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Abstract: Twin extreme learning machine (TELM) is a classical and high-efficiency classifier. However,
it neglects the statistical knowledge hidden inside the data. In this paper, in order to make full use of
statistical information from sample data, we first come up with a Fisher-regularized twin extreme
learning machine (FTELM) by applying Fisher regularization into TELM learning framework. This
strategy not only inherits the advantages of TELM, but also minimizes the within-class divergence of
samples. Further, in an effort to further boost the anti-noise ability of FTELM method, we propose a
new capped L1-norm FTELM (CL1-FTELM) by introducing capped L1-norm in FTELM to dwindle
the influence of abnormal points, and CL1-FTELM improves the robust performance of our FTELM.
Then, for the proposed FTELM method, we utilize an efficient successive overrelaxation algorithm to
solve the corresponding optimization problem. For the proposed CL1-FTELM, an iterative method
is designed to solve the corresponding optimization based on re-weighted technique. Meanwhile,
the convergence and local optimality of CL1-FTELM are proved theoretically. Finally, numerical
experiments on manual and UCI datasets show that the proposed methods achieve better classification
effects than the state-of-the-art methods in most cases, which demonstrates the effectiveness and
stability of the proposed methods.

Keywords: twin extreme learning machine; within-class scatter; fisher regularization; capped
L1-norm; robustness

1. Introduction

Extreme learning machine [1,2], as a remarkable single hidden layer feed-forward
neural networks (SLFNs) [3] training method, has been widely studied and applied in
many fields such as efficient modeling [4], fashion retailing forecasting [5], fingerprint
matching [6], metagenomic taxonomic classification [7], online sequential learning [8],
and feature selection [9]. The weights of the input layer and hidden layer offsets are ran-
domly generated. The output weight of the network is calculated effectively by minimizing
the training error and the norm of the output weight. In addition, many researchers have
tried to extend the extreme learning machine model to the support vector machine (SVM)
learning framework to solve the classification problem [10]. Frenay et al. [11] found that the
transformation performed by the first layer of ELM can be viewed as a kernel that can be
plugged into SVM. Due to solving the support vector machine (SVM) type of optimization
method that can be utilized to resolve the ELM model, an extreme learning machine based
on the optimization method (OPTELM) was proposed in [12]. For binary classification
problems, traditional ELM needs to compute all the sample points of training data at the
same time in the training stage, which is time-consuming. The singe hyperplane was
trained to perform the classification task in the traditional ELM, which enormously restricts
its application prospect and the direction of evolution. Jayadeva et al. [13] proposed twin
SVM (TWSVM), which is a famous non-parallel hyper-plane classification algorithm for
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binary classification. Inspired by TWSVM, Wan et al. [14] proposed the twin extreme
learning machine (TELM). Compared with ELM, TELM trains two non-parallel hyper-
planes for classification tasks by solving two smaller quadratic programming problems
(QPPs). Compared with TWSVM, TELM’s optimization problem has fewer constraints,
so the training speed is faster and the application prospect is broader. In recent years,
researchers have made many improvements to TELM, such as sparse twin extreme learning
machine [15], robust twin extreme learning machine [16], time efficient varient of twin
extreme learning machine [17], and a generalized adaptive robust distance metric driven
smooth regularization learning framework [18], etc.

Although the above ELM-based algorithm has a good classification effect, the statisti-
cal knowledge from the data itself is ignored. However, the knowledge of mathematical
statistics from the data is very important to construct an efficient classifier. Fisher dis-
criminant analysis (FDA) is an effective discriminant tool by minimizing the intra-class
divergence while keeping the inter-class divergence of the data constant. From the above
discussion, it can be known that it is necessary to reconstruct a new classification model by
combining the characteristics of ELM model and FDA. In recent years, Ma et al. [19] have
successfully combined them and proposed a Fisher-regularized extreme learning machine
(Fisher-ELM), which not only has the advantages of efficient solution of ELM but also fully
considers the statistical knowledge of the data.

Although the above models have good classification performance, most of them
consider the L2-norm. When the data contains noise or outliers, they can not deal with noise
and outliers well, which degrades the classification performance of the model. In recent
years, researchers have tried to introduce the L1-norm into various models [20–23] to reduce
the impact of outliers. This studies have shown that the L1-norm was able to reduce the
effect of outliers to some extent. However, it was still unsatisfactory when the data contains
a large number of outliers. Recently, researchers have introduced the idea of truncation into
the L1-norm, constructed a new capped L1-norm, and applied it to various models [24–26].
Many studies [27,28] show that the capped L1-norm not only inherits the advantages of the
L1-norm, but also is bounded. So it is more robust and it approaches the L0-norm to some
degree. For instance, by applying the capped L1-norm to the twin SVM, Wang et al. [29]
proposed a new robust twin support vector machine (CL1-TWSVM). Based on twin support
vector machine with privileged information [30] (TWSVMPI), a new robust TWSVMPI [31]
is proposed by replacing the L2-norm with capped L1-norm. The new model further
improves the anti-noise ability of the pattern.

In order to utilize the advantanges of the twin extreme learning machine and FDA,
we first put forward to a novel classifier named Fisher-regularized twin extreme learning
machine (FTELM). Also considering the instability of the L2-norm for the outliers, we
introduce the capped L1-norm into the FTELM model and propose a more robust capped
L1-norm FTELM (CL1-FTELM) model.

The main contributions of this paper are as follows:
(1) Based on twin extreme learning machine and Fisher-regularization extreme learning

machine (FELM), a new Fisher-regularized twin extreme learning machine (FTELM) is
proposed. FTELM minimizes intra-class divergence while fixing the inter-class divergence
of samples. FTELM takes full account of the statistical information of the sample data,
and the training speed is faster than FELM.

(2) Considering the instability of L2-norm and Hinge loss used by FTELM, we intro-
duce capped L1-norm instead of them and propose a new capped L1-norm FTELM model.
CL1-FTELM uses the capped L1-norm to reduce the influence of noise points, and at the
same time utilizes Fisher regularization to consider the statistical knowledge of the data.

(3) Two algorithms are designed by utilizing the successive overrelaxation (SOR) [32]
technique and the re-weighted technique [27] to solve the optimization problems of the
proposed FTELM and CL1-FTELM, respectively.

(4) Two theorems about convergence and local optimality of CL1-FTELM are proved.
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The organizational structure of this paper is as follows. In Section 2, we briefly review
related work. In Section 3, we describe the FTELM model in detail. The robust capped
L1-norm FTELM learning framework along with related theoretical proofs are described
in detail in Section 4. In Section 5, we describes numerical experiments on artificial and
benchmark datasets. We summarize this paper in Section 6.

2. Related Work

In this section, we first define some concepts of symbols needed for this paper, and then
we briefly review Fisher regularization, Fisher-ELM, TELM and successive overrelaxation al-
gorithm.

2.1. The Concept of Symbols

e is a vector whose components are all ones, an identity matrix is represented by I,
and a matrix(vector) of zeros is represented by 0. Then, ‖·‖2 is the L2 norm, and ‖·‖F stands
for the Frobenius norm.

A binary classification problem in Euclidean space (Rd) can be formulated in the
following form:

T = {xi, yi} ∈ (X ,Y), (i = 1, ..., m) (1)

where xi ∈ X ⊂ Rd is expressed as an input sample in a d-dimensional Euclidean space.
Similarly, yi ∈ Y = {−1,+1} is represented as an output label corresponding to an input
instance xi. In addition, m1 and m2 represent the number of sample data of the positive
class and negative class, respectively, and m = m1 + m2.

2.2. Fisher Regularization

Fisher regularization has the following form:

‖ f ‖2
F = fTNf = ∑

i∈I+

(
f (xi)− f̄+

)2
+ ∑

i∈I−

(
f (xi)− f̄−

)2 (2)

where f = [ f (x1), f (x2), . . . , f (xm)]
T , N = I−G, I ∈ Rm×m is the identity matrix and G is

the matrix with the elements:

Gij =


1

m1
, f or i, j ∈ I+

1
m2

, f or i, j ∈ I−
0, otherwise

(3)

where I± are the index sets of positive and negative training data, m1 = |I+|, m2 = |I−|.
The average value of f(x) over the positive sample set is expressed as f̄+, the average value
of f(x) over the negative sample set is expressed as f̄−. From Equation (2), we can see that
the meaning of the Fisher regularization is the intra-class divergence of the data.

