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Abstract: As a novel neural network learning framework, Twin Extreme Learning Machine (TELM)
has received extensive attention and research in the field of machine learning. However, TELM
is affected by noise or outliers in practical applications so that its generalization performance is
reduced compared to robust learning algorithms. In this paper, we propose two novel distance
metric optimization-driven robust twin extreme learning machine learning frameworks for pattern
classification, namely, CWTELM and FCWTELM. By introducing the robust Welsch loss function and
capped L2,p-distance metric, our methods reduce the effect of outliers and improve the generalization
performance of the model compared to TELM. In addition, two efficient iterative algorithms are
designed to solve the challenges brought by the non-convex optimization problems CWTELM and
FCWTELM, and we theoretically guarantee their convergence, local optimality, and computational
complexity. Then, the proposed algorithms are compared with five other classical algorithms under
different noise and different datasets, and the statistical detection analysis is implemented. Finally,
we conclude that our algorithm has excellent robustness and classification performance.

Keywords: neural network; twin extreme learning machine; distance metric; robustness; pattern
classification

1. Introduction

Single-Hidden Layer Feedforward Neural Networks (SLFNs) [1] are popular training
algorithms, which have a hidden layer and output layer, and the weight between the input
layer and the hidden layer is adjustable. When we correctly choose the activation function
of the hidden node, SLFNs can form a decision region of arbitrary shape. SLFNs have a
large number of applications in the field of pattern recognition [2], extracting the features
of the input data in the hidden layer, with the network classifying and recognizing different
modes, such as speech recognition [3], image classification [4], etc. In addition, they are
also widely used to solve nonlinear problems and time series analysis, for instance, stock
price forecast [5], weather forecast [6], etc. Although SLFNs have many advantages and
applications, they also have great limitations. Because SLFNs rely too much on the training
sample, the networks are not able to generalize well to a new dataset, which makes the
methods prone to overfitting phenomena. Moreover, when processing large-scale datasets,
the training speed of SLFNs is relatively slow, and the accuracy is correspondingly reduced.

In order to break the bottleneck of SLFNs, Extreme Learning Machine (ELM) was
proposed by Professor Huang [1,7] in 2004. ELM is a new single-hidden layer feedforward
network training algorithm. The advantage of this framework is that the input weights and
the bias of the hidden nodes are randomly generated, and we only need to analyze the
output weights of all the parameters. Compared with traditional neural networks, ELM
has the advantages of simple structure, good versatility, and low computational cost [8]. In
recent years, due to the rapid learning, outstanding generalization, and general approxi-
mation capability [9–15], ELM has been used in biology [9,10], pattern classification [11],
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big data [12], robotics [13], and other fields. However, ELM learns only one hyperplane,
which leads to challenges in ELM for handling large-scale datasets as well as non-balanced
data. Therefore, two non-parallel hyperplanes have been developed [16–19]. One of the
most widely known is the Twin Support Vector Machine (TSVM), which was presented by
Jayadeva et al. [16]. Influenced by TSVM, the Twin Extreme Learning Machine (TELM) was
introduced by Wan et al. [20]. TELM introduces two ELM models and trains them together,
so TELM learns two hyperplanes. The inputs of the two hyperplanes are the same dataset,
and different feature expressions are learned under different target functions. Finally, the
results obtained by the two models are integrated to obtain richer feature expression and
classification results. In 2019, Rastogi et al. [21] proposed the Least Squares Twin Extreme
Learning Machine (LS-TELM). The LS-TELM introduces the least squares method based
on the TELM to solve the weight matrix between the hidden layer and the output layer.
While maintaining the advantages of TELM, LS-TELM transforms the inequality constraints
into equality constraints, so that the problem becomes solving two sets of linear equations,
which greatly reduces the computational cost.

In many areas, TELM and its variants are widely used, but they encounter bottlenecks
when dealing with issues with outliers. To remove this dilemma, many scholars have studied
deeply and proposed many robust algorithms based on TELM (see [22–26]). For example,
Yuan et al. [22] proposed Robust Twin Extreme Learning Machines with correntropy-based
metric (LCFTELM) which enhance the robustness and classification performance of the TELM
by employing the non-convex fractional loss function. A Robust Supervised Twin Extreme
Learning Machine (RTELM) was put forward by Ma and Li [23]. The proposed framework
employs a non-convex squared loss function, which greatly suppresses the negative effects
of outliers. The presence of outliers is an important factor affecting the robustness. To reduce
the effect of outliers and improve the robustness of the model, we can use a non-convex
loss function so that it can consistently penalize outliers. The above experimental results
show that it is an effective method. Therefore, to suppress the negative effects of the outliers,
we introduce a non-convex, bounded, and smooth loss function (Welsch loss) [27–30]. The
Welsch estimation method is a robust estimation. The Welsch loss is a loss function based on
the Welsch estimation method. It can be expressed as L(y, f (x)) = σ2

2 [1− exp(− (y− f (x))2

2σ2 )],
where σ is a turning parameter that can control the degree of penalty for the outliers. When
the data error is normally distributed, it is comparable to the mean squared error loss, but,
when the error is non-normally distributed, if the error is caused by outliers, the Welsch loss
is more robust than the mean squared error loss.

It is worth mentioning that TELM has good performance in classification, but it uses the
square L2-norm distance, which increases the influence of outliers on the model and changes
the construction of the hyperplane. In recent years, many researchers have also turned
their attention to the L1-norm measure and proposed a series of robust algorithms, such as
L1-norm and non-square L2-norm [31], Non-parallel Proximal Extreme Learning Machine
(L1-NPELM) [32] based on L1-norm distance measure, and robust L1-norm Twin Extreme
Learning Machine (L1-TELM) [33]. Overall, the L1-norm alleviates the effects of outliers and
improves the robustness, but it also performs poorly when dealing with large numbers of
outliers due to the unboundedness of the L1-norm. Based on this point, the document [33]
presented Capped L2,p-norm Support Vector Classification (SVC). The Capped L2,p-norm
Least Squares Twin Extreme Learning Machine (CL2,p-LSTELM) was proposed in [34]. The
convergence of the above methods was proven in theory, and the capped L2,p distance
metric significantly improves the robustness when dealing with outliers.

Inspired by the above excellent works, we propose two novel distance metric
optimization-driven robust twin extreme learning machine learning frameworks for pattern
classification, namely, CWTELM and FCWTELM. CWTELM was based on optimization
theory. CWTELM introduced the capped L2,p-norm measure and Welsch loss into the
model, which greatly improves the robustness and classification ability. In addition, in
order to maintain relatively stable classification performance of CWTELM and accelerate
its operation, we presented the least squares version of CWTELM (FCWTELM). Experi-



Axioms 2023, 12, 765 3 of 25

mental results with different noise rates and different datasets show that the CWTELM and
FCWTELM algorithms have significant advantages in terms of classification performance
and robustness.

