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Abstract: Our investigation is devoted to examining the existence, uniqueness, and multiplicity of
positive solutions for a system of Hadamard fractional differential equations. This system is defined
on an infinite interval and is subject to coupled nonlocal boundary conditions. These boundary
conditions encompass both Hadamard fractional derivatives and Riemann–Stieltjes integrals, and the
nonlinearities within the system are non-negative functions that may not be bounded. To establish
the main results, we rely on the utilization of mathematical theorems such as the Schauder fixed-point
theorem, the Banach contraction mapping principle, and the Avery–Peterson fixed-point theorem.
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1. Introduction

Fixed-point theory finds its applications across a spectrum of domains in our lives.
Notably, it plays a crucial role in tackling ordinary differential equations, partial differen-
tial equations, and, more recently, fractional differential equations. Within these arenas,
researchers delve into investigating the existence, uniqueness, and multiplicity of various
types of solutions, whether they be positive or otherwise. To achieve this, they harness a mul-
titude of fixed-point theorems. These theorems include the influential Banach contraction
mapping principle, the Guo–Krasnosel’skii fixed-point theorem involving cone expansion
and compression of norm type, the Schauder fixed-point theorem, the Leray–Schauder
alternative, the nonlinear alternative of Leray–Schauder type, the Leggett–Williams theo-
rem, the Avery–Peterson fixed-point theorem, the nonlinear alternative of Leray–Schauder
type specifically designed for Kakutani maps, and the Covitz–Nadler fixed-point theorem,
among others. In the pursuit of understanding and applying these theorems, noteworthy
references encompass well-established books such as [1–8], along with key papers such
as [9,10].

In this paper, we analyze the following system comprising nonlinear Hadamard
fractional differential equations{

HDα
1+u(t) + a(t)f(t, u(t), v(t)) = 0, t ∈ (1,+∞),

HDβ
1+v(t) + b(t)g(t, u(t), v(t)) = 0, t ∈ (1,+∞),

(1)

subject to the nonlocal coupled boundary conditions
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
u(i)(1) = 0, i = 0, 1, . . . , n− 2; v(j)(1) = 0, j = 0, 1, . . . , m− 2;
HDα−1

1+ u(+∞) =
∫ +∞

1
u(s) dH1(s) +

∫ +∞

1
v(s) dH2(s);

HDβ−1
1+ v(+∞) =

∫ +∞

1
u(s) dK1(s) +

∫ +∞

1
v(s) dK2(s),

(2)

where α ∈ (n− 1, n], β ∈ (m− 1, m], n, m ∈ N, n, m ≥ 2, HDp
1+ denotes the Hadamard

fractional derivative of order p (for p = α, β, α− 1, β− 1), the non-negative functions a, b
are defined on [1,+∞), the functions f, g : [1,+∞)×R+ ×R+ → R+ may be unbounded
and verify some assumptions, (R+ = [0,+∞)), and the integrals from the conditions (2)
are Riemann–Stieltjes integrals with H1,H2,K1,K2 : [1,+∞) → R functions of bounded
variation. The term “nonlocal” within the context of the boundary conditions signifies
that the unknown functions u and v at the ends of the interval are influenced by their own
values within that interval. In the conditions (2), the functions u and v at infinity exhibit
this nonlocal characteristic, as their dependence (mediated by Riemann–Stieltjes integrals)
extends over the entire interval (1,+∞).

Our focus lies in investigating the existence, uniqueness, and multiplicity of positive
solutions for the problem described by system (1) and the conditions (2). We consider
different assumptions regarding the functions a, b, f, and g. To accomplish this, we employ
mathematical tools such as the Schauder fixed-point theorem, the Banach contraction
mapping principle, and the Avery–Peterson fixed-point theorem (see [1,10]). A positive
solution of (1), (2) is a pair of functions (u(t), v(t)), t ∈ [1,+∞) which satisfies (1) and (2),
with u(t) ≥ 0, v(t) ≥ 0, and u(t) > 0 for all t ∈ (1,+∞) or v(t) > 0 for all t ∈ (1,+∞).
The problems in (1), (2), where the functions f and g are independent of t, continuous,
and bounded, was recently investigated in [11], under different assumptions than those
used the present paper. In [11], for the proof of the main results, the authors applied the
Guo–Krasnosel’skii fixed-point theorem and the Leggett–Williams theorem (see [2,9]). In
the paper in [12], the authors studied the positive solutions of system (1) with f(t, u, v) =
f (u, v), g(t, u, v) = g(u, v), α, β ∈ (1, 2] (n = m = 2) and bounded nonlinearities f and g,
supplemented with the boundary conditions

u(1) = 0, HDα−1
1+ u(+∞) =

m

∑
i=1

λi
HIαi

1+v(η),

v(1) = 0, HDβ−1
1+ v(+∞) =

n

∑
j=1

σj
HI

β j
1+u(ξ),

(3)

where λi, σj > 0 for i = 1, . . . , m, j = 1, . . . , n, η > 1, ξ > 1, and HIk
1+ is the Hadamard

fractional integral of order k with lower limit 1. As we mentioned in [11], the last conditions
for +∞ from (3) are particular cases of the boundary conditions (2). Indeed we can

write these conditions as ∑m
i=1 λi

HIαi
1+v(η) =

∫ +∞
1 v(s) dH2(s), and ∑n

j=1 σj
HI

β j
1+u(ξ) =∫ +∞

1 u(s) dK1(s), with some bounded variation functions H2 and K1, (H1 ≡ 0 and K2 ≡
0). We also mention the paper in [13], in which the authors investigated the nonlinear
Hadamard fractional differential equation with nonlocal boundary conditions

HDα
1+u(t) + a(t)f(t, u(t)) = 0, t ∈ (1,+∞),

u(1) = u′(1) = 0, HDα−1
1+ u(+∞) =

m

∑
i=1

αi
HIβi

1+u(η) + b
n

∑
j=1

σju(ξ j),
(4)

where f is an unbounded function, α ∈ (2, 3), b ≥ 0, βi > 0 and αi ≥ 0 for all i = 1, . . . , m,
σj ≥ 0 for all j = 1, . . . , n, 1 < η < ξ1 < . . . < ξn < +∞. They studied the existence,
uniqueness, and multiplicity of positive solutions for problem (4) using diverse fixed-
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point theorems. The last boundary condition in (4) can be written as HDα−1
1+ u(+∞) =∫ +∞

1 u(s) dH(s), where H(s) = ∑m
i=1 αi Hi(s) + bH0(s), with

Hi(s) =


1

Γ(βi + 1)

(
(ln η)βi −

(
ln

η

s

)βi
)

, if 1 ≤ s ≤ η,

1
Γ(βi + 1)

(ln η)βi , if s ≥ η,

H0(s) =



0, s ∈ [1, ξ1),
σ1, s ∈ [ξ1, ξ2),
σ1 + σ2, s ∈ [ξ2, ξ3),
...
σ1 + σ2 + · · ·+ σn, s ∈ [ξn,+∞),

for i = 1, . . . , m. So, in contrast to the paper in [11], our problems (1), (2) introduce several
novel aspects. Firstly, the functions f and g are allowed to be unbounded. Additionally,
the conditions imposed on these functions in the main results differ from those in the
aforementioned paper. Lastly, our proof strategy involves applying fixed-point theorems
that differ from those used in [11]. In scenarios where the variable t is confined to the finite
interval (0, 1), it is worth noting the contribution presented in the paper in [14]. In that work,
the authors delve into the exploration of positive solutions within a system of Riemann–
Liouville fractional differential equations. Notably, these equations are subject to uncoupled
nonlocal boundary conditions, encompassing fractional derivatives and Riemann–Stieltjes
integrals. The system’s nonlinearities exhibit characteristics such as non-negativity and the
potential for singularity with respect to the time variable. In substantiating their central
theorems, the authors employ the Guo–Krasnosel’skii fixed-point theorem. This theorem
serves as a pivotal tool in establishing the existence of positive solutions in the context
of the explored system. For a thorough grasp of Riemann–Liouville, Caputo, Hadamard,
Hilfer, and other variants of fractional differential equations and systems, coupled with
a range of boundary conditions and their multifaceted applications across diverse fields,
we recommend that readers explore the monographs in [15–26], and the papers in [27–31].
These references serve as invaluable resources for gaining deeper insights into this intricate
subject matter.