The proof of Formula (2) is as follows:

∑
i∈I+

(
f (xi)− f̄+

)2
= ∑

i∈I+

(
f 2(xi)− 2 · f (xi) · f̄+ + f̄ 2

+

)
= ∑

i∈I+
f 2(xi)−m1 · f̄ 2

+

= fT
+ · f+ −

1
m1
·
(

fT
+ · e · eT · fT

+

)
= fT

+ · I+f+ − fT
+ ·M+ · fT

+

= fT
+ · (I+ −M+) · f+= fT

+ · (N1) · f+

(4)

where e = [1, . . . , 1]T is a vector of m1 dimensions, f+ = ( f (x1), f (x2), . . . , f (xi), . . . , f (xm1)),
i ∈ I+, I+ ∈ Rm1×m1 is the identity matrix. M+ ∈ Rm1×m1 , and all the entries in the matrix
M+ are 1

m1
.
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Similarly, it can be obtained:

∑
j∈I−

(
f (xi)− f̄−

)2
= fT
− · (I− −M−) · f−= fT

− · (N2) · f− (5)

where f− = ( f (x1), f (x2), . . . , f (xi), . . . , f (xm2)), i ∈ I−, I− ∈ Rm2×m2 is the identity matrix.
M− ∈ Rm2×m2 , and all the entries in the matrix M− are 1

m2
.

Combining Equations (4) and (5), we can get another form of Equation (2):

fT
+ · (I+ −M+) · f+ + fT

− · (I− −M−) · f−

= (f+, f−)
T ·
[

I−
[

M+ 01
02 M−

]]
· (f+, f−)

= fT · (I−G) · f = fT ·N · f

(6)

where 01 ∈ 0m1×m2 , 02 ∈ 0m2×m1 , G =

[
M+ 01
02 M−

]
.

2.3. Fisher-Regularized Extreme Learning Machine

The primal problem of Fisher-regularized extreme learning machine (FELM) is as follows:

min
α,ξ

1
2

βT · β + C1 · eT · ξ + 1
2

C2 · αT ·KELM ·N ·KELM.α

s.t. Y ·H · β ≥ e− ξ

ξ ≥ 0

(7)

According to the representer theorem β = ∑m
i=1 αih(xi) = H

T
α, problem (7) can be

written as problem (8):

min
α,ξ

1
2

αT ·KELM · α + C1 · eT · ξ + 1
2

C2 · αT ·KELM ·N ·KELM.α

s.t. Y ·KELM · α ≥ e− ξ

ξ ≥ 0

(8)

where KELM ∈ Rm×m is a Gram matrix with elements kELM
(
xi, xj

)
, kELM(xi, x) = h(x)T ·

h(xi), h(x) denotes the output of some hidden node, Y ∈ Rm×m is a diagonal matrix with
elements yi, C1, C2 are the regularization parameters, and ξ is a nonnegative slack vector.

According to the optimization theory, the dual form of the problem (8) can be obtained
as follows:

min
θ

1
2

θT ·Q · θ − eT · θ

s.t. 0 ≤ θ ≤ C1 · e
(9)

where Q = Y ·
(
(I + C2 ·N ·KELM)−1

)T
·KELM · Y.

The decision function of Fisher-regularized extreme learning machine is:

f (x) = sign

(
m

∑
i=1

αi · kELM(xi, x)

)
(10)
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2.4. Twin Extreme Learning Machine

Similar to the form of TWSVM [13], the primal problem of TELM [14] can be expressed
in the following:

Primal TELM1 : min
β1

1
2
‖H1 · β1‖2

2 + C1 · eT
2 · ξ

s.t. −H2 · β1 ≥ e2 − ξ

ξ ≥ 0

(11)

Primal TELM2 : min
β2

1
2
‖H2 · β2‖2

2 + C2 · eT
1 · η

s.t. H1 · β2 ≥ e1 − η

η ≥ 0

(12)

where H1 and H2 respresent the outputs of the hidden layer for positive and negative
samples, ξ and η represent the slack vectors, 0 is a zero vector, C1, C2 ≥ 0 are penalty
parameters, e1 ∈ Rm1 and e2 ∈ Rm2 are vectors of ones.

By introducing Lagrange multipliers α and ϑ, the dual problem of (11) and (12) can be
written as follows:

Dual TELM1 : min
α

1
2

αT ·H2

(
HT

1 ·H1

)−1
·HT

2 · α− eT
2 · α

s.t. 0 ≤ α ≤ C1 · e2

(13)

Dual TELM2 : min
ϑ

1
2

ϑT ·H1

(
HT

2 ·H2

)−1
·HT

1 · ϑ− eT
1 · ϑ

s.t. 0 ≤ ϑ ≤ C2 · e1

(14)

The solution of (13) and (14) are as follows:

β1 = −
(

HT
1 ·H1 +41I

)−1
·HT

2 · α (15)

β2 = −
(

HT
2 ·H2 +42I

)−1
·HT

1 · ϑ (16)

where41 and42 are two small positive constants and I is an identity matrix. The decision
function of twin extreme learning machine is:

f (x) = arg min
k=1,2

dk(x) = arg min
k=1,2

∣∣∣βT
k · h(x)

∣∣∣ (17)

2.5. Successive Overrelaxation Algorithm

The successive overrelaxation algorithm [32] mainly aims at the following optimiza-
tion problems:

min
µ

1
2

∥∥∥HTµ
∥∥∥2

2
− eTµ

s.t. µ ∈ S = {µ|0 ≤ µ ≤ Ce}
(18)

Let HHT = L + E + LT , the strictly lower triangular matrix of the matrix HHT is L,
and the diagonal elements of the matrix HHT form the diagonal matrix E.

The gradient projection optimality condition is the necessary and sufficient optimality
condition for Equation (18):

µ =
(

µ− πE−1
(

HHTµ− e
))

#
, π ≥ 0
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where the 2-norm projection onto the feasible region of Equation (18) is denoted by (·)#,
that is:

((µ)#)i =


0, i f µi ≤ 0, i = 1, 2, . . . , m
µi, i f 0 < µi < C, i = 1, 2, . . . , m
C, i f µi ≥ C, i = 1, 2, . . . , m

(19)

The matrix HHT is expressed in the following form:

HHT = π−1E(B + C)

s.t. B− C is positive de f inite
(20)

Here:
B =

(
I + πE−1L

)
, C =

(
(π − 1)I + πE−1LT

)
, 0 < π < 2 (21)

According to the [33], the matrix splitting algorithm is as follows:

µi+1 =
(

µi+1 − Bµi+1 − Cµi + πE−1e
)

#
(22)

Substituting Equation (21) into Equation (22), it can be obtained:

µi+1 =
(

µi − πE−1
(

HHTµi − e + L
(

µi+1 − µi
)))

#
(23)

3. Fisher-Regularized Twin Extreme Learning Machine
3.1. Model Formulation

As mentioned above, TELM solves two smaller QPPs, which can get the solution
quickly. However, it ignores the prior statistical knowledge from data. FELM minimizes
the within-class scatter while controlling the between-class scatter of samples, but FELM
needs to solve a large-scale quadratic programming problems which is time-consuming.
In this paper, by combining the advantages of FELM and TELM, we first propose the
Fisher-regularized twin extreme learning machine (FTELM) by introducing the Fisher
regularization into the TELM feature space. FTELM only needs to solve two smaller
quadratic programming problems and meanwhile utilizes the prior statistical knowledge
from data. The pair of FTELM primal problems is as follows:

Primal FTELM1 : min
β1,ξ

1
2
‖H1 · β1‖2 + C1 · eT

2 · ξ +
C2

2
· f1(x)T ·N1 · f1(x)

s.t. −H2 · β1 + ξ ≥ e2

ξ ≥ 0

(24)

Primal FTELM2 : min
β2,η

1
2
‖H2 · β2‖2 + C3 · eT

1 · η +
C4

2
· f2(x)T ·N2 · f2(x)

s.t. H1 · β2 + η ≥ e1

η ≥ 0

(25)

From the Equations (4) and (5), we can know that N1 = I+ −M+ and N2 = I− −M−,
C1, C2, C3, C4 > 0 are regularization parameters, ξ and η are the error vectors, and all the
elements in vectors e1 ∈ Rm1 and e2 ∈ Rm2 are one. FTELM first inherits the advantage of
the classical twin extreme learning machine, which computes two non-parallel hyperplanes
to solve the classification problem. Secondly, FTELM takes full account of the statistical
information of the samples and further improves the classification accuracy of the classifier.
The optimization objective function in (24) of FTELM mainly has three terms: minimiz-
ing the distance from the positive class sample points to the positive class hyperplane,
minimizing empirical loss, and minimizing the intra-class divergence from the samples.
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The constraint condition in (24) of the optimization objective function is that the distance
between the negative class sample points and the positive class hyperplane is greater than
or equal to one. In a word, FTELM makes the positive class sample points closer to the
positive class hyperplane, and the negative class sample points far away from the positive
class hyperplane. At the same time, the positive class sample points are more concentrated
in the center of the positive class sample points. There is a similar explanation for the
model (25).