The main work of this paper is summarized as follows

(1) By imbedding the capped L2,p-norm metric distance and Welsch loss to the TELM, a
novel robust learning algorithm called Capped L2,p-norm Welsch Robust Twin Extreme
Learning Machine (CWTELM) is proposed. CWTELM enhances the robustness while
maintaining the superiority of the TELM, so that the performance of classification is
also polished;

(2) To speed up the computation of CWTELM and carry forward its advantages, we present
a least square version of CWTELM, namely, Fast CWTELM (FCWTELM). While inherit-
ing the superiority of the CWTELM, FCWTELM transforms the inequality constraints
into equality constraints, so that the problem becomes solving two sets of linear equa-
tions, which greatly reduces the computational cost;

(3) Two efficient iterative algorithms are designed to solve CWTELM and FCWTELM,
which are easy to realize, and guarantee the existence of a reasonable optimization
method theoretically. Simultaneously, we have carried out a rigorous theoretical
analysis and proof of the convergence of the two designed algorithms;

(4) A great deal of experiments conducted across various datasets and different noise
proportions demonstrates that CWTELM and FCWTELM are competitive with five
other traditional classification methods in terms of robustness and practicability;

(5) A statistical analysis is performed for our algorithms, which further verifies that
CWTELM and FCWTELM exceed five other classifiers in robustness and classification
performance.

The remainder of the article is constructed as follows. In Section 2, we briefly review the
TELM, LS-ELM, RTELM, Welsch loss, and the capped L2,p-norm. In Section 3, we describe
the proposed CWTELM and FCWTELM in detail and give an analysis in theory. In Section 4,
we introduce our experimental setups; the proposed algorithm is compared with five other
classical algorithms with different noise and different datasets, and the statistical detection
analysis is implemented. This article is summarized in Section 5 after giving experimental
results for multiple datasets in Section 4. First we present the abbreviations and main
notations in Tables 1 and 2.

Table 1. Abbreviations.

Abbreviated Form Complete Form

SLFNs Single-hidden Layer Feedforward Neural Networks
ELM Extreme Learning Machine
TELM Twin Extreme Learning Machine
TSVM Twin Support Vector Machine
LS-TELM Least Squares Twin Extreme Learning Machine
CHELM Correntropy-based Robust Extreme Learning Machine
RSS-ELM Robust Semi-supervised Extreme Learning Machine
L1-NPELM Non-parallel Proximal Extreme Learning Machine
L1-TELM Robust L1-norm Twin Extreme Learning Machine
SVC Capped L2,p-norm Support Vector Classification
CL2,p-LSTELM Capped L2,p-norm Least Squares Twin Extreme Learning Machine
RTELM Robust Supervised Twin Extreme Learning Machine
CTSVM Capped L1-norm Twin Support Vector Machine
CWTELM Capped L2,P-norm Welsch Twin Extreme Learning Machine
FCWTELM Fast Capped L2,P-norm Welsch Twin Extreme Learning Machine
LCFTELM Robust twin extreme learning machines with correntropy-based metric
ACC Accuracy
TP True Positives
TN True Negatives
FN False Negatives
FP False Positives
CD Critical Difference
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Table 2. Notation.

Symbol Meaning

R Real number
Rn Real n-dimensional vector space
Rn×n The linear space of the real n-order matrix
| · | Perpendicular distance of the data points x from the hyperplane
‖x‖1 The 1-norm of vector x
‖x‖2 The 2-norm of vector x
‖x‖2

2 Square of the 2-norm of the vector x
‖x‖p The p-norm of vector x
‖x‖1 The 1-norm of the matrix A
‖x‖1 The 2-norm of the matrix A
AT The transpose of matrix A
A−1 The inverse of matrix A
τ Training set
l Number of samples in the training set
yi Label of xi, yi ∈ {+1,−1}
H1 The hidden layer output of the samples belonging to positive class
H2 The hidden layer output of the samples belonging to negative class
f (x) Decision function

2. Related Work

In this section, we first describe some concepts applied in this text, and then make a
concise introduction to TELM, Least Squares Twin Extreme Learning Machine (LS-TELM),
Welsch loss, Robust Supervised Twin Extreme Learning Machine (RTELM) [23], and Capped
L2,p-norm.

2.1. TELM

ELM is a special feedforward neural network. In the training process, the weights and
bias of the hidden layer are often generated randomly or artificially given, without updating.
Computing the weights of the output layer completes the training process. Taking a training
dataset τl = (x1, y1) . . . (xl , yl) ∈ (Rn, Y)l into account, where xi ∈ Rn, yi ∈ Y = {1,−1},
i = 1, . . . , l. The training dataset τl comprises m1 positive class and m2 negative class, where
l = m1 + m2. In addition, we make matrices H1 and H2 represent the hidden layer output of
the samples belonging to the positive class and negative class, severally. The goal of TELM
is to find a pair of non-parallel hyperplanes to achieve classification:

f1(x) = β1
Th(x), (1)

f2(x) = β2
Th(x). (2)

where β1 and β2 are the output weight between the hidden layer and the output layer. h(x)
is the nonlinear random feature mapping output of the hidden layer with respect to the
input pattern. Inspired by the idea of TSVM, the primal TELM can be given by

min
β1

1
2
‖H1β1‖2

2 + C1e2
Tξ

s.t − H2 · β1 + ξ1 ≥ e2

ξ ≥ 0

(3)

min
β2

1
2
‖H2β2‖2

2 + C2e1
Tξ

s.t H1 · β2 + η ≥ e1

η ≥ 0

(4)
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where C1 > 0 and C2 > 0 are regularization parameters, ξ and η are relaxation vector,
e1 ∈ Rm1 and e2 ∈ Rm2 are vectors of ones, and the zero vector is expressed by 0. According
to the Karush–Kuhn–Tucker theorem, to solve such a TELM problem is the same to finish
off the the next dual optimization problems:

min
α

1
2

αT H2(H1
T H1)

−1H2
Tα− e2

Tα

s.t 0 ≤ α ≤ C1e2.
(5)

min
ϑ

1
2

ϑT H1(H2
T H2)

−1H1
Tϑ− e1

Tϑ

s.t 0 ≤ ϑ ≤ C2e1.
(6)

In the above formulas, α and ϑ are given as Lagrange multipliers. Then, we can obtain two
nonparallel separating planes, β1 and β2:

β1 = −(H1
T H1 + εI)−1H2

Tα. (7)

β2 = −(H2
T H2 + εI)−1H1

Tϑ. (8)

We classify the new sample points x on the basis of the following decision function:

f (x) = arg min
k=1,2

dk(x) = arg min
k=1,2

|βk
Th(x)|. (9)

where | · |means the shortest distance from data point x to the hyperplane βk.

2.2. LS-TELM

In order to accelerate the training speed of TELM and achieve better performance
stability, LS-TELM was proposed in 2018. The algorithm uses the least squares method
to solve the original problem of TELM. In LS-TELM, the inequality constraint is replaced
by the equation constraints. In addition, the L2-norm of the relaxation variables is also
replaced by the L1-norm. The LS-TELM is indicated as follows:

min
β1,ξ

1
2
‖H1β1‖2

2 +
C1

2
ξTξ

s.t − H2 · β1 + ξ = e2

(10)

min
β2,η

1
2
‖H2β2‖2

2 +
C2

2
ηTη

s.t − H2 · β2 + η = e2

(11)

where H1 represents the hidden layer output matrix of positive class sample points and
H2 represents the hidden layer output matrix of negative class sample points. According
to the constraint in Equation (8), ξ can be expressed as e2 + H2β1, and we bring it into the
objective function:

min
β1

1
2
‖H1β1‖2

2 +
C1

2
e2 + H2β1

Te2 + H2β1

s.t − H2 · β1 + ξ = e2

(12)

Setting the gradient with respect to β1 equal to zero gives

(HT
1 H1 + C1HT

2 H2)β1 + C1HT
2 e2 = 0 (13)

β1 can be expressed as

β1 = −C1(HT
1 H1 + C1HT

2 H2)
−1HT

2 e2 (14)
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Similarly, β2 can be written as

β2 = C2(HT
2 H2 + C2HT

1 H1)
−1HT

1 e1 (15)

To obtain the optimal values of β1 and β2, the separation superplane

β1 · hx = 0

β2 · hx = 0
(16)

can be recalculated. The data point x can be divided into two categories according on the
following formula.

f (x) = arg min
k=1,2

dk(x) = arg min
k=1,2

|βk
Th(x)|. (17)

where | · | is the perpendicular distance of the data points x from the hyperplane β.
For more details, please refer to [21].

