, the values of βc, S2

yh,

S2
xh, and Syxh are utilized instead of βcqi

, S2
yhqi

, S2
xhqi

, and Syxhqi
. These values are obtained

from the quantile regression covariance matrix βcqi
=

∑L
h=1 W2

hλhSyxhqi

∑L
h=1 W2

hλhS2
xhqi

.

For the separate quantile regression estimator,

Ŷlrsqi(tk)
=



L
∑

h=1
Wh

(
yh + bhq1

(
Xh − xh

))
for q1 = 0.25

L
∑

h=1
Wh

(
yh + bhq2

(
Xh − xh

))
for q2 = 0.50

L
∑

h=1
Wh

(
yh + bhq3

(
Xh − xh

))
for q3 = 0.75

i = 1, 2, 3 (18)

where bhqi
is the slope coefficient obtained from the quantile regression model for each

stratum for i = 1, 2, 3.
Using Equation (18), the mean squared error equations for the proposed estimator and

the variance–covariance matrices related to the quantile regression method are obtained
as follows:

MSE(Ŷlrsqi(tk)
) ∼=

L

∑
h=1

W2
hλhS2

yhqi
+

L

∑
h=1

W2
hλhβ

2
hqi

S2
xhqi
− 2

L

∑
h=1

W2
hλhβhqi

Syxhqi
, i = 1, 2, 3 . (19)

The expression βhqi
for i = 1, 2, 3 is obtained by the quantile regression model for

the hth stratum; the S2
yhqi

expressions obtained from the quantile regression covariance

matrix show the population variance for the variable of study in the hth stratum. S2
xhqi

is
population variance for the auxiliary variable, and Syxhqi

is the population covariance.

4. Efficiency Comparisons

We compare the mean square error of the proposed estimators given in Equations (16) and (18)
with the mean square error of the classical combined and separate estimators given in
Equations (5) and (8).

For the combined quantile regression estimator,

MSE(Ŷlrcqi(tk)
) < MSE

(
Ŷlrc

)
, i = 1, 2, 3, (20)

L
∑

h=1
W2

hλhS2
yhqi

+ β2
cqi

L
∑

h=1
W2

hλhS2
xhqi
− 2βcqi

L
∑

h=1
W2

hλhSyxhqi

<
l

∑
h=1

W2
hλhS2

yh + β2
c

l
∑

h=1
W2

hλhS2
xh − 2βc

l
∑

h=1
W2

hλhSyxh

(21)

Let Kqi
= ∑L

h=1 W2
hλhS2

yhqi
, Mqi

= ∑L
h=1 W2

hλhS2
xhqi

, Nqi
= ∑L

h=1 W2
hλhSyxhqi

, βcqi
=

Nqi
Mqi

,

K = ∑l
h=1 W2

hλhS2
yh, M = ∑l

h=1 W2
hλhS2

xh, N = ∑l
h=1 W2

hλhSyxh, and βc =
N
M .

Thus, Equation (21) becomes

Kqi
+

(
Nqi

Mqi

)2

Mqi
− 2

Nqi

Mqi

Nqi
< K +

(
N
M

)2
M− 2

N
M

N, (22)



Axioms 2023, 12, 713 6 of 12

(
Kqi
−K

)
−
(

N2
qi

Mqi

− N2

M

)
< 0, (23)

when the condition in Equation (23) is satisfied, the proposed estimators given in Equation (16)
are more efficient than the regression estimator given in Equation (5).

Similarly, for the separate quantile regression estimator,

MSE(Ŷlrsqi(tk)
) < MSE

(
Ŷlrs

)
, i = 1, 2, 3. (24)

L
∑

h=1
W2

hλhS2
yhqi

+
L
∑

h=1
W2

hλhβ
2
hqi

S2
xhqi
− 2

L
∑

h=1
W2

hλhβhqi
Syxhqi

<
L
∑

h=1
W2

hλhS2
yh +

L
∑

h=1
W2

hλhβ
2
hS2

xh − 2
L
∑

h=1
W2

hλhβhSyxh

(25)

Let Kqi
= ∑L

h=1 W2
hλhS2

yhqi
, Tqi

= ∑L
h=1 W2

hλhβ
2
hqi

S2
xhqi

, Hqi
= ∑L

h=1 W2
hλhβhqi

Syxhqi

K = ∑l
h=1 W2

hλhS2
yh, T = ∑L

h=1 W2
hλhβ

2
hS2

xh, and H = ∑L
h=1 W2

hλhβhSyxh.
Thus, Equation (25) becomes(

Kqi
−K + Tqi

− T
)
− 2
(
Hqi
−H

)
< 0, (26)

when the condition in Equation (26) is satisfied, the proposed estimators belonging to the
mean square error given in Equation (18) are more efficient than the regression estimator
given in Equation (8).