According to the representer theorem β = ∑m
i=1 αih(xi) = H

T
α, then β1 = HT

1 · α1 and
β2 = HT

2 · α2. We know that f = H · β. Therefore, the problem (24) and (25) can be written
in the following forms:

min
α1,ξ

1
2

αT
1 ·KELM1 ·KELM1 · α1 + C1 · eT

2 · ξ +
C2

2
αT

1 ·KELM1 ·N1 ·KELM1 · α1

s.t. −H2 ·HT
1 · α1 + ξ ≥ e2

ξ ≥ 0

(26)

min
α2,η

1
2

αT
2 ·KELM2 ·KELM2 · α2 + C3 · eT

1 · η +
C4

2
αT

2 ·KELM2 ·N2 ·KELM2 · α2

s.t. H1 ·HT
2 · α2 + η ≥ e1

η ≥ 0

(27)

where KELM1 = H1 ·HT
1 and KELM2 = H2 ·HT

2 are Gram matrices.

3.2. Model Solution

Introducing Lagrange multipliers θ = (θ1, . . . , θm2)
T and ϑ = (ϑ1, . . . , ϑm2)

T , the La-
grange function of (26) can be written as follows:

L(α1, ξ, θ, ϑ) =
1
2

αT
1 ·KELM1 · (I1 + C2 ·N1) ·KELM1 · α1 + C1 · eT

2 · ξ

− θT ·
(
−H2 ·HT

1 · α1 + ξ − e2

)
− ϑT · ξ

(28)

According to the KKT conditions, we get:

∂L
∂α1

= KELM1 · (I1 + C2 ·N1) ·KELM1 · α1 + H1 ·HT
2 · θ = 0 (29)

∂L
∂ξ

= C1 · e2 − θ − ϑ = 0 (30)

θT ·
(
−H2 ·HT

1 · α1 + ξ − e2

)
= 0 (31)

ϑT · ξ = 0 (32)

θ ≥ 0 (33)

ϑ ≥ 0 (34)

From (29) and (30), we can get:

α∗1 = −(KELM1 · (I1 + C2 ·N1) ·KELM1)
−1 ·H1 ·HT

2 · θ (35)

0 ≤ θ ≤ C1 · e2 (36)
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By substituting (29)–(34) into (28), the dual optimization problem for (26) can be
written in the following form:

Dual FTELM1 : min
θ

1
2

θT ·Q1 · θ − eT
2 · θ

s.t. 0 ≤ θ ≤ C1 · e2

(37)

Here Q1 = H2 ·HT
1 · (KELM1 · (I1 + C2 ·N1) ·KELM1)

−1 ·H1 ·HT
2 .

Similarly, we can obtain the dual of (27) as:

Dual FTELM2 : min
λ

1
2

λT ·Q2 · λ− eT
1 · λ

s.t. 0 ≤ λ ≤ C3 · e1

(38)

Here λ = (λ1, . . . , λm1)
T is the vector of Lagrange multipliers and we can get:

Q2 = H1 ·HT
2 · (KELM2 · (I2 + C4 ·N2) ·KELM2)

−1 ·H2 ·HT
1 .

We use the successive overrelaxation (SOR) [32] technique to solve the convex quadratic
optimization problems of (37) and (38) (The SOR-FTELM algorithm is summarized as
Algorithm 1). We can get θ and λ. Therefore, we can obtain the solution for problems of (24)
and (25) in the following :

β1 = −HT
1 · (KELM1 · (I1 + C2 ·N1) ·KELM1 + δ1 · I1)

−1 ·H1 ·HT
2 · θ (39)

β2 = HT
2 · (KELM2 · (I2 + C4 ·N2) ·KELM2 + δ2 · I2)

−1 ·H2 ·HT
1 · λ (40)

The decision function of FTELM is:

f (x) = arg min
k=1,2

∣∣∣βT
k · h(x)

∣∣∣ (41)

Algorithm 1 The procedure of SOR-FTELM.
Input:

Training set T = {xi , yi}m
i=1, where xi ∈ Rd , yi = ±1, the number of hidden node number L, tolerance ε,

regularization parameters C1, C2, C3, C4.
Output:

β1, β2, and the decision function of FTELM.
1: Compute the graph matrix N1, N2 by Equations (4) and (5).
2: Choose an activation function such as G(x) = 1

1+e−x and compute the hidden layer output matrix H1, H2 by

h(xi) = G
(

∑d
j=1 ωjixj + bi

)
and compute KELM1=H1HT

1 and KELM2=H2HT
2 .

3: Choose t ∈ (0, 2), start with any θ0 ∈ Rm2 ,Having θi , compute θi+1 as follows:

θi+1 =
(

θi − tE1

(
Q1θi − e2 + L1

(
θi+1 − θi

)))
#

until
∣∣θi+1 − θi

∣∣ ≤ ε, where e2 is a vector of ones of appropriate dimensions. L1 ∈ Rm2×m2 is the strictly lower
triangular matrix, where lij = qij, i > j. E1 ∈ Rm2×m2 is the diagonal matrix, where eij = qij, i > j.
Then, given any λ0 ∈ Rm1 , Having λi , compute λi+1 as follows

λi+1 =
(

λi − tE2

(
Q2λi − e1 + L2

(
λi+1 − λi

)))
#

4: Compute the output weights β1, β2 using Equations (39) and (40).
5: Construct the following decision functions:

f (x) = arg min
k=1,2

∣∣∣βT
k · h(x)

∣∣∣
4. Capped L1-Norm Fisher-Regularized Twin Extreme Learning Machine
4.1. Model Formulation

The Fisher-regularized twin extreme learning machine proposed in the previous
section not only inherits the advantages of the twin extreme learning machine but also
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makes full use of the statistical information of the samples. However, due to the use of
the squared L2-norm distance and hinge loss function, the Fisher-regularized twin extreme
learning machine is not robust enough when noisy points are present, which often enlarges
the impact of abnormal values. In order to reduce the influence of outliers and improve
the robustness of the FTELM, we propose a capped L1-norm Fisher twin extreme machine
(CL1-FTELM) by replacing the L2-norm and hinge loss in the FTELM with capped L1-norm.
The primal CL1-FTELM is in the following:

Primal CL1-FTELM1:

min
α1,ξ

m1

∑
i=1

min
(∥∥∥hT(xi) ·H1

T · α1

∥∥∥
1
, ε1

)
+ C1 ·

m2

∑
j=1

min
(∥∥ξ j

∥∥
1, ε2

)
+

C2

2
· αT

1 ·KELM1 ·N1 ·KELM1 · α1

s.t. −H2 ·HT
1 · α1 + ξ ≥ e2

(42)

Primal CL1-FTELM2:

min
α2,η

m2

∑
j=1

min
(∥∥∥hT(xj

)
·H2

T · α2

∥∥∥
1
, ε3

)
+ C3 ·

m1

∑
i=1

min(‖ηi‖1, ε4)

+
C4

2
· αT

2 ·KELM2 ·N2 ·KELM2 · α2

s.t. H1 ·HT
2 · α2 + η ≥ e1

(43)

where C1, C2, C3, C4 > 0 are regularization parameters, ε1, ε2, ε3, ε4 are thresholding parameters.
CL1-FTELM uses the capped L1-norm to reduce the influence of noise points, and at

the same time utilizes Fisher regularization to consider the statistical knowledge of the
data. Based on FTELM, CL1-FTELM changes the L2-norm metric and Hinge loss function
of the original model to the capped L1-norm. The capped L1-norm is bounded and can
constrain the impact of noise within a certain range. Therefore, the anti-noise ability of the
model can be improved. The optimization objective function in (42) of CL1-FTELM also
contains three terms: minimizing the distance between the positive class sample points
and the positive class hyperplane by using capped L1-norm metric, minimizing empirical
loss by using capped L1-norm loss function, and minimizing the within-class scatter of the
samples. The constraints in (42) of CL1-FTELM are as follows: the distance between the
negative class sample points and the positive class hyperplane is greater than or equal to
one. In summary, CL1-FTELM inherits the advantages of FTELM, while further improving
the noise immunity of the model by replacing the metric and loss function with the capped
L1-norm. However, the CL1-FTELM is a non-convex and non-smooth problem. Here, we
use the reweighting technique [27] to solve the problem corresponding to the CL1-FTELM
model, which is shown below:

CL1-FTELM1:

min
α1,ξ

1
2

αT
1 ·KELM1 · F ·KELM1 · α1 +

C1

2
· ξT ·D · ξ

+
C2

2
· αT

1 ·KELM1 ·N1 ·KELM1 · α1

s.t. −H2 ·HT
1 · α1 + ξ ≥ e2

(44)

where F and D are two diagonal matrices with i-th and j-th diagonal elements as:

fi =


1

|hT(xi)·HT
1 ·α1| ,

∣∣hT(xi) ·HT
1 · α1

∣∣ ≤ ε1, i ∈ (1, . . . , m1)

σ1, otherwise

(45)
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dj =


1
|ξ j| ,

∣∣ξ j
∣∣ ≤ ε2, j ∈ (1, . . . , m2)

σ2, otherwise

(46)

Here σ1, σ2 are two small constants.
CL1-FTELM2:

min
α2,η

1
2

αT
2 ·KELM2 · R ·KELM2 · α2 +

C3

2
· ηT · S · η

+
C4

2
· αT

2 ·KELM2 ·N2 ·KELM2 · α2

s.t. H1 ·HT
2 · α2 + η ≥ e1

(47)

where R and S are two diagonal matrices with j-th and i-th diagonal elements as:

rj =


1

|hT(xj)·HT
2 ·α2| ,

∣∣hT(xj
)
·HT

2 · α2
∣∣ ≤ ε3, j ∈ (1, . . . , m2)

σ3, otherwise

(48)

si =


1
|ηi |

, |ηi| ≤ ε4, i ∈ (1, . . . , m1)

σ4, otherwise

(49)

Here σ3, σ4 are two small constants.

4.2. Model Solution

Introducing Lagrange multipliers α, the Lagrange function of (44) can be written
as follows:

L(α1, ξ, α) =
1
2

αT
1 ·KELM1 · (F + C2 ·N1) ·KELM1 · α1 +

C1

2
· ξT ·D · ξ

− αT ·
(
−H2 ·HT

1 · α1 + ξ − e2

) (50)

According to the KKT conditions, we can get the following formula:

∂L
∂α1

= KELM1 · (F + C2 ·N1) ·KELM1 · α1 + H1 ·HT
2 · α = 0 (51)

∂L
∂ξ

= C1 ·D · ξ − α = 0 (52)

αT ·
(
−H2 ·HT

1 · α1 + ξ − e2

)
= 0 (53)

α ≥ 0 (54)

From Equations (51) and (52), we can get:

α1 = −(KELM1 · (F + C2 ·N1) ·KELM1)
−1 ·H1 ·HT

2 · α

ξ =
1

C1
·D−1 · α

Similarly, we can get:

α2 = (KELM2 · (R + C4 ·N2) ·KELM2)
−1 ·H2 ·HT

1 · λ

η =
1

C3
· S−1 · λ
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Thus, we can get the dual problem of (44) as follows:
Dual CL1-FTELM1

min
α≥0

1
2

αT ·
((

H2HT
1

)
Q−1

1

(
H1HT

2

)
+

1
C1

D−1
)
· α− eT

2 · α (55)

where Q1 = KELM1 · (F + C2 ·N1) ·KELM1.
In the same way, we can obtain the dual problem of the Equation (47) as follows:
Dual CL1-FTELM2

min
λ≥0

1
2

λT ·
((

H1HT
2

)
Q−1

2

(
H2HT

1

)
+

1
C3

S−1
)
· λ− eT

1 · λ (56)

where Q2 = KELM2 · (R + C4 ·N2) ·KELM2.
After solving (55) and (56), α and λ are derived, and then α1 and α2 are obtained. So,

the decision function of CL1-FTELM is as follows:

y = arg min
k=1,2

∣∣∣αT
k ·Hk · h(x)

∣∣∣ = arg min
k=1,2

mk

∑
i=1

αki
· kELMk (x, xi) (57)

Based on the above discussion, our algorithm will be presented in Algorithm 2. Next,
we give the convergence analysis of Algorithm 2.

Algorithm 2 The procedure of CL1-FTELM.
Input:

Training set T = {xi , yi}m
i=1, where xi ∈ Rd, yi = ±1, the number of hidden node number L, regularization

parameters C1, C2, C3, C4 > 0, ε1, ε2, ε3, ε4 > 0, ρ1, ρ2, σ1, σ2, σ3, σ4.
Output:

α∗1 , α∗2 and the decision function of CL1-FTELM.
1: Initialize F0 ∈ Rm1×m1 , D0 ∈ Rm2×m2 , R0 ∈ Rm2×m2 , S0 ∈ Rm1×m1 .
2: Compute the graph matrix N1, N2 by Equations (4) and (5).
3: Choose an activation function such as G(x) = 1

1+e−x and compute the hidden layer output matrix H1, H2 by

h(xi) = G
(

∑d
j=1 ωjixj + bi

)
and compute KELM1 = H1HT

1 and KELM2 = H2HT
2 .

4: Set t = 0.
5: While

Solving (55) and (56), the αt and λt can be obtained.
Then get the solution αt

1, αt
2, ξt, and ηt by

αt
1 = −(KELM1 · (Ft + C2 ·N1) ·KELM1)

−1 ·H1 ·HT
2 · αt, ξt =

1
C1
·D−1

t · αt

αt
2 = (KELM2 · (Rt + C4 ·N2) ·KELM2)

−1 ·H2 ·HT
1 · λt, ηt =

1
C3
· S−1

t · λt

Update the matrices Ft+1, Dt+1, Rt+1, and St+1 by (45), (46), (48) and (49), respectively.
Compute the objective function values Jt+1

1 and Jt+1
2 , by

Jt+1
1 =

1
2
(
αt

1
)T ·KELM1 · Ft+1 ·KELM1 · αt

1 +
C1

2
·
(
ξt)T ·Dt+1 · ξt+

C2

2
·
(
αt

1
)T ·KELM1 ·N1 ·KELM1 · αt

1

(58)

Jt+1
2 =

1
2
(
αt

2
)T ·KELM2 · Rt+1 ·KELM2 · αt

2 +
C3

2
·
(
ηt)T · St+1 · ηt+

C4

2
·
(
αt

2
)T ·KELM2 ·N2 ·KELM2 · αt

2

(59)

if
∣∣∣Jt+1

1 − Jt
1

∣∣∣ ≤ ρ1 and
∣∣∣Jt+1

2 − Jt
2

∣∣∣ ≤ ρ2 .
break

else
t=t+1

6: end while
7: Stop the iteration process and get the solution of α∗1 , α∗2 .

4.3. Convergence Analysis

Before we prove the convergence of the iterative algorithm, we first review two
lemmas [34].
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Lemma 1. For any non-zeros vectors x, y ∈ Rn, if f (x) = ‖x‖1 −
‖x‖2

1
2‖y‖1

, then the following
inequalities f (x) ≤ f (y) hold.

Lemma 2. For any non-zeros vectors x, y, p, q ∈ Rn, if f (x, p) = ‖x‖1−
‖x‖2

1
2‖y‖1

+C
(
‖p‖1 −

‖p‖2
1

2‖q‖1

)
,

C ∈ R+, then the following inequalities f (x, p) ≤ f (y, q) hold.

The proof of two lemmas is detailed in [34].

Theorem 1. Algorithm 2 monotonically decreases the objectives of problems (42) and (43) in each
iteration until it converges.

Proof. Here, we only use problem (42) as an example to prove Theorem 1.