The structure of the paper is outlined as follows. Section 2 provides an overview of
key preliminary results from the paper in [11], which will be employed in the subsequent
section. In Section 3, we present the existence theorems for problems (1), (2). Section 4
showcases a selection of examples that serve to illustrate our results, and Section 5 contains
the conclusions of this paper.

2. Auxiliary Results

This section aims to introduce several essential preliminary results from the paper
in [11], which will be utilized in the subsequent section.

We study the system of Hadamard fractional differential equations{
HDα

1+u(t) + h(t) = 0, t ∈ (1,+∞),
HDβ

1+v(t) + k(t) = 0, t ∈ (1,+∞),
(5)

where h, k ∈ C([1,+∞),R+), subject to the boundary conditions (2). We denote by

a = Γ(α)−
∫ +∞

1
(ln ζ)α−1 dH1(ζ), b =

∫ +∞

1
(ln ζ)β−1 dH2(ζ),

c =
∫ +∞

1
(ln ζ)α−1 dK1(ζ), d = Γ(β)−

∫ +∞

1
(ln ζ)β−1 dK2(ζ),

∆ = ad− bc.

(6)

We also use the notation I = [1,+∞).
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Lemma 1 ([11]). Assume that a, b, c, d ∈ R, and the functions h, k ∈ C([1,+∞),R+) satisfy the
conditions

∫ +∞
1 h(ζ) dζ

ζ < +∞ and
∫ +∞

1 k(ζ) dζ
ζ < +∞. If ∆ 6= 0, then the solution of problems

(5), (2) is given by
u(t) =

∫ +∞

1
G1(t, ζ)h(ζ)

dζ

ζ
+
∫ +∞

1
G2(t, ζ)k(ζ)

dζ

ζ
, t ∈ I,

v(t) =
∫ +∞

1
G3(t, ζ)h(ζ)

dζ

ζ
+
∫ +∞

1
G4(t, ζ)k(ζ)

dζ

ζ
, t ∈ I,

(7)

where the Green functions Gi, i = 1, . . . , 4 are given by

G1(t, ζ) = gα(t, ζ) +
(ln t)α−1

∆

(
d
∫ +∞

1
gα(τ, ζ) dH1(τ) + b

∫ +∞

1
gα(τ, ζ) dK1(τ)

)
,

G2(t, ζ) =
(ln t)α−1

∆

(
d
∫ +∞

1
gβ(τ, ζ) dH2(τ) + b

∫ +∞

1
gβ(τ, ζ) dK2(τ)

)
,

G3(t, ζ) =
(ln t)β−1

∆

(
c
∫ +∞

1
gα(τ, ζ) dH1(τ) + a

∫ +∞

1
gα(τ, ζ) dK1(τ)

)
,

G4(t, ζ) = gβ(t, ζ) +
(ln t)β−1

∆

(
c
∫ +∞

1
gβ(τ, ζ) dH2(τ) + a

∫ +∞

1
gβ(τ, ζ) dK2(τ)

)
,

(8)

with

gα(t, ζ) =
1

Γ(α)

 (ln t)α−1 −
(

ln
t
ζ

)α−1
, 1 ≤ ζ ≤ t,

(ln t)α−1, 1 ≤ t ≤ ζ,

gβ(t, ζ) =
1

Γ(β)

 (ln t)β−1 −
(

ln
t
ζ

)β−1
, 1 ≤ ζ ≤ t,

(ln t)β−1, 1 ≤ t ≤ ζ.

(9)

Additionally, we employ the notations

Λ1 =
d
∆

, Λ2 =
b
∆

, Λ3 =
c
∆

, Λ4 =
a
∆

. (10)

Lemma 2 ([11]). Suppose that the functionsHi, Ki, i = 1, 2 are nondecreasing functions, a, d ∈
R+, b, c ∈ R, and ∆ > 0, and let θ > 1. Then the functions gα, gβ, and Gi, i = 1, . . . , 4 (given
by (9) and (8)) are continuous on I × I, and satisfy the following inequalities for all t, ζ ∈ I:

(a) 0 ≤ gα(t, ζ) ≤ 1
Γ(α) (ln t)α−1; 0 ≤ gβ(t, ζ) ≤ 1

Γ(β)
(ln t)β−1;

(b) 0 ≤ gα(t,ζ)
1+(ln t)α−1 ≤ 1

Γ(α) ; 0 ≤ gβ(t,ζ)
1+(ln t)β−1 ≤ 1

Γ(β)
;

(c) Gi(t, ζ) ≥ 0, i = 1, . . . , 4;

(d) Gi(t,ζ)
1+(ln t)α−1 ≤ Λi, i = 1, 2;

Gj(t,ζ)
1+(ln t)β−1 ≤ Λj, j = 3, 4;

(e) mint∈[θ,+∞)
G1(t,ζ)

1+(ln t)α−1 ≥
(ln θ)α−1

∆(1+(ln θ)α−1)

×
(

d
∫ +∞

1 gα(τ, ζ) dH1(τ) + b
∫ +∞

1 gα(τ, ζ) dK1(τ)
)

;

(f) mint∈[θ,+∞)
G2(t,ζ)

1+(ln t)α−1 = (ln θ)α−1

∆(1+(ln θ)α−1)

×
(

d
∫ +∞

1 gβ(τ, ζ) dH2(τ) + b
∫ +∞

1 gβ(τ, ζ) dK2(τ)
)

;

(g) mint∈[θ,+∞)
G3(t,ζ)

1+(ln t)β−1 = (ln θ)β−1

∆(1+(ln θ)β−1)

×
(

c
∫ +∞

1 gα(τ, ζ) dH1(τ) + a
∫ +∞

1 gα(τ, ζ) dK1(τ)
)

;

(h) mint∈[θ,+∞)
G4(t,ζ)

1+(ln t)β−1 ≥
(ln θ)β−1

∆(1+(ln θ)β−1)

×
(

c
∫ +∞

1 gβ(τ, ζ) dH2(τ) + a
∫ +∞

1 gβ(τ, ζ) dK2(τ)
)

.
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Under the assumptions of Lemma 2, we obtain that a, d > 0 and b, c ≥ 0, so Λi, i =
1, . . . , 4 given by (10) satisfies the inequalities Λ1, Λ4 > 0, and Λ2, Λ3 ≥ 0.

We present now the main assumptions that we will use in our results.

(A1) α ∈ (n − 1, n], β ∈ (m − 1, m], n, m ∈ N, n, m ≥ 2, Hi,Ki : I → R, i = 1, 2 are
nondecreasing functions, a, d ∈ R+, b, c ∈ R, and ∆ > 0 (given by (6)).

(A2) The functions a, b : I → R+ are not identical zero on any subinterval of I, and
0 <

∫ +∞
1 a(τ) dτ

τ < +∞, 0 <
∫ +∞

1 b(τ) dτ
τ < +∞.

(A3) The functions f, g : I ×R+ ×R+ → R+ satisfy the conditions
(i) f(t, 0, 0) 6≡ 0, g(t, 0, 0) 6≡ 0 on any subinterval of I;
(ii) f(·, u, v), g(·, u, v) are measurable for every (u, v) ∈ R+ ×R+;
(iii) f(t, ·, ·), g(t, ·, ·) are continuous on R+ ×R+, for a.e. t ∈ I;
(iv) For any r > 0, there exist the functions ϕr, ψr : I → R+ with

∫ +∞
1 ϕr(τ)a(τ)

dτ
τ <

+∞ and
∫ +∞

1 ψr(τ)b(τ)
dτ
τ < +∞, such that

f(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1)v ≤ ϕr(t),
g(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1v) ≤ ψr(t),

for all u, v ∈ [0, r] and a.e. t ∈ I.

We introduce the space

X1 =

{
u ∈ C(I,R), sup

t∈I

|u(t)|
1 + (ln t)α−1 < +∞

}
,

with the norm ‖u‖1 = supt∈I
|u(t)|

1+(ln t)α−1 , the space

X2 =

{
v ∈ C(I,R), sup

t∈I

|v(t)|
1 + (ln t)β−1 < +∞

}
,

with the norm ‖v‖2 = supt∈I
|v(t)|

1+(ln t)β−1 , and the space X = X1 × X2 with the norm

‖(u, v)‖ = ‖u‖1 + ‖v‖2. The spaces (X1, ‖ · ‖1), (X2, ‖ · ‖2) and (X , ‖(·, ·)‖) are Banach
spaces (see [32], Lemma 2.7).