5. Applications

Three stations (Keçiören, Çubuk, and Sincan) with different characteristics from the air
quality monitoring stations in Ankara, Türkiye, were discussed. Particulate Matter (µg/m3)
was chosen as the dependent variable from the air pollution parameters selected according
to the air quality criteria recommended by the World Health Organization, and the relative
humidity (%) from the climate elements was chosen as the independent variable. Daily
data from 1 January 2021 to 20 May 2021 were used. The data were obtained from the
Turkish State Meteorological Service [URL1]. Analyses were performed using R software,
and quartiles of 25%, 50%, and 75% were used in the analysis. We randomly selected
samples from each stratum using the proportional and Neyman allocations.

The total numbers of these selected districts are calculated from Equation (27),
as follows:

nh = n
NhSh

∑l
h=1 NhSh

, h = 1, 2, 3. (27)

The total numbers of these selected districts result from a proportional allocation from
Equation (28), as follows:

nh = n
Nh
N

. (28)

The statistics of the original dataset are given in Tables 1 and 2.
We use a total sample size of n = 135. According to the proportional allocation, a sam-

ple of n1 = n2 = n3 = 45 units from each stratum was randomly selected. According to the
Neyman allocation, n1 = 57 units from the first stratum, n2 = 23 from the second stratum,
and n3 = 55 from the third stratum were randomly selected. Also, the correlation between
the auxiliary variable and the study variable is 0.704. With the help of the summarized
information in Tables 1 and 2, the efficiency conditions of the proposed estimators were
obtained as follows:
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Table 1. Descriptive statistics for the population.

Total

Population size N 420
Sample size n 135
Population mean of X X 34.98289
Population mean of Y Y 37.4703
Population variance of X S2

x 703.9922
Population variance of Y S2

y 574.3866
Population correlation coefficient between X and Y ρxy 0.704

Table 2. Descriptive statistics for the population in hth stratum.

Symbol for Stratum h 1 2 3

Nh 140 140 140
Xh 52.073 8.292 44.583
Yh 39.132 23.597 49.681
S2

xh 493.754 163.307 360.492
S2

yh 664.912 105.425 614.283
Syxh 448.018 77.003 305.43
ρxyh 0.781 0.587 0.649
βh 0.908 0.472 0.847

S2
xhq0.25

0.0057 0.0014 0.0131
S2

yhq0.25
15.0004 0.4338 35.8744

Syxhq0.25 −0.2681 −0.013 −0.6358
βhq0.25 0.8414 0.0302 0.6655
S2

xhq0.5
0.0055 0.0418 0.0115

S2
yhq0.5

15.3304 0.3654 14.7909
Syxhq0.5 −0.2682 −0.1190 −0.3772
βhq0.5 0.8700 0.4161 0.8467

S2
xhq0.75

0.0094 0.0124 0.0214
S2

yhq0.75
38.4669 3.8007 52.9633

Syxhq0.75 −0.5549 −0.1174 −0.9822
βhq0.75 0.9312 0.8083 1.0080

wh 0.33 0.33 0.33

a. A sample of n1 = n2 = n3 = 45 units are taken from each stratum.
For the combined quantile regression estimator,
i. q = 0.25;

K = 2.182808962, M = 0.96486519, N = 1.391407393, (29)

Kq0.25
= 0.085967, Mq0.25

= 3.38713× 10−5 Nq0.25
= −0.001536863, (30)

(
Kq0.25

−K
)
−
(

N2
q0.25

Mq0.25

− N2

M

)
= −0.001606 < 0, (31)

ii. q = 0.5;

K = 2.31991, M = 1.704895, N = 1.391407393, (32)

Kq0.5
= 0.050944, Mq0.5

= 9.88639× 10−5, Nq0.5
= −0.00128 (33)

(
Kq0.5

−K
)
−
(

N2
q0.5

Mq0.5

− N2

M

)
= −1.15 < 0, (34)

iii. q = 0.75;

K = 2.31991, M = 1.445169, N = 1.391407393, (35)
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Kq0.75
= 0.159558, Mq0.75

= 7.25245× 10−5, Nq0.75
= −0.00277, (36)

(
Kq0.75

−K
)
−
(

N2
q0.75

Mq0.75

− N2

M

)
= −0.9267 < 0. (37)

The condition given in Equation (23) is satisfied for the proposed estimators. Un-
der this condition, the proposed quantile-based estimators were more efficient than the
classical estimators.