2.3. Welsch Loss Function

Welsch Loss, also known as pseudo-Huber loss, is used to measure the error between
the predicted value and the actual value. Compared to mean squared and absolute errors,
the Welsch loss function is more robust and can better handle the effects of outliers. The
Welsh loss function expression is

L(y, f (x)) =
σ2

2
[1− exp(− (y− f (x))2

2σ2 )] (18)

where the true value is given by y, f (x) is the predicted value and σ is the adjustable
parameters. As shown in Figure 1a, we change the parameter C value from 1 to 3, and
we can see that the upper bound of Welsch is gradually increasing and slowly converging.
Observation (18), when y− f (x) approaches infinity, the upper bound of L(y− f (x)) is σ2

2 ,
which means that the outliers in the model can be limited by Welsch loss.

-4 -3 -2 -1 0 1 2 3 4

Noises factor

0

2

4

6

8

10

12

14

16

A
cc

ur
ac

y

Capped L2,p-norm Loss(p=1)
L1-norm loss
L2-norm loss
Capped L2,p-norm Loss(p=2)

-20 -15 -10 -5 0 5 10 15 20

Value of the 

0

1

2

3

4

5

6

7

8

W
el

sc
h 

lo
ss

=1
=2
=3

(a) Capped L2,p-norm loss and related losses (b) Welsch loss with different σ

Figure 1. Loss Functions.

2.4. RTELM

TELM is a very excellent and powerful classification model with a wide range of
research and applications in various academic fields. But it uses the square L2-norm and the
hinge loss function, and the effect of outliers is usually exaggerated. From this, we cannot
guarantee the robustness of the TSVM. Therefore, based on this basis, RTELM is proposed,
which replaces the L2-norm distance metric and the hinge loss function with the capped
L1-norm distance metric and the adaptive capped Lθε-norm loss function. The expression
for the RTELM is given below:
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min
β1

Σm1
i=1 min(|β1h(xi)|, ε1) + C1Σm2

i=1 min(
(1 + θ)ξ2

1,i

|ξ1,i|+ θ
, ε2)

s.t − H2β1 + ξ1 ≥ e2

(19)

min
β2

Σm2
i=1 min(|β2h(xi)|, ε3) + C2Σm1

i=1 min(
(1 + θ)ξ2

2,i

|ξ2,i|+ θ
, ε4)

s.t H1β2 + ξ2 ≥ e1

(20)

where C1, C2 > 0 are regularization parameters, e1 ∈ Rm1 and e2 ∈ Rm2 are vectors of
ones, and ε1, ε2, ε3 and ε4 are thresholding parameters. To solve the above optimization
problems (14) and (15) more efficiently, we can reformulate the problems as the following
approximation problems through the reweighted method [32]:

min
β1

1
2
(H1β1)

TQH1β1 +
1
2

C1ξT
1 Uξ1

s.t − H2β1 + ξ1 ≥ e2

(21)

min
β2

1
2
(H2β2)

TQH2β2 +
1
2

C2ξT
2 Zξ2

s.t − H1β2 + ξ2 ≥ e1

(22)

where e2 ∈ Rm2 and e1 ∈ Rm1 are vectors of ones, Q, G, U and Z are four diagonal matrices
with i-th diagonal elements as

qi =


1

|β1 · h(xi)|
, |β1 · h(xi)| ≤ ε1

smallval, otherwise.
(23)

gi =


1

|β2 · h(xi)|
, |β2 · h(xi)| ≤ ε3

smallval, otherwise.
(24)

ui =

(1 + θ)
|ξ1,i|+ 2θ

2(|ξ1,i|+ θ)2 ,
(1 + θ)ξ2

1,i

|ξ1,i|+ θ
≤ ε2

smallval, otherwise.

(25)

zi =

(1 + θ)
|ξ2,i|+ 2θ

2(|ξ2,i|+ θ)2 ,
(1 + θ)ξ2

2,i

|ξ2,i|+ θ
≤ ε4

smallval, otherwise.

(26)

According to the optimization theory and the dual theory, the Wolfes dual problems
of (16) and (17) are obtained as follows:

min
α≥0

1
2

αT(H2(HT
1 QH1)

−1HT
2 +

1
C1

U−1)α− eT
2 α (27)

Similarly,

min
ϑ≥0

1
2

ϑT(H1(HT
2 QH2)

−1HT
1 +

1
C2

Z−1)α− eT
1 ϑ (28)

where α, ϑ are the Lagrange multipliers.

2.5. Capped L2,p-Norm

In TELM and other related areas, the L2-norm is often applied in building the model,
but L2-norm is differentiable, and the negative effects of outliers may be magnified. ‖.‖p

2 is
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mainly used to enhance the robustness of the model by making fall within the interval of
(0, 2] [32,33]. Therefore, we build different models for different problems by choosing the
parameter 0 < p ≤ 2, which makes the L2,p-norm more robust. For any vector α ∈ Rn and
parameters 0 < p ≤ 2, L2,p-norm and capped L2,p-norm are defined as

f1(α) = (Σn
i=1αin)

p
2 (29)

f2(α) = min((Σn
i=1αin)

p
2 , ε) (30)

where ε ≥ 0 is the threshold parameter. From the above analysis and Figure 1, the robustness
of capped L2,p-norm is stronger than capped L1-norm and capped L2-norm, which is a
generalization and extension of capped L1-norm and capped L2-norm.

More details can refer to [30].

3. Main Contribution

In this section, we place the Welsch loss and L2,p-norm into the model TELM and
obtain the two proposed models, CWTELM and FCWTELM. At the same time, to test the
stability of the above models, we conducted a convergence analysis of them.

3.1. CWTELM

The primary problem of the model we built can be written as

min
β1

m1

∑
i=1

min(‖β1hxi‖
p
2 , ε1) + C1

m2

∑
i=1

[1− exp(− ξ1,i
2

2σ2 )],

s.t − H2β1 + ξ1 ≥ e2.

(31)

min
β2

m2

∑
i=1

min(‖β2hxi‖
p
2 , ε2) + C2

m1

∑
i=1

[1− exp(− ξ1,i
2

2σ2 )],

s.t − H1β2 + ξ2 ≥ e1.