We define now the positive cone P ⊂ X by

P = {(u, v) ∈ X , u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ I},

and the operator F : P → X by F (u, v) = (F1(u, v),F2(u, v)), (u, v) ∈ P , where the
operators F1 : P → X1 and F2 : P → X2 are defined by

F1(u, v)(t)=
∫ +∞

1
G1(t, ζ)a(ζ)f(ζ, u(ζ), v(ζ))

dζ

ζ
+
∫ +∞

1
G2(t, ζ)b(ζ)g(ζ, u(ζ), v(ζ))

dζ

ζ
,

F2(u, v)(t)=
∫ +∞

1
G3(t, ζ)a(ζ)f(ζ, u(ζ), v(ζ))

dζ

ζ
+
∫ +∞

1
G4(t, ζ)b(ζ)g(ζ, u(ζ), v(ζ))

dζ

ζ
,

for all t ∈ I and (u, v) ∈ P .
Based on Lemma 2 and relations (7), we easily deduce that (u, v) is a solution of

problems (1), (2) if and only if (u, v) is a fixed point of operator F .
Using Lemma 2.8 from [32], and similar arguments to those used in the proof of

Lemma 7 from [11], and Lemma 3.4 from [13], we obtain the following result.

Lemma 3. If (A1)–(A3) hold, then the operator F : P → P is completely continuous, that is,
continuous and it maps bounded sets into relatively compact sets.
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3. Existence of Positive Solutions

In this section, we present our main theorems that pertain to the existence of positive
solutions for the problems (1), (2).

Our first existence theorem is the next one based on the Schauder fixed-point theorem.

Theorem 1. Assume that (A1)–(A3) hold. In addition, we suppose

(A4) there exist non-negative functions c, d, l, p, q, m with

c∗ =
∫ +∞

1
c(t)a(t)

dt
t
< +∞, d∗ =

∫ +∞

1
d(t)a(t)

dt
t
< +∞,

l∗ =
∫ +∞

1
l(t)a(t)

dt
t
< +∞, p∗ =

∫ +∞

1
p(t)b(t)

dt
t
< +∞,

q∗ =
∫ +∞

1
q(t)b(t)

dt
t
< +∞, m∗ =

∫ +∞

1
m(t)b(t)

dt
t
< +∞,

such that

f(t, u, v) ≤ c(t)u
1 + (ln t)α−1 +

d(t)v
1 + (ln t)β−1 + l(t),

g(t, u, v) ≤ p(t)u
1 + (ln t)α−1 +

q(t)v
1 + (ln t)β−1 +m(t),

for all (t, u, v) ∈ I ×R+ ×R+.

If
(Λ1 + Λ3)(c

∗ + d∗) + (Λ2 + Λ4)(p
∗ + q∗) < 1, (11)

then the boundary value problems (1), (2) has at least one positive solution (u(t), v(t)), t ∈ I.

Proof. We take a positive number R0 satisfying the condition

R0 ≥
(Λ1 + Λ3)l

∗ + (Λ2 + Λ4)m
∗

1− (Λ1 + Λ3)(c∗ + d∗)− (Λ2 + Λ4)(p∗ + q∗)
,

and we define the set Ω1 = {(u, v) ∈ P , ‖(u, v)‖ ≤ R0}.
We show firstly that F (Ω1) ⊂ Ω1. For this, let (u, v) ∈ Ω1, that is ‖(u, v)‖ ≤ R0,

which implies ‖u‖1 ≤ R0 and ‖v‖2 ≤ R0, or 0 ≤ u(t)
1+(ln t)α−1 ≤ R0 and 0 ≤ v(t)

1+(ln t)β−1 ≤ R0

for all t ∈ I. Then, by using Lemma 2, we obtain for all t ∈ I

F1(u, v)(t)
1 + (ln t)α−1 =

∫ +∞

1

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

1

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

≤ Λ1

∫ +∞

1
a(ζ)f(ζ, u(ζ), v(ζ))

dζ

ζ
+ Λ2

∫ +∞

1
b(ζ)g(ζ, u(ζ), v(ζ))

dζ

ζ

≤ Λ1

∫ +∞

1
a(ζ)

[
c(ζ)u(ζ)

1 + (ln t)α−1 +
d(ζ)v(ζ)

1 + (ln t)β−1 + l(ζ)

]
dζ

ζ

+Λ2

∫ +∞

1
b(ζ)

[
p(ζ)u(ζ)

1 + (ln t)α−1 +
q(ζ)v(ζ)

1 + (ln t)β−1 +m(ζ)

]
dζ

ζ

≤ Λ1R0

∫ +∞

1
a(ζ)c(ζ)

dζ

ζ
+ Λ1R0

∫ +∞

1
a(ζ)d(ζ)

dζ

ζ
+ Λ1

∫ +∞

1
a(ζ)l(ζ)

dζ

ζ

+Λ2R0

∫ +∞

1
b(ζ)p(ζ)

dζ

ζ
+ Λ2R0

∫ +∞

1
b(ζ)q(ζ)

dζ

ζ
+ Λ2

∫ +∞

1
b(ζ)m(ζ)

dζ

ζ
= Λ1(c

∗R0 + d∗R0 + l∗) + Λ2(p
∗R0 + q∗R0 +m∗).

So we find

‖F1(u, v)‖1 = sup
t∈I

F1(u, v)(t)
1 + (ln t)α−1 ≤ R0(Λ1c

∗ + Λ1d
∗ + Λ2p

∗ + Λ2q
∗) + Λ1l

∗ + Λ2m
∗.
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In a similar manner, for all t ∈ I, we have

F2(u, v)(t)
1 + (ln t)β−1 =

∫ +∞

1

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

1

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

≤ Λ3

∫ +∞

1
a(ζ)f(ζ, u(ζ), v(ζ))

dζ

ζ
+ Λ4

∫ +∞

1
b(ζ)g(ζ, u(ζ), v(ζ))

dζ

ζ

≤ Λ3

∫ +∞

1
a(ζ)

[
c(ζ)u(ζ)

1 + (ln t)α−1 +
d(ζ)v(ζ)

1 + (ln t)β−1 + l(ζ)

]
dζ

ζ

+Λ4

∫ +∞

1
b(ζ)

[
p(ζ)u(ζ)

1 + (ln t)α−1 +
q(ζ)v(ζ)

1 + (ln t)β−1 +m(ζ)

]
dζ

ζ

≤ Λ3R0

∫ +∞

1
a(ζ)c(ζ)

dζ

ζ
+ Λ3R0

∫ +∞

1
a(ζ)d(ζ)

dζ

ζ
+ Λ3

∫ +∞

1
a(ζ)l(ζ)

dζ

ζ

+Λ4R0

∫ +∞

1
b(ζ)p(ζ)

dζ

ζ
+ Λ4R0

∫ +∞

1
b(ζ)q(ζ)

dζ

ζ
+ Λ4

∫ +∞

1
b(ζ)m(ζ)

dζ

ζ
= Λ3(c

∗R0 + d∗R0 + l∗) + Λ4(p
∗R0 + q∗R0 +m∗).

Then we deduce

‖F2(u, v)‖2 = sup
t∈I

F2(u, v)(t)
1 + (ln t)β−1 ≤ R0(Λ3c

∗ + Λ3d
∗ + Λ4p

∗ + Λ4q
∗) + Λ3l

∗ + Λ4m
∗.

Therefore, by using condition (11), we obtain

‖F (u, v)‖ = ‖F1(u, v)‖1 + ‖F2(u, v)‖2
≤ R0((Λ1 + Λ3)(c

∗ + d∗) + (Λ2 + Λ4)(p
∗ + q∗)) + (Λ1 + Λ3)l

∗ + (Λ2 + Λ4)m
∗ ≤ R0.