For the separate quantile regression estimator,
i. q = 0.25;

K = 2.182808962, T = 0.566246, H = 1.1755280, (38)

Kq0.25
= 0.085967, Tq0.25

= 0.0617939, Hq0.25
= −0.0010878, (39)(

Kq0.25
−K + Tq0.25

− T
)
− 2
(
Hq0.25

−H
)
= −0.248 < 0. (40)

ii. q = 0.50;

K = 2.319910097, T = 1.175528076, H = 1.1755280, (41)

Kq0.5
= 0.050943988, Tq0.5

= 3.31295E− 05, Hq0.5
= −0.00100916, (42)(

Kq0.5
−K + Tq0.5

− T
)
− 2
(
Hq0.5

−H
)
= −1.0913 < 0. (43)

iii. q = 0.75;

K = 2.319910097, T = 1.1146939, H = 1.17552807, (44)

Kq0.75
= 0.159558207, Tq0.75

= 6.37745E− 05 , Hq0.75
= −0.0026841, (45)(

Kq0.75
−K + Tq0.75

− T
)
− 2
(
Hq0.75

−H
)
= −0.91855 < 0. (46)

The condition given in Equation (26) is satisfied for the proposed estimators. Un-
der this condition, the proposed quantile-based estimators were more efficient than the
classical estimators.

b. A sample of n1 = 57, n2 = 23, and n3 = 55 units are taken from the first, second,
and third stratum.

For the combined quantile regression estimator,
i. q = 0.25;

K = 1.617135113, M = 1.161654708, N = 1.203265131, (47)

Kq0.25
= 0.06308, Mq0.25

= 2.82825× 10−5, Nq0.25
= −0.001143226, (48)

(
Kq0.25

−K
)
−
(

N2
q0.25

Mq0.25

− N2

M

)
= −0.354 < 0. (49)

ii. q = 0.5;

K = 1.4919338, M = 1.333797359, N = 0.896308, (50)

Kq0.5
= 0.037234445, Mq0.5

= 0.0001896, Nq0.5
= −0.00125, (51)

(
Kq0.5

−K
)
−
(

N2
q0.5

Mq0.5

− N2

M

)
= −0.861 < 0. (52)

iii. q = 0.75;

K = 2.293129021, M = 1.30291628, N = 1.436153, (53)

Kq0.75
= 0.124761986, Mq0.75

= 8.74612× 10−5, Nq0.75
= −0.00232, (54)
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(
Kq0.75

−K
)
−
(

N2
q0.75

Mq0.75

− N2

M

)
= −0.647 < 0. (55)

The condition given in Equation (23) is satisfied for the proposed estimators. Un-
der this condition, the proposed quantile-based estimators were more efficient than the
classical estimators.

For the separate quantile regression estimator,
i. q = 0.25;

K = 1.617135113 ,T = 0.513538133, H = 0.93379075, (56)

Kq0.25
= 0.063089, Tq0.25

= 0.042644709, Hq0.25
= −0.0007815, (57)(

Kq0.25
−K + Tq0.25

− T
)
− 2
(
Hq0.25

−H
)
= −0.1558 < 0 . (58)

ii. q = 0.50;

K = 1.4919338 ,T = 0.655266737, H = 0.655266737, (59)

Kq0.5
= 0.037234445, Tq0.5

= 4.43256× 10−5, Hq0.5
= −0.00086146, (60)(

Kq0.5
−K + Tq0.5

− T
)
− 2
(
Hq0.5

−H
)
= −0, 79767 < 0. (61)

iii. q = 0.75;

K = 2.293129021, T = 0.99851971, H = 1.145106206 , (62)

Kq0.75
= 0.124761986, Tq0.75

= 6.90035× 10−5, Hq0.75
= −0.00219519, (63)(

Kq0.75
−K + Tq0.75

− T
)
− 2
(
Hq0.75

−H
)
= −0.87221 < 0. (64)

The condition given in Equation (26) is satisfied for the proposed estimators. Un-
der this condition, the proposed quantile-based estimators were more efficient than the
classical estimators.