(32)

where C1 ≥ 0 and C2 ≥ 0, e1 ∈ Rm1 and e2 ∈ Rm2 are the unit vectors.
To address the above issues, we let

R1(β1) =
m1

∑
i=1

min(‖β1hxi‖
p
2 , ε1)

L1(β1) = C1

m2

∑
i=1

[1− exp(−
ξ2

1,i

2σ2 )]

(33)

Further, we let

max L(β1) = C1

m2

∑
i=1

exp(−
ξ2

1,i

2σ2 ) = I(β1) (34)

Similarly,

max L(β2) = C2

m2

∑
i=1

exp(−
ξ2

2,i

2σ2 ) = I(β2) (35)

Thus, (31) and (32) can be written as
max

β1
I(β1)− R(β1)

max
β2

I(β2)− R(β2)
(36)

For an easier computation, we define a function g(v) = −v log(−v) + v, vi < 0,
v = (v1, v2, . . . , vm), based on the theory of conjugate functions, we have
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I(β1) = sup
V<0

[c1

m1

∑
i=1

(vi
ξ2

1,i

2σ2 − g(vi)] (37)

where vi = − exp(− ξ2
1,i

2σ2 ).
Then,

max
β1,v<0

M(β1, v) = c1

m1

∑
i=1

(vi
ξ2

1,i

2σ2 − g(vi))− R(β1) (38)

Thus, the following formula holds true:

min
β1

Σm1
i=1 min(‖β1h(xi)‖

p
2 , ε1) +

c1

2σ2 ξ1,iΩξ1,i

s.t − H2β1 + ξ1 ≥ e2

(39)

min
β2

Σm2
i=1 min(‖β2h(xi)‖

p
2 , ε2) +

c2

2σ2 ξ2,iΩξ2,i

s.t H1β2 + ξ2 ≥ e1

. (40)

In order to optimize the objective function smoothly, we will introduce concave duality
in Theorem 1.

Theorem 1. Let g(θ) : Rn→ R is a continuous non-convex function, suppose h(θ) : Rn→ Ω ⊂ Rn
is a map with range Ω. We assume that a concave function ḡ(u) defined on Ω exists, such that
g(θ) = g(h(θ)) holds. Therefore, the non-convex function g(θ) can be expressed as [30]

g(θ) = inf
v∈Rn

[VTh(θ)− g∗(v)] (41)

According to the convex dual theorem, the convex dual of g(θ) : R→ R is written as

g∗(v) = inf
u∈

[VTh(θ)− g∗(v)] (42)

Moreover, the minimum value on the right side of formula (28) is

v∗ =
α ¯g(θ)

αθ
|u=h(θ) (43)

Proof. Thus, based on Theorem 1, we give a convex function g(θ) : R → R, that makes
arbitrary θ > 0

ḡ(θ) = min(θ
p
2 , ε) (44)

Assuming h(µ) = µ2, we can find that

min(‖βh(xi)‖
p
2 , ε) = g(h(µ)) (45)

where µ = ‖βh(xi)‖2.
Therefore, based on (39), (40) and (45) can be written as

min
β1

Σm1
i=1 ḡ‖β1h(xi)‖2

2 +
C1

2σ2 ξT
1,iΩξ1,i

s.t − H2 · β1 + ξ1 ≥ e2

(46)

min
β2

Σm1
i=1 ḡ‖β2h(xi)‖2

2 +
C2

2σ2 ξT
2,iΩξ2,i

s.t H1 · β2 + ξ2 ≥ e1

(47)
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Let θ1 = h(µ1) = ‖β1h(xi)‖2
2, by Theorem 1, and the first term of (46) can be expressed as

min(‖β1h(xi)‖
p
2 , ε1) = ḡ(‖β1h(xi)‖2

2) = inf
fii≥0

fiih(µ1)− g∗( fii) (48)

Here, the concave dual function of g(θ1) is

g∗( fii) = inf
θ1
[ fii − g(θ1)] = inf

θ1

 fiiθ1 − θ1
p
2 , θ

2
p−2

1 < ε1

fiiθ1 − ε1, θ
p
2
1 ≥ ε1

(49)

After the optimization of θ1 in Equation (49), we have

g∗( fii) =


fii(

2
p

fii)
2

p−2 − (
2
p

fii)
2

p−2 , θ
2

p−2
1 < ε1

fiiε
2
p
1 − ε1, θ

p
2
1 ≥ ε1

(50)

Therefore, the objective function (39) can be further written as

min
β1

Σm1
i=1 min(‖β1h(xi)‖2

p), ε1) +
C1

2σ2 ξT
1,iΩξ1,i

⇐⇒min
β1

Σm1
i=1 inf

fii≥0
Li(β1, fii, ε1) +

C1

2σ2 ξT
1,iΩξ1,i

⇐⇒ min
(β1, fii≥0)

Σm1
i=1Li(β1, fii, ε1) +

C1

2σ2 ξT
1,iΩξ1,i

(51)

where

Li(β1, fii, ε1) =


fiiθ1 − fii(

2
p

fii)
2

p−2 + (
2
p

fii)
2

p−2 , θ
p
2
1 < ε1.

fiiθ1 − fiiε
2
p
1 + ε1, θ

p
2
1 ≥ ε1.

(52)

Similarly, let θ2 = h(µ2) = ‖β2h(xi)‖2
2, g∗(kii) is expressed as a concave dual function of

g(θ2), so, formula (40) can be written as

min
β2

Σm1
i=1 min(‖β2‖2

p, ε3) +
C2

2σ2 ξT
2,iΩξ2,i

⇐⇒min
β2

Σm1
i=1 inf

kii≥0
Li(β2, kii, ε3) +

C2

2σ2 ξT
2,iΩξ2,i

⇐⇒ min
β2, fii≥0

Σm2
i=1Li(β2, kii, ε3) +

C2

2σ2 ξT
2,iΩξ2,i

(53)

where

Li(β2, kii, ε3) =


kiiθ2 − kii(

2
p

fii)
2

p−2 + (
2
p

kii)
2

p−2 , θ
p
2
2 < ε3.

kiiθ2 − kiiε
2
p
1 + ε2, θ

p
2
2 ≥ ε3.

(54)

The objective functions (52) and (54) solve the optimization algorithm by alternately learn-
ing the optimal classifiers. We calculated the gradient of the function g(θ) with respect to θ
as follows:

∂ḡ(θ)
∂θ

=


p
2

θ
p
2−1, 0 < θ < ε

2
p

0, θ > ε
2
p

(55)
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If θ1 = h(µ1) = ‖β1h(xi)‖2
2, we can obtain

fii =
∂ḡ(θ)

∂θ
|θ1= ‖β1h(xi)‖2

2 =


p
2
‖β1h(xi)‖2

2, 0 < ‖β1h(xi)‖2
2 < ε1

0, else
(56)

Likewise, if θ2 = h(µ2) = ‖β2h(xi)‖2
2, we can obtain

kii =
∂ḡ(θ2)

∂θ2
|θ2= ‖β2h(xi)‖2

2 =


p
2
‖β2h(xi)‖2

2, 0 < ‖β2h(xi)‖2
2 < ε3

0, else.
(57)

It is important that to understand the relationship between parameters more clearly,
we set the distance from sample xi to the hyperplane as X. If X > ε1, then fii is almost 0,
then the sample xi is considered an outlier and discarded. Additionally, dii is similar to fii.
When the variables fii and dii are fixed, to solve the classifier related parameters β1 and β2,
the optimization problems (39) and (40) can be written as

min
β1

Σm1
i=1 f(ii)‖β1h(xi)‖2

2 +
C1

2σ2 ξT
1,iΩξ1,i

s.t − H2 · β1 + ξ1 ≥ e2

(58)

min
β2

Σm2
i=1k(ii)‖β2h(xi)‖2

2 +
C2

2σ2 ξT
2,iΩξ2,i

s.t H1 · β2 + ξ2 ≥ e1

(59)

Let F = diag( f11, f22, f33, . . . , fm1,m1) be the m1-diagonal matrix, and K = diag(k11, k22, k33,
. . . , km2,m2) be a diagonal matrix of m2, so that (39) and (40) are equivalent to

min
β1

(β1h(xi))
T F(β1h(xi)) +

C1

2σ2 ξT
1,iΩξ1,i

s.t − H2 · β1 + ξ1 ≥ e2

(60)

min
β2

(β2h(xi))
TK(β2h(xi)) +

C2

2σ2 ξT
2,iΩξ2,i

s.t H1 · β2 + ξ2 ≥ e1

(61)