J(α1, ξ) = min
α1,ξ

m1

∑
i=1

min
(∥∥∥hT(xi) ·H1

T · α1

∥∥∥
1
, ε1

)
+ C1 ·

m2

∑
j=1

min
(∥∥ξ j

∥∥
1, ε2

)
+

C2

2
· αT

1 ·KELM1 ·N1 ·KELM1 · α1

(60)

when
∥∥hT(xi) ·HT

1 · α1
∥∥

1 < ε1 and
∥∥ξ j
∥∥

1 < ε2,we have:

J(α1, ξ) = min
α1,ξ

m1

∑
i=1

∥∥∥hT(xi)HT
1 α1

∥∥∥
1
+ C1

m2

∑
j=1

∥∥ξ j
∥∥

1

+
C2

2
· αT

1 ·KELM1 ·N1 ·KELM1 · α1

(61)

We take the derivative of Equation (61) with respect to α1 and ξ separately and then
obtain that: 

∑m1
i=1

H1h(xi)hT(xi)HT
1 α1

|hT(xi)HT
1 α1| + C2 ·KELM1 ·N1 ·KELM1 · α1 = 0

C1 ·∑m2
j=1

ξ j

|ξ j| = 0

(62)

by the above Equation (62), we can get:

m1

∑
i=1

H1h(xi)hT(xi)HT
1 α1∣∣hT(xi)HT

1 α1
∣∣ + C1 ·

m2

∑
j=1

ξ j∣∣ξ j
∣∣

+ C2 ·KELM1 ·N1 ·KELM1 · α1 = 0

(63)

We define fi =
1

|hT(xi)·HT
1 ·α1| and dj =

1
|ξ j| as the diagonal entries of F and D, respec-

tively. Thus we can rewrite Equation (63) as follows:

H1 ·HT
1 · F ·HT

1 ·H1 · α1 + C1 ·D · ξ + C2 ·KELM1 ·N1 ·KELM1 · α1 = 0 (64)

Obviously, Equation (64) is the optimal solution to the following problem:

min
α1,ξ

1
2

αT
1 ·KELM1 · F ·KELM1 · α1 +

C1

2
· ξT ·D · ξ

+
C2

2
· αT

1 ·KELM1 ·N1 ·KELM1 · α1

(65)
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Now, assume that ᾱ1 and ξ̄ denote the updated α1 and ξ of Algorithm 2, respectively.
Thus we can get:

1
2

ᾱT
1 ·KELM1 · F ·KELM1 · ᾱ1 +

C1

2
· ξ̄T ·D · ξ̄

+
C2

2
· ᾱT

1 ·KELM1 ·N1 ·KELM1 · ᾱ1

≤ 1
2

αT
1 ·KELM1 · F ·KELM1 · α1 +

C1

2
· ξT ·D · ξ

+
C2

2
· αT

1 ·KELM1 ·N1 ·KELM1 · α1

(66)

we have rewritten Equation (66) as follows

m1

∑
i=1

(KELM1ᾱ1)
T(KELM1ᾱ1)

2
∣∣hT(xi)HT

1 α1
∣∣ +

m2

∑
j=1

C1
(
ξ̄ j
)2

2
∣∣ξ j
∣∣

+
C2

2
ᾱT

1 ·KELM1 ·N1 ·KELM1 · ᾱ1

≤
m1

∑
i=1

(KELM1α1)
T(KELM1α1)

2
∣∣hT(xi)HT

1 α1
∣∣ +

m2

∑
j=1

C1
(
ξ j
)2

2
∣∣ξ j
∣∣

+
C2

2
αT

1 ·KELM1 ·N1 ·KELM1 · α1

(67)

Here, we let x = KELM1ᾱ1, y = KELM1α1, C = C1, p = ξ̄ j, q = ξ j. Based on Lemma 2,
we have

|KELM1 · ᾱ1| −
|KELM1 · ᾱ1|2

2|KELM1 · α1|
+ C1 ·

(∣∣ξ̄ j
∣∣− ∣∣ξ̄ j

∣∣2
2
∣∣ξ j
∣∣
)

≤ |KELM1 · α1| −
|KELM1 · α1|2

2|KELM1 · α1|
+ C1 ·

(∣∣ξ j
∣∣− ∣∣ξ j

∣∣2
2
∣∣ξ j
∣∣
) (68)

then we can get

m1

∑
i=1

(∣∣∣hT(xi) ·HT
1 · ᾱ1

∣∣∣− |KELM1 · ᾱ1|2

2|KELM1 · α1|

)
+ C1

m2

∑
j=1

(∣∣ξ̄ j
∣∣− ∣∣ξ̄ j

∣∣2
2
∣∣ξ j
∣∣
)

≤
m1

∑
i=1

(∣∣∣hT(xi) ·HT
1 · α1

∣∣∣− |KELM1 · α1|2

2|KELM1 · α1|

)
+ C1

m2

∑
j=1

(∣∣ξ j
∣∣− ∣∣ξ j

∣∣2
2
∣∣ξ j
∣∣
) (69)

combining (67) and (69), we can get the following inequalities

m1

∑
i=1

(∣∣∣hT(xi) ·HT
1 · ᾱ1

∣∣∣)+ C1

m2

∑
j=1

(∣∣ξ̄ j
∣∣)

+
C2

2
ᾱT

1 ·KELM1 ·N1 ·KELM1 · ᾱ1

≤
m1

∑
i=1

(∣∣∣hT(xi) ·HT
1 · α1

∣∣∣)+ C1

m2

∑
j=1

(∣∣ξ j
∣∣)

+
C2

2
αT

1 ·KELM1 ·N1 ·KELM1 · α1

(70)
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further, we can get

m1

∑
i=1

min
(∣∣∣hT(xi) ·HT

1 · ᾱ1

∣∣∣)+ C1

m2

∑
j=1

min
(∣∣ξ̄ j

∣∣)
+

C2

2
ᾱT

1 ·KELM1 ·N1 ·KELM1 · ᾱ1

≤
m1

∑
i=1

min
(∣∣∣hT(xi) ·HT

1 · α1

∣∣∣)+ C1

m2

∑
j=1

min
(∣∣ξ j

∣∣)
+

C2

2
αT

1 ·KELM1 ·N1 ·KELM1 · α1

(71)

Therefore, we have J
(
ᾱ1, ξ̄

)
≤ J(α1, ξ). Similarly, when

∥∥hT(xi)HT
1 α1
∥∥

1 ≤ ε1 and∥∥ξ j
∥∥ ≥ ε2, or

∥∥hT(xi)HT
1 α1
∥∥

1 ≥ ε1 and
∥∥ξ j
∥∥ ≤ ε2, or

∥∥hT(xi)HT
1 α1
∥∥

1 ≥ ε1 and
∥∥ξ j
∥∥ ≥ ε2,

we can obviously get J
(
ᾱ1, ξ̄

)
≤ J(α1, ξ). Thus, the inequality J

(
ᾱ1, ξ̄

)
≤ J(α1, ξ) holds.

The three terms in Equation (60) are equal to or greater than 0. Meaning that Algorithm 2
decreases objective of problem (42) until convergence.

Theorem 2. Algorithm 2 will converge to a local optimum to the problem in (42).

Proof. Here, we only use (42) as an example to prove Theorem 2.
When

∥∥hT(xi)HT
1 α1
∥∥

1 ≤ ε1 and
∥∥ξ j
∥∥

1 ≤ ε2, we write out the formula of (42) La-
grange function:

L1(α1, ξ, λ) =
m1

∑
i=1

(∥∥∥hT(xi)HT
1 α1

∥∥∥
1

)
+ C1

m2

∑
j=1

(∥∥ξ j
∥∥

1

)
+

C2

2
αT

1 ·KELM1 ·N1 ·KELM1 · α1 − λT
m2

∑
j=1

(
hT(xj

)
HT

1 α1 + ξ j − 1
) (72)

Then, we take the derivative of L(α1, ξ, λ) with respect to α1

∂L1

∂α1
=

m1

∑
i=1

H1h(xi)hT(xi)HT
1 α1∣∣hT(xi)HT

1 α1
∣∣ + C2 ·KELM1 ·N1 ·KELM1 · α1

+ H1 ·HT
2 · λ = KELM1 · (F + C2 ·N1) ·KELM1 · α1 + H1 ·HT

2 · λ = 0

(73)

Similarly, we get the Lagrangian function of problem (44):

L2(α1, ξ, α) =
1
2

αT
1 ·KELM1 · (F + C2 ·N1) ·KELM1 · α1 +

C1

2
· ξT ·D · ξ

− λT ·
(
−H2 ·HT

1 · α1 + ξ − e2

) (74)

Taking the derivative of L2(α1, ξ, α) with respect to α1:

∂L2

∂α1
= KELM1 · (F + C2 ·N1) ·KELM1 · α1 + H1 ·HT

2 · λ = 0 (75)

The other three cases are similar. From the discussion above, we may safely draw that
Equations (73) and (75) are equivalent, so we can use problem (44) instead of problem (42)
to solve CL1-FTELM, which further illustrates that Algorithm 2 can converge to a local
optimal solution.