So we conclude that F (Ω1) ⊂ Ω1.
By Lemma 3, we know that operator F : Ω1 → Ω1 is completely continuous. By

using the Schauder fixed-point theorem, we deduce that F has a fixed point (u, v) ∈ P
with ‖(u, v)‖ ≤ R0, which, by assumptions (A2), (A3), is a positive solution of problems
(1), (2).

The second existence theorem is the following one, which is based on the Banach
contraction mapping principle.

Theorem 2. Assume that (A1)–(A3) hold. In addition, we suppose

(A5) there exist non-negative functions χi, i = 1, . . . , 4 with

χ∗1 =
∫ +∞

1
a(t)χ1(t)

dt
t
< +∞, χ∗2 =

∫ +∞

1
a(t)χ2(t)

dt
t
< +∞,

χ∗3 =
∫ +∞

1
b(t)χ3(t)

dt
t
< +∞, χ∗4 =

∫ +∞

1
b(t)χ4(t)

dt
t
< +∞,

such that

|f(t, u1, v1)− f(t, u2, v2)| ≤
χ1(t)

1 + (ln t)α−1 |u1 − u2|+
χ2(t)

1 + (ln t)β−1 |v1 − v2|,

|g(t, u1, v1)− g(t, u2, v2)| ≤
χ3(t)

1 + (ln t)α−1 |u1 − u2|+
χ4(t)

1 + (ln t)β−1 |v1 − v2|,

for all t ∈ I, ui, vi ∈ R+, i = 1, 2.

If
Υ̃0 := Υ̃1 + Υ̃2 < 1, (12)

where Υ̃1 = max{Λ1χ∗1 + Λ2χ∗3 , Λ1χ∗2 + Λ2χ∗4}, Υ̃2 = max{Λ3χ∗1 + Λ4χ∗3 , Λ3χ∗2 + Λ4χ∗4},
then the boundary value problems (1), (2) has a unique positive solution (u∗, v∗) ∈ P . Moreover,
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for any (u0, v0) ∈ P , the sequence ((un, vn))n≥0 defined by (un, vn) = F (un−1, vn−1), n ≥ 1
converges to (u∗, v∗), as n→ +∞. In addition, we have the following error estimate:

‖(un, vn)− (u∗, v∗)‖ ≤
Υ̃n

0

1− Υ̃0
‖(u1, v1)− (u0, v0)‖. (13)

Proof. By using Lemma 2 and assumption (A5), for any (u1, v1), (u2, v2) ∈ P , we obtain∣∣∣∣F1(u1, v1)(t)
1 + (ln t)α−1 −

F1(u2, v2)(t)
1 + (ln t)α−1

∣∣∣∣
=

∣∣∣∣∫ +∞

1

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u1(ζ), v1(ζ))
dζ

ζ

+
∫ +∞

1

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u1(ζ), v1(ζ))
dζ

ζ

−
∫ +∞

1

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u2(ζ), v2(ζ))
dζ

ζ

−
∫ +∞

1

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u2(ζ), v2(ζ))
dζ

ζ

∣∣∣∣
≤
∫ +∞

1

G1(t, ζ)

1 + (ln t)α−1 a(ζ)|f(ζ, u1(ζ), v1(ζ))− f(ζ, u2(ζ), v2(ζ))|
dζ

ζ

+
∫ +∞

1

G2(t, ζ)

1 + (ln t)α−1 b(ζ)|g(ζ, u1(ζ), v1(ζ))− g(ζ, u2(ζ), v2(ζ))|
dζ

ζ

≤ Λ1

∫ +∞

1
a(ζ)

(
χ1(ζ)

1 + (ln ζ)α−1 |u1(ζ)− u2(ζ)|+
χ2(ζ)

1 + (ln ζ)β−1 |v1(ζ)− v2(ζ)|
)

dζ

ζ

+Λ2

∫ +∞

1
b(ζ)

(
χ3(ζ)

1 + (ln ζ)α−1 |u1(ζ)− u2(ζ)|+
χ4(ζ)

1 + (ln ζ)β−1 |v1(ζ)− v2(ζ)|
)

dζ

ζ
≤ Λ1(χ

∗
1‖u1 − u2‖1 + χ∗2‖v1 − v2‖2) + Λ2(χ

∗
3‖u1 − u2‖1 + χ∗4‖v1 − v2‖2)

= (Λ1χ∗1 + Λ2χ∗3)‖u1 − u2‖1 + (Λ1χ∗2 + Λ2χ∗4)‖v1 − v2‖2
≤ max{Λ1χ∗1 + Λ2χ∗3 , Λ1χ∗2 + Λ2χ∗4}(‖u1 − u2‖1 + ‖v1 − v2‖2)

= Υ̃1‖(u1, v1)− (u2, v2)‖, ∀ t ∈ I.

In a similar manner, we find∣∣∣∣F2(u1, v1)(t)
1 + (ln t)β−1 −

F2(u2, v2)(t)
1 + (ln t)β−1

∣∣∣∣
=

∣∣∣∣∫ +∞

1

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u1(ζ), v1(ζ))
dζ

ζ

+
∫ +∞

1

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u1(ζ), v1(ζ))
dζ

ζ

−
∫ +∞

1

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u2(ζ), v2(ζ))
dζ

ζ

−
∫ +∞

1

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u2(ζ), v2(ζ))
dζ

ζ

∣∣∣∣
≤
∫ +∞

1

G3(t, ζ)

1 + (ln t)β−1 a(ζ)|f(ζ, u1(ζ), v1(ζ))− f(ζ, u2(ζ), v2(ζ))|
dζ

ζ

+
∫ +∞

1

G4(t, ζ)

1 + (ln t)β−1 b(ζ)|g(ζ, u1(ζ), v1(ζ))− g(ζ, u2(ζ), v2(ζ))|
dζ

ζ

≤ Λ3

∫ +∞

1
a(ζ)

(
χ1(ζ)

1 + (ln ζ)α−1 |u1(ζ)− u2(ζ)|+
χ2(ζ)

1 + (ln ζ)β−1 |v1(ζ)− v2(ζ)|
)

dζ

ζ

+Λ4

∫ +∞

1
b(ζ)

(
χ3(ζ)

1 + (ln ζ)α−1 |u1(ζ)− u2(ζ)|+
χ4(ζ)

1 + (ln ζ)β−1 |v1(ζ)− v2(ζ)|
)

dζ

ζ
≤ Λ3(χ

∗
1‖u1 − u2‖1 + χ∗2‖v1 − v2‖2) + Λ4(χ

∗
3‖u1 − u2‖1 + χ∗4‖v1 − v2‖2)

= (Λ3χ∗1 + Λ4χ∗3)‖u1 − u2‖1 + (Λ3χ∗2 + Λ4χ∗4)‖v1 − v2‖2
≤ max{Λ3χ∗1 + Λ4χ∗3 , Λ3χ∗2 + Λ4χ∗4}(‖u1 − u2‖1 + ‖v1 − v2‖2)

= Υ̃2‖(u1, v1)− (u2, v2)‖, ∀ t ∈ I.



Axioms 2023, 12, 793 9 of 18

From the above inequalities, we deduce

‖F (u1, v1)−F (u2, v2)‖
= ‖F1(u1, v1)−F1(u2, v2)‖1 + ‖F2(u1, v1)−F2(u2, v2)‖2

= sup
t∈I

∣∣∣∣F1(u1, v1)(t)−F1(u2, v2)(t)
1 + (ln t)α−1

∣∣∣∣+ sup
t∈I

∣∣∣∣F2(u1, v1)(t)−F2(u2, v2)(t)
1 + (ln t)β−1

∣∣∣∣
≤ (Υ̃1 + Υ̃2)‖(u1, v1)− (u2, v2)‖ = Υ̃0‖(u1, v1)− (u2, v2)‖.

By condition (12), we infer that F is a contraction operator. By using the Banach contraction
mapping principle, we conclude that F has a unique fixed point (u∗, v∗) ∈ P , which is the
unique positive solution of problems (1), (2). In addition, for (u0, v0) ∈ P , the sequence
((un, vn))n≥0 defined by (un, vn) = F (un−1, vn−1), n ≥ 1 converges to (u∗, v∗), as n→ +∞.
From the proof of the Banach theorem, we obtain the error estimate (13).