The corresponding Lagrange function of the above optimization problem (60) can be
rewritten as

L(β1, ξ1) =
1
2
(β1h(xi))

T F(β1h(xi)) +
1

2σ2 C1ξT
1 Ωξ1 − αT(−H2β1 + ξ1 − e2) (62)

where α is a Lagrange multiplier. Differentiating the Lagrangian function with respect to
β1 and β2 yields the following Karush–Kuhn–Tucker (KKT) conditions

∂L
∂β

= h(xi)F(β1h(x1)) + αT H2 = 0, (i)

∂L
∂ξ

= σ
1
2 C2Ωξ1 + αT = 0, (ii)

αT(−H2β1 + ξ1 − e2) = 0, (iii)

α ≥ 0. (iv)

(63)
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By combining formulas (i) and (ii), we can obtain

β1 = −(HT
1 FH1)

−1(HT
2 α) (64)

Similarly, we can also obtain ξ1 = (C2Ω)−1αT , so the dual problem of (60) is

min
α≥0

1
2

αT(H2(HT
1 QH1)HT

2 +
1

C1
U−1)α− eT

2 α (65)

At the same time, the dual problem of (61) as follows:

min
ϑ≥0

1
2

ϑT(H1(HT
2 GH2)HT

1 +
1

C2
Z−1)ϑ− eT

1 ϑ (66)

where α, ϑ is the Lagrange multiplier.

3.2. FCWTELM

Reduce the computation time complexity of CWTELM

min
β1

m1

∑
i=1

min(‖β1 · hxi‖
p
2 , ε1) + C1

m2

∑
i=1

[1− exp(− ξ1,i
2

2 · σ2 )],

s.t − H2 · β1 + ξ1 = e2.

(67)

min
β2

m2

∑
i=1

min(‖β2 · hxi‖
p
2 , ε2) + C2

m1

∑
i=1

[1− exp(− ξ2,i
2

2 · σ2 )],

s.t − H1 · β2 + ξ2 = e1.

(68)

Equivalent to processing the second item of FCWTELM, further, (67) and (68) written as

min
β1

m1

∑
i=1

min(‖β1 · hxi‖
p
2 , ε1) +

C1

2σ2 ξ1,iΩξ1,i,

s.t − H2 · β1 + ξ1 = e2.

(69)

min
β2

m2

∑
i=1

min(‖β2 · hxi‖
p
2 , ε2) +

c2

2σ2 ξ2,iΩξ2,i,

s.t − H1 · β1 + ξ2 = e1.

(70)

Replace the equality constraint into the objective function, we obtain

min
β1

m1

∑
i=1

min(‖β1 · hxi‖
p
2 , ε1) + C1Ω1‖e2 + H2β1‖2

2 (71)

min
β2

m1

∑
i=1

min(‖β2 · hxi‖
p
2 , ε2) + C2Ω2‖e1 − H1β2‖2

2 (72)

Further, similar to the handling of CWTELM, we can obtain

min
β1

(β1h(xi))
T F(β1h(xi)) +

C1

2σ2 ξT
1,iΩξ1,i (73)

min
β2

(β2h(xi))
TK(β2h(xi)) +

C2

2σ2 ξT
2,iΩξ2,i (74)

The (73) differential for β1 to zero gives

2HT DHβ1 + C1HT
2 Ωe2 + c1HT

2 Ω1H1β1 = 0 (75)
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So,
β1 = −(2HT

1 FH + C1Ω1HT
2 H2)

−1C1HT
2 Ω1e2 (76)

Similarly,
β1 = (2HT

2 FH2 + C2HT
1 Ω2H1)

−1C2HT
1 Ω2e1 (77)

3.3. Convergence Analysis

Lemma 1. For any scalar t, when 0 < p ≤ 2, inequality 2|t|p − pt2 + p − 2 ≤ 0 is always
established.

Lemma 2. For arbitrary x 6= y ∈ Rn, if f (x) = x− x2

2y , then inequality f (x) < f (y) is always
established.

Lemma 3. For any non-zero vector α, β, when 0 < p ≤ 2, inequality

‖α‖p
2 −

p
2
‖β‖p−2

2 ‖α‖2
2 ≤ ‖β‖

p
2 −

p
2
‖β‖p−2

2 ‖β‖2
2 (78)

is always established.

Theorem 2. Algorithm 1 will monotonously reduce the objective of problems (49) and (50), respec-
tively, in each iteration.

Algorithm 1 Training CWTELM.

Input: Training data : Training set T1 = {xi, yi}i=1
l , i = 1, . . . , l, where xi ∈ Rn, xj ∈ Rn,

yi ∈ {−1,+1}; activation function G(x), and the number of hidden node number L, the
parameters C1, C2, ε1, ε2, ε3, ε4, δ1 and δ2.
β∗1 and β∗2;
Process:
1. Initialize F ∈ Rm1×m1 and Q ∈ Rm2×m2 ; K ∈ Rm2×m2 and U ∈ Rm1×m1 ;
2. α and β;
3. Passing Z1 = −(HT FH + C3 I)−1ETα and Z2 = (ETKE + C4 I)−1HT β Calculate Z1
and Z2,
4. Accordingly, update matrix separately Q, U, F, K.

Proof. Let

J = min
β1

Σm1
i=1 min(‖β1h(xi)‖P

2 ), ε1) + c1

m2

∑
i=1

min[1− exp(− (ξ1,i)
2

2σ2 ), ε2] (79)

When ‖β1h(xi)‖ < ε1 and ‖1− exp(− (ξ1,i)
2

2σ2 )‖ < ε2

J = min
β,ξ1,i

Σm1
i=1 min(‖β1h(xi)‖P

2 ), ε1) + c1

m2

∑
i=1

[1− exp(− (ξ1,i)
2

2σ2 )] (80)

Let J = J1 + J2, where
J1 = min

β
Σm1

i=1‖β1h(xi)‖P
2 (81)

J2 = c1 min
m2

∑
i=1

[1− exp(− (ξ1,i)
2

2σ2 ), ε2] (82)

For J1, assuming that Zk+1 is the solution of the k + 1 iteration of Algorithm 1:

[β, h(xi)]
(k+1) = min

1
2
(β1h(xi))

T Fk(β1h(xi)) (83)
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Apparently, the Algorithm 1 has the following formula in iteration k,

[(β1h(xi))
k+1]T F(K)[β1h(xi] ≤ [(β1h(xi))

k]T F(K)[β1h(xi] (84)

Reduce to

P
2
‖(β1H(xi))

k+1‖2
2‖(β1H(xi))

k+1‖2
P−2 ≤

P
2
‖(β1H(xi))

k‖2
2‖(β1H(xi))

k‖2
P−2 (85)

Based on Lemma 3, we obtain

‖β1H(xi)
k+1‖p

2 −
P
2
‖(β1h(xi))

k‖p−2
2 ‖(β1h(xi))

k+1‖2
2 ≤ ‖β1H(xi)

k‖2
p −

P
2
‖(β1h(xi))

k‖2
p−2‖(β1h(xi))

k‖2
2 (86)

Combining (85) and (86), we have

‖β1H(xi)
k+1‖p

2 ≤ ‖β1H(xi)
k‖p

2 (87)

