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1. Introduction

Fractional calculus has been around for three centuries, and recently, it has become more
frequently utilized in the scientific and technical fields. It investigates extensions of the basic
calculus operators, differentiation and integration, defined by letting their order to roam
outside of Z to more extended domains [1–3]. Such extensions are not only a mathematical
novelty; differential equations containing the generalized operators have been employed
in a wide range of scientific domains [4,5], from viscoelasticity [6] to epidemiology [7],
economics [8,9], and electrical circuits [10].

Almost every mathematical theory has a discrete equivalent that enables it to be
comprehended theoretically and practically in the modeling process of real-world issues.
Owing to the availability of a coherent mathematical framework for continuous fractional
calculus, the potential advancement of discrete fractional calculus has been inadequate
until recently. However, there has been significant progress in the development of discrete
fractional calculus. For example, Atici and Eloe [11] implemented a discrete Laplace trans-
form technique for solving a series of fractional difference equations. Atici and Eloe [12]
developed the triggers for the beginning value in discrete fractional calculus. With the
nabla operator, Atici and Eloe [13] investigated the structure of a discrete fractional calculus.
For additional information on recent advances in fractional discrete calculus, see [14–19].
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Reaction–diffusion systems have acquired great theoretical attention and are of tremen-
dous utility in many scientific and technical disciplines due to their capacity to simulate a
range of real-world events and the intricacy of their solutions (see [20–23]). Meanwhile,
the fractional partial differential equation is widely used in practice. Several papers on
the subject have recently been published [24–27]. An effective and common application of
fractional diffusion equations is the simulation of anomalous diffusion in porous media
with rich nano–micro-size characteristics. However, many nonlinear systems in nature
have discrete qualities, such as population models, brain networks, and gene information.
Discrete models may be used to successfully identify parameters from experimental data.
Fractional partial difference equations offer a separate time-discretization model, partic-
ularly for anomalous diffusion, or a time-discretization difference technique, which was
recently described as a discrete fractional modeling [28]. The authors of [29] established a
fractional time discretization diffusion model in the Caputo-like delta interpretation, and
addressed diffusion concentration for various fractional difference orders. Alternatively,
the authors of [30] proposed a variable-order fractional diffusion equation on discrete
periods and created a variable-order function using a chaotic map.

Several neuron models have recently been proposed in the literature to describe neural
dynamics. Among these models, one can find the reaction diffusion FitzHugh–Nagumo
model, which is a classic standard model in neuroscience that has been extensively ex-
amined in periodical literature [31]. This model is a simplified variant of the well-known
Hodgkin–Huxley model, which captures neuron dynamics and, more broadly, the dynam-
ics of excitable systems in several domains such as chemical reaction kinetics and solid
state physics [32–34]. It is made up of two differential equations that describe the voltage
variable’s temporal evolution. In recent years, FitzHugh–Nagumo has received a lot of
attention, and several notable studies have been conducted to examine this system. For
example, in [35], the global existence and asymptotic stability of solutions for a generalized
Lengyel–Epstein and FitzHugh–Nagumo reaction–diffusion system were explored. In [36],
synchronization and control of FitzHugh–Nagumo coupled reaction–diffusion systems
are addressed. In addition, synchronization of the reaction–diffusion FitzHugh–Nagumo
systems using a one-dimensional linear control law was investigated in [37]. Finite element
analysis of a FitzHugh–Nagumo reaction–diffusion system with Robin boundary conditions
was explored in [38]. Moreover, many papers examined the influence of the fractional deriva-
tive on the FitzHugh–Nagumo model. For example, in [39] the low-voltage, low-power
sinh-domain implementations of the fractional-order FitzHugh–Nagumo neuron model
have been presented, as well as the influence of fractional orders on the neuron’s external
excitation current and dynamics. In [40], the effect of the fractional order on the dynamics
of action potentials in the FitzHugh–Nagumo model is discussed.