Our third existence result is based on the fixed-point theorem of Avery and Peterson
(see Theorem 10 from [10], or Theorem 2.1 from [13]). We will use the notations of the
functionals from Theorem 2.1 from [13].

For θ > 1, we introduce firstly the following constants

a∗ =
∫ +∞

θ
a(ω)

dω

ω
, b∗ =

∫ +∞

θ
b(ω)

dω

ω
,

Ṽ1 =
d

Γ(α)

∫ θ

1
(ln ω)α−1 dH1(ω) +

b
Γ(α)

∫ θ

1
(ln ω)α−1 dK1(ω),

Ṽ2 =
d

Γ(β)

∫ θ

1
(ln ω)β−1 dH2(ω) +

b
Γ(β)

∫ θ

1
(ln ω)β−1 dK2(ω),

Ṽ3 =
c

Γ(α)

∫ θ

1
(ln ω)α−1 dH1(ω) +

a
Γ(α)

∫ θ

1
(ln ω)α−1 dK1(ω),

Ṽ4 =
c

Γ(β)

∫ θ

1
(ln ω)β−1 dH2(ω) +

a
Γ(β)

∫ θ

1
(ln ω)β−1 dK2(ω),

V1 =
Ṽ1(ln θ)α−1

∆(1 + (ln θ)α−1)
, V2 =

Ṽ2(ln θ)α−1

∆(1 + (ln θ)α−1)
,

V3 =
Ṽ3(ln θ)β−1

∆(1 + (ln θ)β−1)
, V4 =

Ṽ4(ln θ)β−1

∆(1 + (ln θ)β−1)
,

Υ1 = a∗(V1 + V3), Υ2 = b∗(V2 + V4).

(14)

Theorem 3. Assume that (A1)–(A3) hold, and there exists θ > 1 such that a∗, b∗ > 0, and Ṽi >
0, i = 1, . . . , 4. In addition, we suppose that there exist non-negative functions h, k, and positive
constants $i, i = 1, . . . , 3 with 0 < $1 < $2 < $3, and 0 < h∗ =

∫ +∞
1 h(ζ)a(ζ) dζ

ζ < +∞,

0 < k∗ =
∫ +∞

1 k(ζ)b(ζ)
dζ

ζ
< +∞, such that

(A6) f(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1)v) < $1
2Υ3

h(t), and
g(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1)v) < $1

2Υ4
k(t),

for all t ∈ I, u, v ≥ 0, u + v ≤ $1;
(A7) f(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1)v) > $2

2Υ1
, and

g(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1)v) > $2
2Υ2

,
for all t ∈ [θ,+∞), u, v ≥ 0, $2 ≤ u + v ≤ $3,

(A8) f(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1)v) ≤ $3
2Υ3

h(t), and
g(t, (1 + (ln t)α−1)u, (1 + (ln t)β−1)v) ≤ $3

2Υ4
k(t),

for all t ∈ I, u, v ≥ 0, u + v ≤ $3,

where Υ3 = h∗(Λ1 + Λ3), Υ4 = k∗(Λ2 + Λ4), and Υ1, Υ2 are given by (14). Then the boundary
value problems (1), (2) have at least three positive solutions (ui(t), vi(t)), t ∈ I, i = 1, . . . , 3
with ‖(ui, vi)‖ ≤ $3, i = 1, . . . , 3.
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Proof. For θ given in the assumptions of this theorem, we introduce the concave functional
Υ ∈ C(P ,R+), the convex functionals Λ, Θ ∈ C(P ,R+), and the functional Ξ ∈ C(P ,R+)
in the following way

Υ(u, v) = inf
t∈[θ,+∞)

(
u(t)

1 + (ln t)α−1 +
v(t)

1 + (ln t)β−1

)
, ∀ (u, v) ∈ P ,

Λ(u, v) = Θ(u, v) = Ξ(u, v) = ‖(u, v)‖, ∀ (u, v) ∈ P .

We have Ξ(λ(u, v)) = λ‖(u, v)‖, for all (u, v) ∈ P and λ ∈ [0, 1]. In addition, we find
Υ(u, v) ≤ Ξ(u, v) and ‖(u, v)‖ ≤ Λ(u, v) for all (u, v) ∈ P(Λ, $3), where P(Λ, $3) is the

closure of the set P(Λ, $3)
de f
= {(u, v) ∈ P , Λ(u, v) < $3}, that is, P(Λ, $3) = {(u, v) ∈

P , Λ(u, v) ≤ $3}.
We will prove that F : P(Λ, $3) → P(Λ, $3). For this, let (u, v) ∈ P(Λ, $3). So

Λ(u, v) = ‖(u, v)‖ ≤ $3. With (A8), we obtain

‖F1(u, v)‖1 = sup
t∈I

F1(u, v)(t)
1 + (ln t)α−1

= sup
t∈I

(∫ +∞

1

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

1

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

)
≤ Λ1

∫ +∞

1
a(ζ)f(ζ, u(ζ), v(ζ))

dζ

ζ
+ Λ2

∫ +∞

1
b(ζ)g(ζ, u(ζ), v(ζ))

dζ

ζ

≤ Λ1
$3

2Υ3

∫ +∞

1
a(ζ)h(ζ)

dζ

ζ
+ Λ2

$3

2Υ4

∫ +∞

1
b(ζ)k(ζ)

dζ

ζ

= Λ1
$3

2Υ3
h∗ + Λ2

$3

2Υ4
k∗,

‖F2(u, v)‖2 = sup
t∈I

F2(u, v)(t)
1 + (ln t)β−1

= sup
t∈I

(∫ +∞

1

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

1

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

)
≤ Λ3

∫ +∞

1
a(ζ)f(ζ, u(ζ), v(ζ))

dζ

ζ
+ Λ4

∫ +∞

1
b(ζ)g(ζ, u(ζ), v(ζ))

dζ

ζ

≤ Λ3
$3

2Υ3

∫ +∞

1
a(ζ)h(ζ)

dζ

ζ
+ Λ4

$3

2Υ4

∫ +∞

1
b(ζ)k(ζ)

dζ

ζ

= Λ3
$3

2Υ3
h∗ + Λ4

$3

2Υ4
k∗.

Then we deduce

Λ(F (u, v)) = ‖F (u, v)‖ = ‖F1(u, v)‖1 + ‖F2(u, v)‖2

≤ (Λ1 + Λ3)$3h∗

2Υ3
+

(Λ2 + Λ4)$3k∗

2Υ4
= $3.

Therefore, F (P(Λ, $3)) ⊂ P(Λ, $3).
Next, by Lemma 3, we infer that F : P(Λ, $3) → P(Λ, $3) is completely continuous.

We choose $̃3 ∈ ($2, $3), and in what follows we will verify the conditions (i)–(iii) of
Theorem 2.1 from [13].

For (i), we show firstly that the set {(u, v) ∈ P(Λ, Θ, Υ, $2, $̃3, $3), Υ(u, v) > $2}
is a nonempty set, where P(Λ, Θ, Υ, $2, $̃3, $3)

de f
= {(u, v) ∈ P , Υ(u, v) ≥ $2, Θ(u, v) ≤

$̃3, Λ(u, v) ≤ $3}. We consider the element

(u0(t), v0(t)) =
(

$2 + $̃3

4
(1 + (ln t)α−1),

$2 + $̃3

4
(1 + (ln t)β−1)

)
, t ∈ I.
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We obtain that ‖(u0, v0)‖ = ‖u0‖1 + ‖v0‖2 =
$2 + $̃3

2
< $̃3, and Υ(u0, v0) =

$2 + $̃3

2
> $2.