Thus, the J1 is convergent. Next, we discuss the convergence of g(v) = 1− exp(−v2) =

1 − exp(− ξ2
1,i

2σ2 ), where V =
ξ2

1,i√
2σ

, there exists a convex function ψ(s), we have g(v) =

infs>0
1
2 sv2 + ψ(s), and when V is fixed, we have the minimum s∗, which satisfies

g(v) = inf
s>0

1
2

sv2 + ψ(s) =
1
2

s∗v2 + ψ(s∗) (88)

where s∗ = 2 exp(−v2), so L(h(x)) = cλ infs>0(
s(ξ2

1,i)

4σ2 + ψ(s)).
The above formula is converted into

min
β1

Σm1
i=1 min(‖β1h(xi)‖P

2 ), ε1) + cλΣN
i=1 inf

si>0
(

s(ξ2
1,i)

4σ2 + ψ(si))

⇐⇒ min
β1

Σm1
i=1 min(‖β1h(xi)‖P

2 ), ε1) + cλΣN
i=1(

s(ξ2
1,i)

4σ2 + ψ(si))

(89)

The above problem is solved by alternating iterative algorithms. Specifically, in the k-th
iteration, we bring s(k) into problem (89):

min
β
‖β‖2

2 +
N

∑
i=1

ci‖ξ1,i‖1 (90)

where ci =
cλsi

k−1

4σ2 and ci > 0. By introducing the relaxation variable ξ in Equation (90), the
optimization problem becomes

min
β1,ξ1
‖β‖2

2 +
N

∑
i=1

ciξi
2

s.t ξ1,i ≥ 0, i = 1, . . . , N

(91)

The optimal solution β(k) can be obtained by solving (85) and then putting it in (91).

min
s>0

N

∑
i=1

(
si(ξ1,i

2)

4σ2 + ψ(si)) (92)

According to Theorem 1, we obtain the minimal solution

si
(k) = 2 exp(− (ξ1,i)

2

2σ2 ), i = 1, . . . , N (93)
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From (84), (85) and Lemma 2, we can obtain A1(β, s) ≥ A(β) ≥ 0, then the sequence is
lower bounded. Assuming that β(k) and s(k) are obtained after k iterations, we use s(k) to
optimize the formula (93) on β:

A1(βk, s(k)) ≥ A1(β(k+1), s(k)) (94)

And β(k + 1) is optimized for formula (64) on s:

A1(β(k+1), s(k)) ≥ A1(β(k+1), s(k+1)) (95)

Concluding from the above inequality, we have

A1(β(k), s(k)) ≥ A1(β(k+1), s(k+1)) (96)

Therefore, J2 is convergence. Thus, the sequence is convergence.

4. Experimental
4.1. Experiments Setup

ELM has the goodness of rapid learning, strong approximation and excellent gener-
alization, both in regression as well as multiple classification. To judge the performance
of our proposed CWTELM and FCWTELM, we compare CWTELM and FCWTELM with
other traditional methods systematically, including ELM, Correntropy-based Robust Ex-
treme Learning Machine (CHELM), TELM, Capped L1-norm Twin Support Vector Machine
(CTSVM) and RTELM. For CTSVM, FCWTELM and CWTELM, we stop the iteration pro-
cess when the target value of two consecutive iterations is less than 0.001 and the number
of iterations is greater than 50. The parameters selected by all of the above algorithms
are ε1 = ε2 = 10−4, c, c1, c2, c3, c4 : {10i| − 5,−4, . . . , 4, 5}, σ : {10i|i = −4,−3, . . . , 3, 4}, λ :
{10i|i = −7,−6,−5, . . . , 5, 6, 7}, k : {3, 7, 9, 11}, η : {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2}
and L:{50, 100, 200, 400, 500, 1000, 2000}. We selected the optimal parameters for the pa-
rameters c, c1, c2, λ, σ, and Land by using 10-fold cross-validation and grid search. ELM,
TELM, CHELM, RTELM, CTSVM, CWTELM and FCWTELM use the activation function
1/(1 + exp(−(w · x + b))) (w, bare random generation). Meanwhile, we measure the clas-
sification performance of all algorithms by the accuracy (ACC). Acc is expressed as [23]

ACC =
TP + TN

TP + TN + FP + FN
(97)

Specifically, TP indicates true positives, TN represents true negatives, FN expresses false
negatives, and FP represents false positives. Furthermore, the computational efficiency
of each algorithm is represented by learning time. All of the measures are conducted on
the MATLAB 2021a and run on the system configuration 11th Gen Intel (R) Core (TM)
i5-11357G7 processor (2.40 GHz) with 16 GB of memory.

4.2. Artificial Dataset

Since our proposed algorithm is mainly used to solve the binary classification problem,
so to verify the effectiveness of FCWTELM and CWTELM, we generated a class of binary
classification datasets based on Gaussian distribution. First, 100 artificial data samples are
grouped into two classes, one positive and one negative. The positive class is expressed by
+, and the other is represented by ∗. Since the outliers influence the classification perfor-
mance of the model significantly, nine outliers were inserted to compare the robustness of
ELM, CHELM, TELM, CTSVM, RTELM, CWTELM and FCWTELM. Then, the 9 outliers
were divided into four positive and five negative, as shown in Figure 2.
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Figure 2. Distribution of artificial datasets with outliers.

4.3. UCI Dataset

The UCI (http://archive.ics.uci.edu/ml/datasets.html (accessed on 28 December 2022)
dataset is one of the widely used standard datasets, and the UCI dataset can provide a
relative standard basis, making the model comparison more objective. Since data acqui-
sition and processing is a time-consuming and laborious task, in the case of limited time
and resources, we applied eight datasets, which are: Australian, Balance, Vote, Cancer,
Wholesale, QSAR, Pima, WDBC. As shown in Table 3, they represent different data types
and characteristics, such a selection also makes the study results more reliable. And we will
follow up the experiment with our algorithms in more datasets. To verify the classification
behavior of our two models, we conducted a series of experiments on the above datasets. In
consideration of that noise is an important factor to measure the robustness of the algorithm,
we will study these eight datasets of different noise rates, and if the classification accuracy
varies smoothly for different noise rates, the algorithm shows good robustness.

Table 3. Characteristics of UCI Datasets.

Datasets Samples Attributes Datasets Samples Attributes

Australian 690 14 Cancer 699 9
Balance 576 4 Wholesale 440 7
Vote 432 16 WDBC 569 30
QSAR 1055 41 Pima 768 8

4.4. Experimental Results on the UCI Datasets without Outliers

In this part, to test the classification behavior of the CWTELM, FCWTELM and other
correlative algorithms, we ran eight UCI datasets on these algorithms. In Table 4, all the test
outcomes are based on the optimal parameters. The time (s) represents the average running
time obtained by each algorithm according to the optimal parameters, and the accuracy
(ACC) represents the average classification accuracy. As can be seen from Table 4, from a
classification point of view, CWTELM performs better than the other six algorithms on all
the datasets. In many cases, ACC of the FCWTELM is in the forefront, and the average
running time of the algorithm is shorter. By analyzing the test results in the above, we can
reach the conclusion that using the L2,p-norm in the TELM framework is able to promote
the classification performance. Thus, the proposed CWTELM and FCWTELM are valid
supervised algorithms without outliers.

http://archive.ics.uci.edu/ml/datasets.html
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Table 4. Experimental results on UCI datasets with 0% Gaussian noise.