The goal of this paper is to study the stability of the equilibrium state of a discrete
fractional-order reaction–diffusion FitzHugh–Nagumo model. Both local and global sta-
bility are explored for applicability in the above-mentioned neural model research. To the
best of our knowledge, this is the first time a full theoretical stability study for a discrete
fractional-order reaction–diffusion FitzHugh–Nagumo model has been conducted in which
the effect of the fractional order on the dynamics of the model is investigated and discussed.

The paper is structured as follows. Section 2 is intended to provide some preliminary re-
sults as well as the discrete fractional-order dependent and independent outcomes. Section 3
describes the main findings of the study; the mathematical model is presented, the local
stability of the equilibrium state is addressed, and global stability of the equilibrium state is
examined, both dependently on the fractional orders of the considered model. The findings
are corroborated by numerical simulations. Section 5 draws conclusions from the findings.

2. Preliminaries

This section begins by introducing the subject’s required nomenclature and stabil-
ity theory.



Axioms 2023, 12, 806 3 of 20

Definition 1 ([41]). Assume x : N→ R, the forward difference operator ∆ is then defined by

∆x(`) = x(`+ 1)− x(`); ` ∈ N. (1)

Next, the operators ∆n, n = 1, 2, 3, . . . , are recursively identified by

∆nx(`) = ∆(∆n−1x)(`), ` ∈ N. (2)

In particular, the second order difference operator of function x(t) is given by

∆2x(`) = x(`+ 2)− 2x(`+ 1) + x(`). (3)

Lemma 1 ([41]). Here we give some properties of the difference operator ∆,

• ∆c = 0, where c is a constant.
• ∆(x + κ)(`) = ∆x(`) + ∆κ(`).
• ∆(xκ)(`) = x(`)∆κ(`) + κ(`+ 1)∆x(`).

Theorem 1 ([41]). Given two functions x; κ : R → R and a; b ∈ N; a < b; we have the
summation by parts’ formulas:

b−1

∑
=a

x()∆κ() = x()κ()|ba −
b−1

∑
=a

κ( + 1)∆x(), (4)

b−1

∑
=a

x( + 1)∆κ() = x()κ()|ba −
b−1

∑
=a

κ()∆x(). (5)

Definition 2 ([42,43]). Let x ∈ (hN)a → R. For given ϑ > 0, the ϑ-th order h-sum is given by

h∆−ϑ
a x(t) =

h
Γ(ϑ)

s= a
h

∑
t
h−ϑ

(t− σ(sh))(ϑ−1)x(sh), σ(sh) = (s + 1)h, t ∈ (hN)a+ϑh, (6)

with a ∈ R as the initial value and the h̄-falling factorial function described by

t(ϑ)h̄ = h̄ϑ Γ( t
h̄ + 1)

Γ( t
h̄ + 1− ϑ)

, (7)

while
(hN)a+ϑh̄ = {a + (1− ϑ)h̄, a + (2− ϑ)h̄, . . . }. (8)

Definition 3 ([43,44]). For a function x(t) defined on (hN)a and for a certain ϑ > 0, so that
ϑ ∈ N the Caputo h̄-difference operator is expressed by

C
h̄ ∆ϑ

a x(t) =h̄ ∆−(n−ϑ)
a ∆n

h̄x(t), (9)

where ∆n
h̄x(t) =

x(t + h̄)− x(t)
h̄

.

Lemma 2 ([42]). Here are some important properties employed in this work:

• Discrete Leibniz integral law:

h̄∆−ϑ
a+(1−ϑ)h̄

C
h̄ ∆ϑx(t) = x(t)− x(a), 0 < ϑ ≤ 1, t ∈ (h̄N)a+h̄. (10)

• Caputo fractional difference of a constant x:

C
h̄ ∆ϑx = 0, 0 < ϑ ≤ 1. (11)
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Lemma 3 ([42]). The following inequality holds:

C
h ∆ϑ

a x2(t) ≤ 2x(t + ϑh̄)C
h ∆ϑ

a x(t), t ∈ (h̄N)a+ϑh̄, (12)

where 0 < ϑ ≤ 1.