Then, (u0, v0) ∈ P(Λ, Θ, Υ, $2, $̃3, $3), with Υ(u0, v0) > $2. In addition, for any (u, v) ∈
P(Λ, Θ, Υ, $2, $̃3, $3), by using (A7), we have

Υ(F (u, v)) = inf
t∈[θ,+∞)

(
F1(u(t), v(t))
1 + (ln t)α−1 +

F2(u(t), v(t))
1 + (ln t)β−1

)
≥ inf

t∈[θ,+∞)

F1(u(t), v(t))
1 + (ln t)α−1 + inf

t∈[θ,+∞)

F2(u(t), v(t))
1 + (ln t)β−1

= inf
t∈[θ,+∞)

(∫ +∞

1

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

1

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

)
+ inf

t∈[θ,+∞)

(∫ +∞

1

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

1

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

)
≥ inf

t∈[θ,+∞)

∫ +∞

1

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+ inf
t∈[θ,+∞)

∫ +∞

1

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

+ inf
t∈[θ,+∞)

∫ +∞

1

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+ inf
t∈[θ,+∞)

∫ +∞

1

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

≥ inf
t∈[θ,+∞)

∫ +∞

θ

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+ inf
t∈[θ,+∞)

∫ +∞

θ

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

+ inf
t∈[θ,+∞)

∫ +∞

θ

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+ inf
t∈[θ,+∞)

∫ +∞

θ

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

≥
∫ +∞

θ
inf

t∈[θ,+∞)

G1(t, ζ)

1 + (ln t)α−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

θ
inf

t∈[θ,+∞)

G2(t, ζ)

1 + (ln t)α−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

θ
inf

t∈[θ,+∞)

G3(t, ζ)

1 + (ln t)β−1 a(ζ)f(ζ, u(ζ), v(ζ))
dζ

ζ

+
∫ +∞

θ
inf

t∈[θ,+∞)

G4(t, ζ)

1 + (ln t)β−1 b(ζ)g(ζ, u(ζ), v(ζ))
dζ

ζ

> V1

∫ +∞

θ
a(ζ)

$2

2Υ1

dζ

ζ
+ V2

∫ +∞

θ
b(ζ)

$2

2Υ2

dζ

ζ

+V3

∫ +∞

θ
a(ζ)

$2

2Υ1

dζ

ζ
+ V4

∫ +∞

θ
b(ζ)

$2

2Υ2

dζ

ζ

=
V1$2 + V3$2

2Υ1

∫ +∞

θ
a(ζ) dζ +

V2$2 + V4$2

2Υ2

∫ +∞

θ
b(ζ) dζ

=
(V1 + V3)$2

2Υ1
a∗ +

(V2 + V4)$2

2Υ2
b∗ = $2.

So Υ(F (u, v)) > $2, that is, assumption (i) is satisfied.

For (ii), we will prove that Υ(F (u, v)) > $2 for any (u, v) ∈ P(Λ, Υ, $2, $3)
de f
= {(u, v) ∈

P , Υ(u, v) ≥ $2, Λ(u, v) ≤ $3} with Θ(F (u, v)) > $̃3. So, let (u, v) ∈ P(Λ, Υ, $2, $3)
with ‖F (u, v)‖ > $̃3. In a similar manner as that used in the proof of (i), we obtain that
Υ(F (u, v)) > $2.
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For (iii), we will show that (0, 0) 6∈ R(Λ, Ξ, $1, $3), and Ξ(F (u, v)) < $1 for any

(u, v) ∈ R(Λ, Ξ, $1, $3) with Ξ(u, v) = $1. Here, R(Λ, Ξ, $1, $3)
de f
= {(u, v) ∈ P , Ξ(u, v) ≥

$1, Λ(u, v) ≤ $3}. Because Ξ(0, 0) = 0 < $1, we find that (0, 0) 6∈ R(Λ, Ξ, $1, $3). Moreover,
for (u, v) ∈ R(Λ, Ξ, $1, $3) with Ξ(u, v) = $1, we infer as in the first part of the proof, by
using (A6), that ‖F (u, v)‖ < $1.

So, by applying Theorem 2.1 from [13] (with τ1 = $1, τ2 = $2, τ3 = $̃3, τ4 = $3,
M = 1, T = F , P = P), we conclude that operator F has at least three fixed points
(ui, vi) ∈ P(Λ, $3), i = 1, . . . , 3, which are positive solutions of our problems (1), (2). In
addition, by Theorem 2.1 from [13], we obtain ‖(ui, vi)‖ ≤ $3, i = 1, . . . , 3, Υ(u1, v1) > $2,
‖(u2, v2)‖ > $1, Υ(u2, v2) < $2 and ‖(u3, v3)‖ < $1.

4. Examples

Let α = 7
3 , (n = 3), β = 16

5 , (m = 4), H1(ζ) = {2/3, ζ ∈ [1, 4); 7/6, ζ ∈ [4,+∞)},
H2(ζ) = {1/(20), ζ ∈ [1, 2); 1/(20)(ζ− 1)25/6, ζ ∈ [2, 3); 213/6/5, ζ ∈ [3,+∞)},K1(ζ) =
{79/8/(72 · 21/8), ζ ∈ [1, 4); 1/(36)(ζ− 1/2)9/8, ζ ∈ [4, 9); 179/8/(72 · 21/8), ζ ∈ [9,+∞)},
K2(ζ) = {1, ζ ∈ [1, 3); 25/(23), ζ ∈ [3, 7); 2/(183)(ζ3/2 − 73/2) + 25/(23), ζ ∈ [7, 11);
2/(183)(113/2 − 73/2) + 25/(23), ζ ∈ [11,+∞)}.

We consider the system of fractional differential equations{
HD7/3

1+ u(t) + a(t)f(t, u(t), v(t)) = 0, t ∈ (1,+∞),
HD16/5

1+ v(t) + b(t)g(t, u(t), v(t)) = 0, t ∈ (1,+∞),
(15)

subject to the nonlocal coupled boundary conditions
u(1) = u′(1) = 0, v(1) = v′(1) = v′′(1) = 0,
HD4/3

1+ u(+∞) =
1
2
u(4) +

5
24

∫ 3

2
(ζ − 1)19/6v(ζ) dζ,

HD11/5
1+ v(+∞) =

1
32

∫ 9

4

(
ζ − 1

2

)1/8
u(ζ) dζ +

2
23

v(3) +
1
61

∫ 11

7
ζ1/2v(ζ) dζ.

(16)

By using the Mathematica program, we obtain a ≈ 0.41776194, b ≈ 0.81063207, c ≈
0.44499194, d ≈ 1.20259595, and ∆ ≈ 0.14167408 > 0. Therefore, assumption (A1)
is satisfied. In addition, we find Λ1 = d/∆ ≈ 8.48846859, Λ2 = b/∆ ≈ 5.72180947,
Λ3 = c/∆ ≈ 3.14095529, and Λ4 = a/∆ ≈ 2.94875357.

Example 1. We consider the functions

a(t) =
1

(t− 1/3)1/2 , b(t) =
t + 1

(t− 1/4)4/3 ,

f(t, u, v) =
(t + 1)2e−2t+1u

17(1 + (ln t)4/3 + u)
+

(t− 1)4e−3tv
8(1 + (ln t)11/5)

+
t10/3

t3 + 2
,

g(t, u, v) =
√

πt3e−2tu
26(1 + (ln t)4/3)

+
(t + 2)e−4t+3v

19(1 + (ln t)11/5 + 2v)
+

t5/4

t + 1
,

(17)

for all t ∈ I, u, v ∈ R+. We derive
∫ +∞

1 a(ζ) dζ
ζ ≈ 2.13208425, and

∫ +∞
1 b(ζ) dζ

ζ ≈ 4.2319539.
So assumption (A2) is also satisfied. For the functions f and g, the assumptions (A3) (i), (ii), and
(iii) are easily verified.

These functions satisfied the inequalities

f(t, u, v) ≤ c(t)u
1 + (ln t)4/3 +

d(t)v
1 + (ln t)11/5 + l(t),

g(t, u, v) ≤ p(t)u
1 + (ln t)4/3 +

q(t)v
1 + (ln t)11/5 +m(t),
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for all t ∈ I, u, v ∈ R+, where

c(t) = 1
17 (t + 1)2e−2t+1, d(t) = 1

8 (t− 1)4e−3t, l(t) = t10/3

t3+2 ,

p(t) = 1
26
√

πt3e−2t, q(t) = 1
19 (t + 2)e−4t+3, m(t) = t5/4

t+1 , ∀ t ∈ I.

We obtain here c∗ ≈ 0.0440089, d∗ ≈ 0.00017564, p∗ ≈ 0.01982375, q∗ ≈ 0.03071373, l∗ ≈
5.77600681, and m∗ ≈ 12.36540194.