ELM CHELM TELM CTSVM RTELM CWTELM FCWTELM

Datasets ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 85.74 86.53 86.69 84.93 86.58 88.24 86.70
1.541 4.561 2.093 3.466 5.125 6.847 0.536

Balance 85.11 91.04 90.41 89.29 94.64 96.43 91.07
1.739 4.543 3.112 3.097 4.381 4.853 0.427

Vote 94.58 95.60 95.48 95.58 95.81 97.62 92.65
1.043 4.547 0.901 9.310 6.234 4.654 0.587

Cancer 80.61 86.43 86.33 86.88 90.75 94.20 91.30
1.706 5.013 0.873 2.771 4.274 6.256 0.581

wholesale 75.07 74.31 74.56 73.49 81.40 86.05 81.44
1.476 4.675 0.937 2.819 3.948 4.123 0.369

QSAR 84.43 81.66 86.87 88.31 87.64 88.46 87.50
1.541 3.043 0.629 7.856 7.798 11.437 0.798

Pima 77.76 76.78 78.01 72.68 78.86 79.01 76.32
2.674 3.622 1.316 6.047 7.664 6.492 0.772

WDBC 95.85 95.32 95.55 95.13 95.21 98.21 94.64
1.435 8.951 1.225 9.549 6.449 5.224 0.454

4.5. Robustness against Outliers

See from the previous subsection that CWTELM and FCWTELM have good classifica-
tion performance, to further test the robustness of them to the outliers, we considered three
scenarios, respectively: the noise levels M = 0.1, M = 0.2 and M = 0.25.

With noise levels of M = 0.1, M = 0.2 and M = 0.25, all tests outcomes are revealed
in Tables 5, 6 and 7, respectively. Tables 5–7 show the experimental results of the seven
algorithms on the eight datasets with the 0.1, 0.2 and 0.25 noise levels. It is obvious that
the accuracy of seven algorithms decreases after the introduction of outliers. Yet, except
for some cases, the accuracy of CWTELM is still better than the other six algorithms. In
many illustrations, the classification accuracy of FCWTELM is in the forefront of the seven
algorithms, and its running time is the shortest among the other algorithms.

Table 5. Experimental results on UCI datasets with 10% Gaussian noise.

ELM CHELM TELM CTSVM RTELM CWTELM FCWTELM

Datasets ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 79.83 80.21 81.03 80.45 81.98 85.29 82.35
1.523 4.631 2.143 3.487 5.187 6.473 0.521

Balance 83.32 84.43 83.21 87.23 85.71 91.07 89.29
1.909 4.876 2.453 4.417 4.418 4.497 0.426

Vote 93.57 92.22 94.65 95.01 95.43 95.24 91.35
0.978 3.872 0.376 9.654 5.503 4.717 0.587

Cancer 79.36 83.46 85.48 85.36 84.06 89.86 86.96
1.758 5.001 0.773 2.608 4.316 6.354 0.590

wholesale 74.47 75.31 73.56 73.14 76.64 83.72 78.37
1.476 4.657 0.879 2.892 4.063 4.150 0.373

QSAR 73.61 72.43 79.64 78.79 84.31 85.58 84.62
1.931 6.778 2.789 9.852 10.754 11.198 0.763

Pima 72.21 73.45 73.47 70.38 75.91 76.32 84.62
2.013 3.023 1.482 6.924 6.765 6.714 0.768

WDBC 88.53 89.26 87.63 91.43 92.31 96.43 91.07
1.238 7.693 0.924 8.988 5.973 6.608 0.667
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Table 6. Experimental results on UCI datasets with 20% Gaussian noise.

ELM CHELM TELM CTSVM RTELM CWTELM FCWTELM

Datasets ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 76.48 78.85 78.91 79.80 81.12 83.82 80.88
1.586 6.683 0.774 9.710 8.740 7.704 0.583

Balance 79.11 81.39 82.01 84.91 82.14 87.50 85.71
1.679 5.460 2.489 3.345 4.392 4.871 0.424

Vote 92.51 90.23 93.76 94.19 94.43 95.24 95.36
0.990 3.856 0.401 9.348 5.607 5.321 0.506

Cancer 79.25 80.15 82.67 85.29 84.06 86.96 85.51
1.739 5.203 0.798 2.661 4.346 6.952 0.411

wholesale 74.19 74.91 73.06 72.21 74.22 81.40 76.74
1.330 4.857 0.896 3.412 3.953 4.119 0.374

QSAR 64.87 65.44 68.44 68.56 76.92 83.65 79.81
2.245 10.212 4.443 11.387 12.876 10.844 0.809

Pima 65.87 65.80 66.32 71.75 73.31 73.68 71.50
1.746 2.498 1.090 7.095 5.198 6.329 0.931

WDBC 84.76 85.37 82.08 82.75 85.56 92.86 89.29
1.389 8.918 1.124 9.330 6.499 5.235 0.509

Table 7. Experimental results on UCI datasets with 25% Gaussian noise.

ELM CHELM TELM CTSVM RTELM CWTELM FCWTELM

Datasets ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)
Times (s) Times (s) Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 66.79 69.85 65.66 74.65 76.76 83.82 76.47
1.413 6.747 1.406 9.552 7.895 7.842 0.724

Balance 78.39 80.11 81.12 85.46 85.71 87.50 85.72
1.710 2.539 3.411 3.279 4.494 4.664 0.453

Vote 93.82 92.23 91.10 93.18 93.64 93.86 93.98
0.893 3.653 0.664 9.118 7.235 5.321 0.508

Cancer 79.25 80.36 81.32 84.86 81.16 85.61 84.97
1.739 5.210 0.799 2.503 4.332 6.863 0.404

wholesale 74.00 74.01 73.06 70.35 72.09 79.07 74.42
1.404 5.110 0.789 3.020 4.066 4.173 0.374

QSAR 63.72 67.69 65.77 73.65 70.01 74.04 75.00
0.441 10.357 4.499 9.336 12.876 11.357 0.790

Pima 65.83 65.59 65.29 70.39 70.66 73.68 69.74
1.746 2.202 1.045 6.691 7.836 6.394 0.860

WDBC 77.56 75.57 79.09 80.12 84.64 85.71 85.71
1.401 8.631 1.553 9.407 6.639 5.248 0.435

We take Vote, WDBC, Cancer, and Australia this four UCI datasets for examples and
draw the line diagram of above seven algorithms under different Gaussian noise rates,
which is shown in Figure 3. We can more intuitive to find that the accuracy of CWTELM and
FCWTELM change more smoothly than the other five algorithms when the noise increases.
Summarize the above experimental results, we can obtain the following conclusion: in
the case of noise, CWTELM and FCWTELM still maintain the advantages of classification
performance and robustness. In addition, the classification performance of CWTELM and
FCWTELM is little different. Next we will use statistical monitoring analysis to further
verify the accuracy of them.
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Figure 3. Accuracies of five algorithms via different noises factors.

4.6. Experimental Results on Artificial Dataset with Outliers

By tests on eight UCI datasets, we confirm that CWTELM and FCWTELM have better
properties in classification and robustness. Therefore, to further explore the advantages of
both algorithms, we will again validate their accuracy in the artificial dataset. The results
are shown in Figure 4. Observing Figure 4, we find that the precision of the above seven
frameworks classified varied in the order of containing outliers, from low to high, with
roughly the same operation on UCI. The classification accuracy of the above seven models
in the artificial dataset is, respectively, ELM 61.3%, CHELM 65.6%, TELM 67.0%, CTSVM
78%, RTELM 80%, CWTELM 84%, and FCWTELM 86%. It also further determined that the
L2,P-norm measure and the Welsch loss have significant positive effects on robustness and
classification performance.