5. Experiments

Description of the four comparison algorithms:



Axioms 2023, 12, 717 15 of 24

OPTELM: The optimization function of the model consists of minimizing the L2-norm
of the weight vector and minimizing empirical loss. It neither consider the establishment
of two non-parallel hyperplanes to deal with classification tasks, nor consider the statistical
information of samples. At the same time, since it uses L2-norm metric and Hinge loss, it
has weak anti-noise ability.

TELM: The optimization function of the model consists of minimizing the distance
from the sample points to the hyperplane as well as minimizing empirical loss. TELM does
not fully consider the statistical information of the sample. At the same time, its metric
uses the L2-norm metric and the loss function uses the Hinge loss. When there is noise in
the data set, the influence of noise data will be amplified and the accuracy of classification
will be reduced.

FELM: The optimization function of the model includes minimizing the L2-norm of
the weight vector, minimizing empirical loss, and minimizing the within-class scatter of the
number sample data. Although FELM takes into account the statistics of the sample, it has
to deal with a much larger optimization problem than the twin extreme learning machines,
which is time-consuming. At the same time, FELM still continues the metric and loss used
by OPTELM, so its anti-noise ability is weak.

CL1-TWSVM: CL1-TWSVM is formed on the basis of twin support vector machines by
changing the model’s metric and loss to capped L1-norm. Although CL1-TWSVM has the
ability to resist noise, it does not fully take into account the statistics of the data. Meanwhile,
CL1-TWSVM not only needs to solve the weight vector of the hyperplane, but also needs
to solve the bias of the hyperplane, so it is time-consuming.

We systematically compare our algorithm above advanced algorithms (OPTELM [12],
TELM [14], FELM [19], and CL1-TWSVM [29]) on artificial synthetic datasets and UCI
real datasets to verify the effectiveness of our FTELM and CL1-FTELM. In Section 5.1,
we describe the relevant experimental setting in detail. We describe their performance in
different cases in Sections 5.2 and 5.3, respectively. In Section 5.4, we use the one-versus-
rest multi-classification method to perform data classification tasks in four image datasets:
Yale “http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html (accessed on 15
February 2023)”, ORL “http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
(accessed on 15 February 2023)”, USPS “http://www.cad.zju.edu.cn/home/dengcai/Data/
MLData.html (accessed on 15 February 2023)” handwritten digit dataset and MNIST
“http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html (accessed on 15 February
2023)” dataset.

5.1. Experimental Setting

All experiments were implemented in MATLAB R2020a installed in a personal com-
puter (PC) with an AMD Radeon Graphics processor (3.2 GHz), and 16 GB random-access
memory (RAM). For CL1-TWSVM, and CL1-FTELM, we take the maximum number of
iterations to be 100 and the iteration stopping threshold to be 0.001. The activation func-
tions used in a total of five models (OPTELM, TELM, FELM, FTELM, and CL1-FTELM) are

G(x) = 1
1+e−x . The Gaussian kernel function K(x, z) = e−

‖x−z‖2
2σ2 was used for CL1-TWSVM.

The parameters selected by all the above algorithms are as follows: ε1, ε2, ε3, ε4 were
selected from

{
10i| − 6,−5,−4

}
, C1, C2, C3, C4 were selected from

{
10i| − 5,−4, . . . , 4, 5

}
,

σ was chosen from
{

2i| − 3,−2, . . . , 2, 3
}

, and the hidden layer node number L was chosen
from {50, 100, 200, 500, 1000, 2000, 5000, 10,000}. The optimal parameters used by the model
are selected by 10-fold cross-validation and grid search. Normalization was performed for
both artificial and UCI datasets. For image datasets, we randomly select 20% of the data as
the test set to get the classification accuracy of the algorithm. All experimental processes are
repeated 10 times and the average of the 10 test results is used as the performance measure,
and the evaluation criterion selected in this paper is classification accuracy (ACC).

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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5.2. Experiments on Artificial Datasets

We first do experiments on the Banana, Circle, Two spirals, and XOR datasets which
are generated by trigonometric function(sine, cosine), two circle lines, two spirals lines,
and two intersecting lines, respectively. The two-dimensional distributions of the four
synthetic datasets are shown in Figure 1. Dark blue ’+’ represents class 1, and cyan ’◦’
represents class 2. Figure 2 illustrates the experimental results of four twin algorithms
namely TELM, FTELM, CL1-TWSVM, and CL1-FTELM for four datasets with 0%, 20%,
and 25% noise in terms of accuracy. From Figure 2a, we can observe that the classification
accuracy of our FTELM and CL1-FTELM in Banana and Two spirals datasets is higher
than the other two methods. In the Circle and XOR datasets, the classification accuracy
of the four methods is similar. The experimental results show that fully considering the
statistical information of the data can effectively improve the classification accuracy of the
classifier, which shows that our CL1-FTELM method is effective. From Figure 2b,c, we can
see that the overall effect of FTELM is better than TELM. This shows the importance of
fully considering the statistical information of the sample. At the same time, we can see
that CL1-FTELM has the best effect, followed by CL1-TWSVM. It shows that the capped
L1-norm can control the influence of noise on the model in a certain range, and further
shows the effectiveness of using the capped L1-norm. In summary, Figure 2 illustrates the
effectiveness of considering sample statistics information and changing the distance metric
and loss of the model into capped L1-norm at the same time.
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Figure 1. Four types of data without noise.



Axioms 2023, 12, 717 17 of 24

Banana Circle Two spirals XOR
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
(%

)

TELM

FTELM

CL1-TWSVM

CL1-FTELM

(a) Accuracy for four algorithms on four types of
data without noise.

Banana Circle Two spirals XOR
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
(%

)

TELM

FTELM

CL1-TWSVM

CL!-FTELM

(b) Accuracy for four algorithms on four types of
data with 20% noise.

Banana Circle Two spirals XOR
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
(%

)

TELM

FTELM

CL1-TWSVM

CL1-FTELM

(c) Accuracy for four algorithms on four types of
data with 25% noise.

Figure 2. Accuracy for TELM, FTELM, CL1-TWSVM, and CL1-FTELM on four types of data with 0%,
20%, and 25% noise.

To further show the robustness of CL1-FTELM, we add noise with different ratios to
the Circle dataset. Figure 3 shows the accuracy of TELM, FTELM, CL1-TWSVM, and CL1-
FTELM algorithms on the Circle dataset in different noises ratios. The ratio is set in the
range of {0.1, 0.15, 0.2, 0.25}. We plot the accuracy results of ten experiments with different
noise ratios in a box-shaped plot. By observing the median of the four subgraphs, we
can find that the median of CL1-FTELM algorithm is much higher than the other three
algorithms. And CL1-FTELM method in four different noise ratios results is relatively
concentrated. In other words, the variance of ten experimental results obtained by the
CL1-FTELM algorithm is smaller and the mean value is larger. The above results show
that our CL1-FTELM has better stability and better classification effect in environments
containing noise. This shows the effectiveness and noise resistance of the distance metric
and loss functions of the model using the capped L1-norm.

(a) Accuracy for four algorithms on Circle dataset
with 10% noise.

(b) Accuracy for four algorithms on Circle dataset
with 15% noise.

Figure 3. Cont.
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(c) Accuracy for four algorithms on Circle dataset
with 20% noise.

(d) Accuracy for four algorithms on Circle dataset
data with 25% noise.

Figure 3. Accuracy for TELM, FTELM, CL1-TWSVM, and CL1-FTELM on Circle dataset with noise
in different ratios.

5.3. Experiments on UCI Datasets

In this section, we conduct the numerical simulation on UCI datasets. Table 1 describes
the features of the UCI datasets used in detail. We also added two algorithms (OPTELM,
FELM) to verify the classification performance of FTELM and CL1-FTELM in ten UCI
data sets.

Table 1. Characteristics of UCI datasets.

Datasets Instances Attributes Datasets Instances Attributes

Australian 690 14 Vote 432 16
German 1000 24 Ionosphere 351 35
Breast cancer 699 9 Pima 768 8
WDBC 569 30 QSAR 1055 41
Wholesale 440 7 Spam 4601 57

All experimental results obtained based on the optimal parameters are shown in
Table 2. Here, the average running time according to the optimal parameters is denoted
by Times(s), and the average classification plus or minus standard deviation is denoted
by ACC±. From Table 2, we can see that FTELM performs better than OPTELM, TELM,
and FELM on all ten datasets. This indicates that adding Fisher regularization term on the
basis of TELM framework can significantly improve the accuracy of model classification.
In addition, the average training time of FTELM algorithm on most data sets is smaller
than that of FELM algorithm, which indicates that FTELM has inherited the advantages
of TELM’s short training time. In addition, we also can draw our CL1-FTELM in most
data sets has achieved the highest classification accuracy besides the WDBC data set.
Through the analysis of the above results, we can conclude that the Fisher regularization
and capped L1-norm added to the TELM learning framework can effectively improve the
performance of the classifier. It is shown that the proposed FTELM and CL1-FTELM are
efficient algorithms.