In addition, for any r > 0 and for all t ∈ I, u, v ∈ [0, r], we find

f(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5)v) ≤ r
1+r c(t) + rd(t) + l(t) =: ϕr(t),

g(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5)v) ≤ rp(t) + r
1+2rq(t) +m(t) =: ψr(t).

Then ∫ +∞

1
ϕr(t)a(t)

dt
t
=

rc∗

1 + r
+ rd∗ + l∗ < +∞,∫ +∞

1
ψr(t)b(t)

dt
t
= rp∗ +

rq∗

1 + 2r
+m∗ < +∞,

that is, assumption (A3) iv) is satisfied.
Because (Λ1 + Λ3)(c

∗ + d∗) + (Λ2 + Λ4)(p
∗ + q∗) ≈ 0.952 < 1, by Theorem 1 we de-

duce that problems (15), (16) with the nonlinearities (17) have at least one positive solution
(u(t), v(t)), t ∈ [1,+∞).

Example 2. We consider the functions

a(t) =
t + 1

(t− 1/5)5/4 , b(t) =
t

(t− 1/2)8/7 ,

f(t, u, v) =
3(t + 2)3e−7t+4

19(1 + (ln t)4/3)

√
u2 + 5 +

(t− 1)2e−3t+1

12(1 + (ln t)11/5)
sin2(v + 2) +

t17/8

t2 + 1
,

g(t, u, v) =
t2e−4t

5(1 + (ln t)4/3)
arctan u +

(t + 3)4e−6t+1

8(1 + (ln t)11/5)

√
v2 + 1 +

t10/9

t + 4
,

(18)

for all t ∈ I, u, v ∈ R+. We obtain
∫ +∞

1 a(ζ) dζ
ζ ≈ 5.16137094 and

∫ +∞
1 b(ζ) dζ

ζ ≈ 7.72862659.
So assumption (A2) is satisfied. The assumptions (A3) (i), (ii), (iii) for the functions f and g are
also verified.

For r > 0, and for all t ∈ I, u, v ∈ [0, r], we derive the inequalities

f(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5)v) ≤ ϕr(t),
g(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5)v) ≤ ψr(t),

where

ϕr(t) =
(t− 1)2e−3t+1(1 + (ln t)11/5)

12
r2 + r

[
3(t + 2)3e−7t+4

19
+

(t− 1)2e−3t+1

3

]
+

3
√

5(t + 2)3e−7t+4

19(1 + (ln t)4/3)
+

(t− 1)2e−3t+1

3(1 + (ln t)11/5)
+

t17/8

t2 + 1
,

ψr(t) = r
(

t2e−4t

5
+

(t + 3)4e−6t+1

8

)
+

(t + 3)4e−6t+1

8(1 + (ln t)11/5)
+

t10/9

t + 4
.

We deduce ∫ +∞
1 ϕr(t)a(t) dt

t ≈ 0.00095981r2 + 0.07455534r + 8.80152353 < +∞,∫ +∞
1 ψr(t)b(t) dt

t ≈ 0.07137629r + 30.31740004 < +∞,

so assumption (A3) (iv) is satisfied.
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The functions f and g satisfy the inequalities

|f(t, u1, v1)− f(t, u2, v2)| ≤
χ1(t)

1 + (ln t)4/3 |u1 − u2|+
χ2(t)

1 + (ln t)11/5 |v1 − v2|,

|g(t, u1, v1)− g(t, u2, v2)| ≤
χ3(t)

1 + (ln t)4/3 |u1 − u2|+
χ4(t)

1 + (ln t)11/5 |v1 − v2|,

for all t ∈ I, ui, vi ∈ R+, i = 1, 2, where

χ1(t) =
3(t + 2)3e−7t+4

19
, χ2(t) =

(t− 1)2e−3t+1

6
,

χ3(t) =
t2e−4t

5
, χ4(t) =

(t + 3)4e−6t+1

8
, ∀ t ∈ I.

We find χ∗1 ≈ 0.07166196, χ∗2 ≈ 0.00144669, χ∗3 ≈ 0.00202314, and χ∗4 ≈ 0.06935316.
We also obtain Υ̃1 ≈ 0.61987628, Υ̃2 ≈ 0.23105274, and Υ̃0 ≈ 0.851 < 1. Hence, by
Theorem 2, we conclude that problems (15), (16) with the nonlinearities (18) have a unique
positive solution (u∗(t), v∗(t)), t ∈ [1,+∞). For a given element (u0, v0), this solution can
be approximated using the sequence (un(t), vn(t))n≥0 defined by un+1(t) = F1(un(t), vn(t)),
vn+1(t) = F2(un(t), vn(t)), n ≥ 0, or equivalently

un+1(t)=
∫ +∞

1
G1(t, ζ)a(ζ)f(ζ, un(ζ), vn(ζ))

dζ

ζ
+
∫ +∞

1
G2(t, ζ)b(ζ)g(ζ, un(ζ), vn(ζ))

dζ

ζ
,

vn+1(t)=
∫ +∞

1
G3(t, ζ)a(ζ)f(ζ, un(ζ), vn(ζ))

dζ

ζ
+
∫ +∞

1
G4(t, ζ)b(ζ)g(ζ, un(ζ), vn(ζ))

dζ

ζ
.

If we consider (u0, v0) = (0, 0), then, by Lemma 3 from [11], we find for (u1, v1) the following
formulas:

u1(t) = − 1
Γ(7/3)

∫ t
1

(
ln t

ζ

)4/3
a(ζ)f(ζ, 0, 0) dζ

ζ

+ (ln t)4/3

∆

[
d
∫ +∞

1 a(ζ)f(ζ, 0, 0) dζ
ζ −

d
Γ(7/3)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)4/3
a(τ)f(τ, 0, 0) dτ

τ

)
dH1(ζ)

− d
Γ(16/5)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)11/5
b(τ)g(τ, 0, 0) dτ

τ

)
dH2(ζ)

+b
∫ +∞

1 b(ζ)g(ζ, 0, 0) dζ
ζ −

b
Γ(7/3)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)4/3
a(τ)f(τ, 0, 0) dτ

τ

)
dK1(ζ)

− b
Γ(16/5)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)11/5
b(τ)g(τ, 0, 0) dτ

τ

)
dK2(ζ)

]
, t ∈ I,

v1(t) = − 1
Γ(16/5)

∫ t
1

(
ln t

ζ

)11/5
b(ζ)g(ζ, 0, 0) dζ

ζ

+ (ln t)11/5

∆

[
a
∫ +∞

1 b(ζ)g(ζ, 0, 0) dζ
ζ −

a
Γ(7/3)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)4/3
a(τ)f(τ, 0, 0) dτ

τ

)
dK1(ζ)

− a
Γ(16/5)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)11/5
b(τ)g(τ, 0, 0) dτ

τ

)
dK2(ζ)

+c
∫ +∞

1 a(ζ)f(ζ, 0, 0) dζ
ζ −

c
Γ(7/3)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)4/3
a(τ)f(τ, 0, 0) dτ

τ

)
dH1(ζ)

− c
Γ(16/5)

∫ +∞
1

(∫ ζ
1

(
ln ζ

τ

)11/5
b(τ)g(τ, 0, 0) dτ

τ

)
dH2(ζ)

]
, t ∈ I.

In addition, the error estimate is

‖(un, vn)− (u∗, v∗)‖ ≤
Υ̃n

0

1− Υ̃0
‖(u1, v1)‖.