To verify the effect of parameter p on the models performance, we present the pa-
rameter analysis results in Figure 5. It can be seen from the Figure 5 that the proposed
method is less affected by the parameters. In addition, we experiment on the accuracy of
CWTELM and FCWTELM for different values of p. In Figure 5, we can find that many
better accuracies are not achieved at p = 1 and p = 2, so it is a wise choice to introduce the
L2,p norm metric.
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Figure 4. The classification results on the artificial datasets.
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Figure 5. Accuracies of CWTELM and FCWTELM via different parameter p.

4.7. Statistical Analysis

Within this segment, the Friedman test [34] is applied to analyze the significant differ-
ences among above algorithms across eight UCI datasets. The Friedman test was used to
compare differences in paired groups across multiple related groups in a sample. Its null
hypothesis is that there is no difference between groups, where the median observed values
are equal across all groups. If the observed difference between groups is significant, the null
hypothesis can be rejected and concluded that at least one group is significantly different.
When the null hypothesis is rejected, we can perform a Nemenyi test [34]. The Nemenyi test
is a post hoc test method that used to determine whether significant differences exist be-
tween multiple independent groups. It is based on a cross-consideration of the direction and
variability of group differences to determine which groups differ significantly by comparing
double comparisons between two groups. Then, we calculated the average accuracy and
ranking of seven algorithms on 8 datasets, which is revealed in Table 8. First, taking a 20%
Gaussian noise as an example, we can use the following formula to calculate the Friedman
statistical variables:

X2
F =

12N
k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4
] = 32.21 (98)

where N and k represent the number of UCI datasets and algorithms, as well as Rj is the
average rank of the j-th algorithm on the dataset used. In this paper, k = 7 as well as N = 8.
Moreover, based on the x2

F-distribution with (k− 1) degrees of freedom, we can obtain

FF =
(N − 1)X2

F
N(k− 1)− X2

F
= 14.277 (99)

where FF(k− 1) , (k− 1)(N − 1) follows the f distribution, with (k− 1) and (k− 1)(N − 1)
degrees of freedom. Furthermore, for α = 0.05, we can obtain an Fα = (6, 42) = 2.324.
Clearly, FF > Fα, and therefore we can reject the null hypothesis. From Table 8, we can
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see that the average ranking of CWTELM and FCWTELM is much lower than the other
algorithms, meaning that our CWTELM and FCWTELM are more effective than the other
algorithms. In addition, we further compared seven algorithms by the Nemenyi post
hoc test method. When the average rank difference between the two algorithms is less
than the cut-off value, the difference in performance between the two algorithms is not
significant, or otherwise significant. By dividing the study range statistic by 2, we can
obtain qα = 0.05 = 2.949. Therefore, we calculate the critical difference value (CD) using
the following formula:

CD = qα = 0.1

√
k(k + 1)

6N
= 2.949×

√
7(7 + 1)
6× 10

= 2.5858 (100)

As shown in Figure 6, CWTELM and FCWTELM behave significantly better than ELM,
CHELM, TELM, CTSVM and RTELM in classification. It can further be seen that there is
no significant difference between CWTELM and FCWTELM, as the difference is smaller
than the CD value. Therefore, it can be confirmed that the proposed methods CWTELM
and FCWTELM have better performance by statistical analysis.

Table 8. Average accuracy and ranking of the seven algorithms on the UCI datasets with different
noise proportions.

ELM CHELM TELM CTSVM RTELM CWTELM FCWTELM

Avg.ACC 10% 80.61 81.35 82.33 82.72 84.54 87.94 86.08
Avg.rank 10% 6.000 5.500 4.875 4.625 3.000 1.250 2.750
Avg.ACC 20% 77.13 77.77 78.41 79.93 81.47 85.64 83.10
Avg.rank 20% 6.000 5.750 5.000 4.500 2.625 1.375 2.750
Avg.ACC 25% 74.92 75.68 75.30 79.08 79.33 82.91 80.75
Avg.rank 25% 5.625 5.500 5.750 4.125 3.625 1.375 2.000
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Figure 6. Visualization of post-hoc tests for UCI datesets.

5. Conclusions

The Welsch loss function has good qualities such as smooth, non-convex and bound-
ness and, therefore, it is more robust than the commonly used L1 and L2 losses. Capped
L2,p-norm is an excellent norm distance that can reduce the negative effects of outliers and
thus improve the robustness of the model. In this paper, we proposed a distance metric
optimization-driven robust twin extreme learning machine learning framework, namely
CWTELM, which introduced Welsch loss and L2,p-norm distance to the TELM in order to
enhance the performance of robust. Then, to speed up the computation of CWTELM while
maintaining its advantages, we presented a least square version of CWTELM, namely Fast
CWTELM (FCWTELM). Meanwhile, we design two efficient iterative algorithms to solve
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CWTELM and FCWTELM, respectively, and guarantee their convergence and computa-
tional complexity in theory. To evaluate the performance of CWTELM and FCWTELM, we
experiment with them with five classical algorithms in different datasets and different noise
rates. In the absence of noise, CWTELM achieved the best results in seven datasets. The
experimental results of FCWTELM in the eight datasets are slightly lower than CWTELM,
but the gap is small, and its running time is the shortest among the seven algorithms. In
the case of noise, we take 10% noise as an example, CWTELM achieved the best results in
Australian, Balance, Cancer, Wholesale, QSAR, WDBC, and FCWTELM performed the best
in Pima. From a running time perspective, FCWTELM has the fastest running speed in
the six datasets and all within 1 s. In addition, we found that CWTELM and FCWTELM
have little difference between no noise and 10% noise conditions in same dataset. We
continue to observe the experimental data with 20% and 25% noise and can also obtain
the above conclusions. To this end, this paper takes Australian, Vote, WDBC, and Cancer
as examples to more clearly show the accuracy of the seven algorithms in the form of
different noise proportions. Similarly, we also conducted comparative experiments on the
seven algorithms in the artificial dataset, and showed the classification effect of the seven
algorithms more intuitively in the form of a scatter plot. The performance of CWTELM
and FCWTELM is still excellent. Finally, we carried out statistical tests on seven algorithms
and verified that CWTELM and FCWTELM exceeded other five models and that the two
models had no significant difference in performance. From the above works, we can obtain
that CWTELM and FCWTELM alleviate the negative effects of outliers to some extent,
so they have good robustness. Besides they also have little difference in classification
performance and have a outstanding operation while maintaining the advantages of TELM.
The algorithms CWTELM and FCWTELM proposed in this paper can be applied to pattern
classification. On the one hand, our algorithm has good classification representation and
robustness, and it can learn the nonlinear relationship between the input data. In this way,
a high-precision classification model can be obtained. Therefore, our model is able to obtain
more accurate results when performing the pattern classification. On the other hand, our
algorithm can improve the robustness of pattern classification. They can automatically
choose and solve the specificity in the classification process, and can deal with the noise
between different categories, so they are more suitable for different pattern classification
tasks in practical application scenarios. Of course, in addition to pattern classification,
CWTELM and FCWTELM can also be applied in many fields, such as data mining, pattern
recognition, action recognition in robot control, path planning, image classification and so
on. In the future, to improve the algorithms we proposed, in-depth studying for them is
necessary, such as exploring better loss functions for the TELM framework to improve the
robustness of the model and algorithm performance. In addition, we can also deepen the
basic research, derive the upper bound of their generalization ability, etc.
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