Let us consider the nonlinear fractional-order difference system.

C
h̄ ∆ϑ

a x(t) = ψ(t + h̄ϑ, x(t + h̄ϑ)), t ∈ (hN)a+ϑh. (13)

Theorem 2 ([42]). Let x = 0 be the system’s equilibrium point (13). The equilibrium point is
asymptotically stable if there exists a positive, definite, and declining scalar function. If all the
eigenvalues of ψ′(x∗) are located in Sϑ

h̄ , then x∗ is asymptotically stable, where C
h̄ ∆ϑ

a V(t, x(t)) ≤ 0.

Theorem 3 ([45]). Let x∗ be an equilibrium point of (13). If all the eigenvalues of ψ′(x∗) are located
in Sϑ

h̄ , then x∗ is asymptotically stable,
where

Sϑ
h̄ =

{
w ∈ C : |Arg(w)| > ϑπ

2
or |w| > 2ϑ

h̄ϑ
cosϑ

(
Arg(w)

ϑ

)}
. (14)

3. The Discrete Fractional-Order FitzHugh–Nagumo Reaction–Diffusion System

In this section, we present the model under discussion, which is approximated using
two well-known approaches. This discrete model is, to the best of our knowledge, the first
in the literature.

The FitzHugh–Nagumo reaction–diffusion system, as is well known, was proposed
in [46] as follows:

∂u
∂t

= d1∆u− u3 + (β + 1)u2 − βu− v, x ∈ Ω, t > 0,

∂v
∂t

= d2∆v + εu− εγv, x ∈ Ω, t > 0,

∂u = ∂v = 0 , x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(15)

where Ω is a bounded domain in Rn, n = 1, with sufficiently smooth boundary ∂Ω,

∆ = ∑n
i=1

∂2

∂x2
i

. The state u corresponds to the membrane potential in this spatially extended

system, whereas v reflects a combination of potassium activation and sodium inactivation
at point (x, t) ∈ Ω× (0, ∞). The parameters β, ε and γ are positive constants with values

of 0 < β <
1
2

and ε << 1.
Since time fractional systems have been extensively studied by researchers, the following

time fractional FitzHugh–Nagumo reaction–diffusion system was presented in [47] as follows:
C
0 Dδ

t u− d1∆u = −u3 + (β + 1)u2 − βu− v,
C
0 Dδ

t v− d2∆v = εu− εγv.
(16)

where 0 < δ ≤ 1 is the fractional order and C
0 Dδ

t describes the Caputo fractional derivative,
d1, d2 and σ are strictly positive constants with the same initial conditions and Neumann
boundary conditions.

Based on the model (16) and with the discretization used in [29,48], and assuming that
x ∈ [0, L], we have xi+1 = xi + k, i = 0, . . . , m, and using the central difference formula

concerning x,
∂2u(x, t)

∂x2 and
∂2v(x, t)

∂x2 can be approximately expanded as
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
∂2u(x, t)

∂x2 ≈ ui+1(t)− 2ui(t) + ui−1(t)
k2 ,

∂2v(x, t)
∂x2 ≈ vi+1(t)− 2vi(t) + vi−1(t)

k2 .

Using the definition of the second order difference operator of ui and vi we obtain
∂2u(x, t)

∂x2 ≈ ∆2ui−1(t)
k2 ,

∂2v(x, t)
∂x2 ≈ ∆2vi−1(t)

k2 .

Therefore, we consider the following discrete-time reaction–diffusion fractional
FitzHugh–Nagumo system

C
h̄ ∆ϑ

t0
ui(t) =

d1

k2 ∆2ui−1(t + h̄ϑ)− u3(t + h̄ϑ) + (β + 1)u2(t + h̄ϑ)− βu(t + h̄ϑ)− vi(t + h̄ϑ),

C
h̄ ∆ϑ

t0
vi(t) =

d2

k2 ∆2vi−1(t + h̄ϑ) + εui(t + h̄ϑ)− εγvi(t + h̄ϑ).
(17)

where C
h̄ ∆ϑ

t0
is the Caputo-like difference, 0 < ϑ ≤ 1, t ∈ (h̄N)t0 .