Example 3. We consider the functions
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a(t) =
t + 2

(t− 1/6)11/8 , b(t) =
t + 4

(t− 3/10)15/11 , t ∈ I,

f(t, u, v)=



1
123 t1/4

[
1
3 + u

6(1+(ln t)4/3+u) +
v

7(1+(ln t)11/5+v)

]
,

t ∈ I, u, v ≥ 0, 0 ≤ u
1+(ln t)4/3 +

v
1+(ln t)11/5 < 1,

1
123 t1/4

[
1
3 + 1

6

(
1 + 315

(
arctan

(
u

1+(ln t)4/3 +
v

1+(ln t)11/5

)
− π

4

))
u

1+(ln t)4/3+u

+ 1
7

(
1 + 237 cos2 π

2

(
u

1+(ln t)4/3 +
v

1+(ln t)11/5

))
v

1+(ln t)11/5+v

]
,

t ∈ I, u, v ≥ 0, 1 < u
1+(ln t)4/3 +

v
1+(ln t)11/5 ≤ 4,

1
123 t1/4

[
1
3 + 1

6
(
1 + 315

(
arctan 4− π

4
)) u

1+(ln t)4/3+u

+ 238
7

v
1+(ln t)11/5+v

]
, t ∈ I, u, v ≥ 0, u

1+(ln t)4/3 +
v

1+(ln t)11/5 > 4,

g(t, u, v)=



1
147 t2/11

[
1
2 + u

5(1+(ln t)4/3+u) +
v

3(1+(ln t)11/5+v)

]
,

t ∈ I, u, v ≥ 0, 0 ≤ u
1+(ln t)4/3 +

v
1+(ln t)11/5 < 1,

1
147 t2/11

[
1
2 + 1

5

(
1 + 283

(
1− sin π

2

(
u

1+(ln t)4/3 +
v

1+(ln t)11/5

)))
u

1+(ln t)4/3+u

+ 1
3

(
1 + 376

(
1− 1

2
√

u/(1+(ln t)4/3)+v/(1+(ln t)11/5)−1

))
v

1+(ln t)11/5+v

]
,

t ∈ I, u, v ≥ 0, 1 < u
1+(ln t)4/3 +

v
1+(ln t)11/5 ≤ 4,

1
147 t2/11

[
1
2 + 284

5
u

1+(ln t)4/3+u + 755
9

v
1+(ln t)11/5+v

]
,

t ∈ I, u, v ≥ 0, u
1+(ln t)4/3 +

v
1+(ln t)11/5 > 4.

(19)

Then we obtain

f(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5)v)

=



1
123 t1/4

[
1
3 + u

6(1+u) +
v

7(1+v)

]
, t ∈ I, u, v ≥ 0, 0 ≤ u + v < 1,

1
123 t1/4

[
1
3 + 1

6
(
1 + 315

(
arctan(u + v)− π

4
)) u

1+u

+ 1
7
(
1 + 237 cos2 π

2 (u + v)
) v

1+v

]
, t ∈ I, u, v ≥ 0, 1 < u + v ≤ 4,

1
123 t1/4

[
1
3 + 1

6
(
1 + 315

(
arctan 4− π

4
)) u

1+u + 238
7

v
1+v

]
t ∈ I, u, v ≥ 0, u + v > 4,

g(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5)v)

=



1
147 t2/11

[
1
2 + u

5(1+u) +
v

3(1+v)

]
, t ∈ I, u, v ≥ 0, 0 ≤ u + v < 1,

1
147 t2/11

[
1
2 + 1

5
(
1 + 283

(
1− sin π

2 (u + v)
)) u

1+u

+ 1
3

(
1 + 376

(
1− 1

2
√

u+v−1

))
v

1+v

]
, t ∈ I, u, v ≥ 0, 1 < u + v ≤ 4,

1
147 t2/11

[
1
2 + 284

5
u

1+u + 755
9

v
1+v

]
, t ∈ I, u, v ≥ 0, u + v > 4.

We also find
∫ +∞

1 a(ζ) dζ
ζ ≈ 4.53433833 and

∫ +∞
1 b(ζ) dζ

ζ ≈ 6.99005054. So assumption
(A2) is satisfied. The assumptions (A3) (i), (ii), and (iii) for the functions f and g are easily verified.

For r > 0, and for all t ∈ I, u, v ∈ [0, r], we deduce the inequalities

f(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v))≤ 1
123 t1/4

[
1
3 + 1

6

(
1 + 315π

4

)
r

1+r +
238

7
r

1+r

]
=: ϕr(t),

g(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v))≤ 1
147 t2/11

[
1
2 + 567

5
r

1+r +
377

3
r

1+r

]
=: ψr(t).

Because we have
∫ +∞

1 ϕr(t)a(t) dt
t < +∞,

∫ +∞
1 ψr(t)b(t) dt

t < +∞, then the assumption (A3)
(iv) is satisfied.

We choose θ = 5, $1 = 1, $2 = 4, $3 = 1000, and we consider the functions h(t) = 1
3 t1/4,

k(t) = 1
2 t2/11, t ∈ I. We obtain h∗ ≈ 3.41851186, k∗ ≈ 5.15683344, a∗ ≈ 1.64041821,

b∗ ≈ 1.90949909. We also find Ṽ1 ≈ 0.82418924, Ṽ2 ≈ 0.43794179, Ṽ3 ≈ 0.31130063,
Ṽ4 ≈ 0.16724753, V1 ≈ 3.80180825, V2 ≈ 2.02013159, V3 ≈ 1.62641651, V4 ≈ 0.87379887,
Υ1 ≈ 8.90455874, Υ2 ≈ 5.52595759, Υ3 ≈ 39.75532345, and Υ4 ≈ 44.71264939.
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Moreover, we deduce

f(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v)) < 41
10332 t1/4 ≈ 0.00396825t1/4

< 1
6Υ3

t1/4 ≈ 0.00419231t1/4, ∀ t ∈ I, u, v ≥ 0, u + v ≤ 1,
g(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v)) < 23

4410 t2/11 ≈ 0.00521542t2/11

< 1
4Υ4

t2/11 ≈ 0.00559126t2/11, ∀ t ∈ I, u, v ≥ 0, u + v ≤ 1,
f(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v))
≥ 1

123 51/4
[

1
3 + 4

5 min
{

1
6
(
1 + 315

(
arctan 4− π

4
))

, 238
7

}]
≈ 0.28161534

> 2
Υ1
≈ 0.22460405, ∀ t ≥ 5, u, v ≥ 0, 4 ≤ u + v ≤ 1000,

g(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v))
≥ 1

147 52/11
[

1
2 + 4

5 min
{

284
5 , 755

9

}]
≈ 0.41875414

> 2
Υ2
≈ 0.36192822, ∀ t ≥ 5, u, v ≥ 0, 4 ≤ u + v ≤ 1000,

f(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v))
≤ 1

123 t1/4
[

1
3 + 1

6
(
1 + 315

(
arctan 4− π

4
)) 1000

1001 + 238
7

1000
1001

]
≈ 0.51064673t1/4

≤ 1000
6Υ3

t1/4 ≈ 4.19231067t1/4, ∀ t ∈ I, u, v ≥ 0, u + v ≤ 1000,
g(t, (1 + (ln t)4/3)u, (1 + (ln t)11/5v))
≤ 1

147 t2/11
(

1
2 + 567

5
1000
1001 + 755

9
1000
1001

)
≈ 1.34416188t2/11

≤ 1000
4Υ4

t2/11 ≈ 5.59125893t2/11, ∀ t ∈ I, u, v ≥ 0, u + v ≤ 1000,

that is, assumptions (A6), (A7), and (A8) are satisfied.
By Theorem 3, we conclude that problems (15), (16) with the nonlinearities (19) have at least

three positive solutions (ui(t), vi(t)), t ∈ I, i = 1, . . . , 3, with

sup
t∈I

ui(t)
1 + (ln t)4/3 + sup

t∈I

vi(t)
1 + (ln t)11/5 ≤ 1000, i = 1, . . . , 3.

5. Conclusions

In this research paper, we focused on investigating the presence, uniqueness, and mul-
tiplicity of positive solutions for a system of Hadamard fractional differential equations (1)
on an infinite interval. The system was supplemented with nonlocal coupled boundary
conditions (2), which incorporate fractional derivatives and Riemann–Stieltjes integrals. It
is worth noting that unlike the previous work presented in the paper [11], the nonlinearities
in our system (1) are allowed to be unbounded. Furthermore, we employed different
function conditions compared to those in [11], and we utilized various fixed-point theo-
rems, including the Schauder fixed-point theorem (for the existence of positive solutions,
in Theorem 1), the Banach contraction mapping principle (for the existence and uniqueness
of positive solution, in Theorem 2), and a fixed-point theorem introduced by Avery and
Peterson (refer to [10] for the existence of at least three positive solutions in Theorem 3).
In the second-to-last section of our paper, we presented three illustrative examples that
effectively showcase the main three outcomes of our research. Moving forward, we intend
to explore the investigation of other systems of fractional equations, involving fractional
derivatives of different types, subject to diverse boundary conditions.
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