In order to more significantly verify the robustness of CL1-FTELM to outliers, we
added 20% and 25% Gaussian noise to 10 data sets, respectively. All experimental results
are presented in Tables 3 and 4. From Tables 3 and 4, we find that the classification accuracy
of all six algorithms decreases after adding noise. However, the classification accuracy
of our algorithm CL1-FTELM is the highest of the eight datasets, which further reveals
the effectiveness of our method using capped L1-norm instead of Hinge loss and L2-norm
distance metric. Compared with the other five algorithms, our CL1-FTELM algorithm is
more time-consuming. This is due to that CL1-FTELM requires a lot of time in the process
of training to iterative calculation, eliminating outliers, and computing graph matrices.
In addition, we used different noise factor values (0.1, 0.15, 0.2, 0.25, 0.3) on the Cancer,
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German, Ionosphere, and WDBC for the six algorithms. The experimental results are given
in Figure 4. It can be seen from Figure 4a that when the Breast Cancer dataset contains
10% noise, the effects of our FTELM and CL1-FTELM are comparable. This shows that
it is important to consider the statistical information of the sample. As the ratio of noise
increases, the classification accuracy of all methods decreases, but our CL1-FTELM still has
the highest accuracy. This illustrates the effectiveness of our using the capped L1-norm.
Figure 4b shows that with the increase of noise ratio, the decline trend of accuracy of CL1-
TWSVM and CL1-FTELM is similar, but CL1-FTELM is still the most stable among the six
methods when facing the influence of noise. From both Figure 4c,d, we can clearly observe
that the anti-noise effect of our CL1-FTELM is the best. This illustrates the effectiveness of
using the Fisher regularization term as well as the capped L1-norm.

Table 2. Experimental results on UCI datasets, The best results are marked in bold.

Datasets
OPTELM TELM FELM FTELM CL1-TWSVM CL1-FTELM
ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 85.31 ± 0.34 85.60 ± 0.44 85.46 ± 0.19 86.79 ± 0.33 85.82 ± 0.28 87.13 ± 0.5287.13 ± 0.5287.13 ± 0.52
0.682 0.593 1.698 0.4560.4560.456 1.676 2.533

German 76.26 ± 0.52 76.40 ± 0.16 76.50 ± 0.42 76.56 ± 0.47 76.70 ± 0.25 77.15 ± 1.1877.15 ± 1.1877.15 ± 1.18
1.182 0.979 4.555 0.4740.4740.474 5.318 7.006

Breast cancer 95.70 ± 0.24 96.35 ± 0.15 96.45 ± 0.09 97.07 ± 0.15 96.39 ± 0.13 97.32 ± 0.5397.32 ± 0.5397.32 ± 0.53
0.601 0.668 1.646 0.5050.5050.505 4.011 3.902

WDBC 96.71 ± 0.27 97.13 ± 0.48 97.55 ± 0.17 98.55 ± 0.2698.55 ± 0.2698.55 ± 0.26 97.09 ± 0.25 97.86 ± 0.21
0.4160.4160.416 0.605 1.144 0.578 3.618 4.551

Wholesale 87.35 ± 0.93 89.86 ± 0.84 90.26 ± 0.12 90.56 ± 0.33 89.89 ± 0.30 90.70 ± 0.5690.70 ± 0.5690.70 ± 0.56
0.2780.2780.278 2.091 0.665 0.359 1.246 1.377

Vote 95.31 ± 0.16 95.56 ± 0.30 96.04 ± 0.24 96.12 ± 0.31 95.21 ± 0.54 96.43 ± 0.3596.43 ± 0.3596.43 ± 0.35
0.2560.2560.256 0.502 0.651 0.445 1.077 0.992

Ionosphere 90.59 ± 0.84 91.38 ± 0.52 92.32 ± 0.32 92.74 ± 0.83 92.56 ± 0.54 93.32 ± 1.2193.32 ± 1.2193.32 ± 1.21
0.1840.1840.184 0.476 0.421 0.268 1.128 2.237

Pima 76.83 ± 0.73 77.51 ± 0.08 77.79 ± 0.10 78.24 ± 0.49 77.49 ± 0.37 78.82 ± 0.9878.82 ± 0.9878.82 ± 0.98
0.858 0.7950.7950.795 2.099 0.932 1.743 4.708

QSAR 83.91 ± 0.66 86.56 ± 0.19 87.12 ± 0.18 87.35 ± 0.23 85.72 ± 0.59 87.50 ± 0.5687.50 ± 0.5687.50 ± 0.56
1.442 0.9790.9790.979 2.489 2.864 2.665 14.288

Spam 85.57 ± 0.65 91.38 ± 0.52 89.67 ± 0.21 91.94 ± 1.23 90.56 ± 1.23 92.27 ± 0.5492.27 ± 0.5492.27 ± 0.54
125.498 64.31464.31464.314 488.251 108.232 158.145 170.261

Table 3. Experimental results on UCI datasets with 20% noise, The best results are marked in bold.

Datasets
OPTELM TELM FELM FTELM CL1-TWSVM CL1-FTELM
ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 79.68 ± 1.75 80.37 ± 0.56 79.06 ± 1.36 80.44 ± 1.34 81.98 ± 0.87 82.78 ± 0.5782.78 ± 0.5782.78 ± 0.57
0.621 0.728 1.756 0.2240.2240.224 1.708 3.224

German 69.67 ± 0.97 73.57 ± 1.85 71.99 ± 1.35 72.76 ± 0.88 73.86 ± 1.35 74.32 ± 1.1274.32 ± 1.1274.32 ± 1.12
1.318 0.981 4.102 0.3980.3980.398 5.673 6.764

Breast cancer 70.60 ± 0.45 76.97 ± 0.42 70.32 ± 0.37 77.81 ± 0.56 79.84 ± 0.37 80.14 ± 0.9180.14 ± 0.9180.14 ± 0.91
0.803 0.706 1.552 0.3150.3150.315 4.572 5.034

WDBC 82.98 ± 0.15 84.38 ± 1.01 83.29 ± 0.68 89.43 ± 1.15 89.98 ± 0.30 93.77 ± 0.3293.77 ± 0.3293.77 ± 0.32
0.419 0.2040.2040.204 0.992 0.376 3.899 4.861

Wholesale 73.40 ± 0.93 73.77 ± 0.69 73.74 ± 0.76 74.77 ± 0.56 78.74 ± 0.91 79.47 ± 2.5879.47 ± 2.5879.47 ± 2.58
0.2750.2750.275 0.543 0.659 0.404 0.849 1.420

Vote 93.48 ± 0.62 94.36 ± 0.6094.36 ± 0.6094.36 ± 0.60 94.24 ± 0.82 94.10 ± 0.94 93.90 ± 0.44 94.29 ± 0.61
0.277 0.619 0.549 0.1140.1140.114 1.048 1.398

Ionosphere 80.79 ± 2.88 82.71 ± 2.09 81.00 ± 3.11 86.06 ± 1.67 85.76 ± 1.58 87.74 ± 1.0887.74 ± 1.0887.74 ± 1.08
0.159 0.0210.0210.021 0.456 0.737 0.391 2.081

Pima 65.79 ± 0.23 67.07 ± 0.56 66.12 ± 0.12 66.30 ± 1.34 70.25 ± 1.57 71.42 ± 0.9471.42 ± 0.9471.42 ± 0.94
0.873 0.6490.6490.649 2.051 1.492 1.758 3.968

QSAR 68.32 ± 2.48 68.80 ± 0.95 68.54 ± 2.50 72.28 ± 2.18 71.09 ± 2.02 72.31 ± 1.9872.31 ± 1.9872.31 ± 1.98
1.534 3.089 4.578 0.8920.8920.892 1.828 9.151

Spam 83.16 ± 0.57 87.38 ± 2.31 85.66 ± 0.65 87.98 ± 0.8787.98 ± 0.8787.98 ± 0.87 85.77 ± 2.21 86.75 ± 0.45
128.798 60.56560.56560.565 432.257 106.267 147.365 160.231
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Table 4. Experimental results on UCI datasets with 25% noise, The best results are marked in bold.