We calculate the mean square error values of the classical estimators given in
Equations (5) and (8) and the proposed estimators given in Equations (16) and (18). These
values are given in Table 3. Using these mean square error values, we compute the relative
efficiency values of each proposed estimate with the help of the following equation:

RE
(

Ŷlrsqi(tk)

)
=

MSE
(

Ŷlrsqi(tk)

)
MSE

(
Ŷlrs

) and RE
(

Ŷlrcqi

)
=

MSE
(

Ŷlrcqi

)
MSE

(
Ŷlrc

) . (65)

Table 3. Data statistics used for simple random sampling.

Sample Sizes Are Equal Sample Sizes Are Different

Estimator Mean Square Error Mean Square Error

Classical Ŷlrc 2.7750 2.2264

Ŷlrs 1.3603 1.2831

Proposed

Ŷlrcq0.25(tk)
0.0859 0.0169

Ŷlrcq0.50(tk)
0.0509 0.0290

Ŷlrcq0.75(tk)
0.1594 0.0632

Ŷlrsq0.25(tk)
0.0881 0.1072

Ŷlrsq0.50(tk)
0.0530 0.0390

Ŷlrsq0.75(tk)
0.1649 0.1292
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We proposed quantile regression–ratio-type estimators for stratified random sampling.
The 25%, 50%, and 75% quartile-dependent separate-regression type estimators are given
by Equation (16). The mean square error of this estimator is as in Equation (17). Similarly,
the combined regression type estimation of 25%, 50%, and 75% quartiles is given by
Equation (18). The mean square error of this estimator is as in Equation (19). When
Equations (23) and (26) are satisfied, the proposed estimators based on quantile regression
are more efficient than the classical estimators.

According to the cases where the sample size is equal and different for this dataset,
24 relative efficiency values were obtained. These values are given in Table 4. It can be seen
from Table 4 that all of the relative efficiency values are less than 1. This shows that the
mean square errors of the proposed quantile regression-based estimators are smaller than
the mean square errors of the classical estimators when the sample size is both equal and
different. This is an expected outcome due to Equations (23) and (26) being satisfied.

Table 4. Theoretical results for the relative efficiencies.

Sample Sizes Are Equal Sample Sizes Are Different

Relative Efficiency Ŷlrc Ŷlrs Ŷlrc Ŷlrs

Ŷlrcq0.25(tk)
0.0309 0.0631 0.0075 0.0131

Ŷlrcq0.50(tk)
0.0183 0.0374 0.0130 0.0226

Ŷlrcq0.75(tk)
0.0574 0.11725 0.0283 0.0492

Ŷlrsq0.25(tk)
0.0317 0.0648 0.0481 0.0836

Ŷlrsq0.50(tk)
0.0191 0.0389 0.0175 0.0303

Ŷlrsq0.75(tk)
0.0594 0.1212 0.0580 0.8800

6. Conclusions

Ratio-type estimators are proposed utilizing quantile regression in the stratified random
sampling method. The proposed estimators present a more effective method of estimation
compared to traditional ratio estimators. The mean squared error equations of these esti-
mators were derived. The proposed estimators in Equations (16) and (18), as well as the
classical estimators in Equations (5) and (8), were theoretically compared using the mean
squared error equations. Table 4 demonstrates that the estimators in Equations (16) and (18)
yield more efficient predictions for the population mean in stratified random sampling.
The mean squared errors of the estimators in Equations (16) and (18) are smaller than those
of the estimator in Equations (5) and (8). Based on theoretical and numerical comparisons,
it has been demonstrated that the proposed quantile ratio-type estimators have a lower
mean squared error compared to other commonly used estimators. This indicates that
these estimators provide more accurate and precise predictions. Furthermore, quantile
regression provides us with the ability to obtain more reliable results in air pollution data,
where outliers and asymmetrical distributions are common. By specifically estimating the
conditional quantiles, quantile regression reduces the influence of outliers and extreme
values on the forecasts. This results in more robust and accurate predictions, enhancing the
overall forecasting process in practice.
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