Datasets
OPTELM TELM FELM FTELM CL1-TWSVM CL1-FTELM
ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 73.68 ± 2.20 75.41 ± 1.52 74.25 ± 2.01 76.40 ± 1.19 80.56 ± 1.07 81.63 ± 0.7181.63 ± 0.7181.63 ± 0.71
0.585 0.673 1.627 0.2060.2060.206 2.205 2.261

German 69.72 ± 0.13 72.87 ± 0.82 71.41 ± 0.88 73.15 ± 0.87 73.13 ± 1.16 73.25 ± 0.7673.25 ± 0.7673.25 ± 0.76
1.565 0.871 3.855 0.3420.3420.342 5.233 6.798

Breast cancer 67.59 ± 0.18 70.43 ± 0.79 67.23 ± 0.24 71.65 ± 0.58 70.93 ± 0.52 72.71 ± 0.4972.71 ± 0.4972.71 ± 0.49
0.654 0.513 1.438 0.3090.3090.309 4.476 5.124

WDBC 79.61 ± 0.78 81.66 ± 0.84 79.83 ± 0.72 87.96 ± 1.13 88.50 ± 0.74 92.43 ± 0.7692.43 ± 0.7692.43 ± 0.76
0.417 0.1970.1970.197 0.887 0.334 3.675 4.861

Wholesale 71.79 ± 1.03 71.63 ± 0.89 69.63 ± 0.38 71.60 ± 1.02 75.53 ± 1.02 75.74 ± 3.4875.74 ± 3.4875.74 ± 3.48
0.570 2.021 0.623 0.3380.3380.338 1.147 1.387

Vote 92.62 ± 0.88 92.95 ± 0.50 93.12 ± 0.80 93.21 ± 0.80 93.21 ± 0.68 93.50 ± 1.0093.50 ± 1.0093.50 ± 1.00
0.252 0.503 0.514 0.1210.1210.121 1.213 1.390

Ionosphere 78.15 ± 2.94 78.79 ± 3.01 76.62 ± 3.67 83.59 ± 1.49 82.94 ± 2.90 85.03 ± 2.2885.03 ± 2.2885.03 ± 2.28
0.229 0.0580.0580.058 0.313 0.737 0.576 1.987

Pima 65.67 ± 0.12 65.45 ± 1.55 65.89 ± 0.12 65.79 ± 0.14 69.01 ± 1.5569.01 ± 1.5569.01 ± 1.55 68.51 ± 2.75
0.803 0.761 2.182 0.4710.4710.471 5.532 4.012

QSAR 67.49 ± 3.08 67.81 ± 1.63 70.30 ± 2.33 71.53 ± 3.0071.53 ± 3.0071.53 ± 3.00 70.49 ± 2.13 69.72 ± 2.14
2.067 2.730 4.251 0.8490.8490.849 1.783 12.564

Spam 71.77 ± 1.05 75.35 ± 0.72 70.89 ± 1.23 76.43 ± 1.16 83.56 ± 0.26 84.75 ± 0.7884.75 ± 0.7884.75 ± 0.78
99.541 61.25461.25461.254 462.221 116.267 142.365 165.214

0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3

Noise ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
c
c
u

ra
c
y

OPTELM

TELM

FELM

FTELM

CL1-FTELM

CL1-TWSVM

(a) Breast cancer

0.1 0.15 0.2 0.25 0.3

Noise ratio

0.6

0.65

0.7

0.75

0.8

A
c
c
u

ra
c
y

OPTELM

TELM

FELM

FTELM

CL1-FTELM

CL1-TWSVM

(b) German

0.1 0.15 0.2 0.25 0.3

Noise ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
c
c
u

ra
c
y

OPTELM

TELM

FELM

FTELM

CL1-FTELM

CL1-TWSVM

(c) Ionosphere

0.1 0.15 0.2 0.25 0.3

Noise ratio

0.7

0.75

0.8

0.85

0.9

A
c
c
u

ra
c
y

OPTELM

TELM

FELM

FTELM

CL1-FTELM

CL1-TWSVM

(d) WDBC

Figure 4. Accuracies of six algorithms via different noises factors.

We also conduct experiments on four data sets (Breast cancer, QSAR, WDBC, and Vote)
to verify the convergence of the proposed Algorithm 2. As shown in Figure 5, we plot
the objective function value of each iteration. It can be seen that the objective function
value converges to a fixed value rapidly with the increase in the number of iterations. This
shows that our algorithm can make the objective function value can converge to a local
optimal value within a limited number of iterations. The effectiveness and convergence of
the Algorithm 2 are demonstrated.
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Figure 5. Objective values of CL1-FTELM on four datasets.

5.4. Experiments on Image Datasets

The image datasets include Yale, ORL, USPS, and MNIST. Figure 6 illustrates examples
of four high-dimensional image datasets. The number of samples and characteristics of the
four image datasets are shown in Table 5. These four image datasets are used to investigate
the performance of our FTELM and CL1-FTELM for multi-classification. Specifically, for the
MNIST dataset, we only select the first 2000 samples to participate in the experiment.

Table 5. Characteristics of image datasets.

Datasets Instances Attributes Datasets Instances Attributes

Yale 165 1024 ORL 400 1024
USPS 9298 256 MNIST 70,000 784

Table 6 shows the specific experimental results. As can be seen from the results of
the experiment, our CL1-FTELM and CL1-TWSVM have similar training times. This is
because this paper uses an iterative algorithm to solve non-convex optimization problem
of CL1-FTELM , which is time-consuming. Simultaneously, the CL1- FTELM at Yale, ORL,
USPS, and MNIST four datasets classification accuracy is highest among the six algorithms.
In addition, the classification accuracy of our FTELM algorithm on the four image datasets
is the second highest after our CL1-FTELM. The above results fully show the effectiveness
of our two algorithms in dealing with multi-classification tasks.
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Table 6. Experimental results on images and handwritten digits datasets. The best results are marked
in bold.

Datasets
OPTELM TELM FELM FTELM CL1-TWSVM CL1-FTELM
ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%) ACC ± S (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Yale 89.39 ± 2.85 91.44 ± 1.58 90.54 ± 2.01 92.23 ± 1.29 91.54 ± 1.07 93.12 ± 1.7193.12 ± 1.7193.12 ± 1.71
0.126 0.1010.1010.101 0.262 0.136 0.135 0.492

ORL 87.72 ± 1.53 90.87 ± 0.52 90.41 ± 0.78 92.45 ± 0.67 92.32 ± 1.16 93.25 ± 0.4693.25 ± 0.4693.25 ± 0.46
1.169 0.4830.4830.483 3.064 0.529 1.338 2.695

USPS 98.76 ± 0.18 98.83 ± 0.69 98.23 ± 0.24 99.65 ± 0.68 99.23 ± 0.42 99.89 ± 0.8999.89 ± 0.8999.89 ± 0.89
118.729 17.536 134.438 6.7956.7956.795 358.368 355.762

MNIST 89.61 ± 0.58 90.66 ± 0.74 89.83 ± 0.75 91.26 ± 1.13 90.88 ± 0.14 91.53 ± 0.5691.53 ± 0.5691.53 ± 0.56
8.723 1.237 41.656 0.8680.8680.868 14.258 14.973
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Figure 6. Examples of four high-dimensional image datasets.

6. Conclusions

In this paper, we have proposed FTELM and CL1-FTELM. FTELM not only inherits
the advantages of TELM but also takes full account of the statistical information of samples,
so as to further improve the classification performance of the classifier. Specifically, when
there is no noise in the data or the ratio of noise is very small, our FTELM algorithm can
deal with the classification problem very well, not only time-saving but also with high
classification accuracy. CL1-FTELM further improves the anti-noise ability of the model by
replacing the L2-norm and hinge loss in FTELM with capped L1-norm. It not only utilizes
the distribution information of the data but also improves the anti-noise ability of the
model. Furthermore, we have designed two algorithms to solve the problems of FTELM
and CL1-FTELM. In addition, we present two theorems to prove the convergence of our
CL1-FTELM. However, in terms of computational cost, FTELM is better than CL1-FTELM
to some extent. Therefore, in future work, we will propose some new tricks to accelerate the
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computation of the CL1-FTELM. In addition, trying to extend FTELM and CL1-FTELM from
supervised learning to semi-supervised learning framework is also a future research focus.
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