With the periodic boundary conditions{
u0(t) = um(t), u1(t) = um+1(t),
v0(t) = vm(t), v1(t) = vm+1(t),

(18)

and the initial condition

ui(t0) = φ1(xi) ≥ 0, vi(t0) = φ2(xi) ≥ 0.

4. Local Stability

In order to investigate the asymptotic stability of the considered discrete-time fractional
FitzHugh–Nagumo system, we consider the unique equilibrium point, which is the solution
of the following system:

d1

k2 ∆2u∗ − u∗3 + (β + 1)u∗2 − βu∗ − v∗ = 0,

d2

k2 ∆2v∗ + εu∗ − εγv∗ = 0.
(19)

As previously stated in [49], the system (17) may have many equilibriums depending
on the sign of ξ, where ξ is determined by

ξ = (1− β)2 − 4
γ

. (20)

Thus, we may have the three cases listed below:

• If ξ < 0, system (17) has the origin (u∗0 , v∗0) = (0, 0) as its only fixed point.

• If ξ = 0, system (17) has two fixed points; the origin and (u∗1 , v∗1) =
(
− β + 1

2
,

u∗1
γ

)
.

• If ξ > 0, system (17) has three fixed points; the origin,

(u∗2 , v∗2) =
(
− β

2
−
√

ξ,
u∗2
γ

)
and (u∗3 , v∗3) =

(
− β

2
+
√

ξ,
u∗3
γ

)
.
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4.1. Local Stability of the Free Diffusions System

In this part, we develop suitable requirements for the local asymptotic stability of the
following system:


C
h̄ ∆ϑ

t0
u(t) = −u3(t + h̄ϑ) + (β + 1)u2(t + h̄ϑ)− βu(t + h̄ϑ)− v(t + h̄ϑ),

C
h̄ ∆ϑ

t0
v(t) = εu(t + h̄ϑ)− εγv(t + h̄ϑ).

(21)

The characteristic equation for the eigenvalues is obtained using linear stability analy-
sis around the stable state:

J =


∂ψ

∂u
∂ψ

∂v
∂Ψ
∂u

∂Ψ
∂v

 =

(
−3u2 + 2(β + 1)u− β − 1

εγ − ε

)
, (22)

where

ψ(u, v) = −u3(t + h̄ϑ) + (1 + β)u2(t + h̄ϑ)− βu(t + h̄ϑ)− v(t + h̄ϑ), (23)

and
Ψ(u, v) = εγu(t + h̄ϑ)− εv(t + h̄ϑ). (24)

We may deduce the following:

Theorem 4. System (21) is locally asymptotically stable at the steady state according to the follow-
ing cases:

• If ξ = 0, the equilibrium point (u∗0 , v∗0) is locally asymptotically stable.
• If ξ = 0, the equilibrium points (u∗0 , v∗0) and (u∗1 , v∗1) are locally asymptotically stable.
• If ξ > 0, the equilibrium points (u∗0 , v∗0) and (u∗2 , v∗2) are locally asymptotically stable, and

(u∗3 , v∗3) is stable if the following hold true:

β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ > 0.

Proof. Since the system (21) might have many equilibriums depending on the sign of ξ,
we shall analyze each one separately.

• Given that the origin (u∗0 , v∗0) always represents an equilibrium point, we shall investi-
gate the stability of the system (21) regardless of the sign of ξ.

The Jacobian matrix of the equilibrium point (u∗0 , v∗0) may be expressed as follows:

J(u∗0 ,v∗0)
=

(
−β − 1
εγ − ε

)
, (25)

The Jacobian matrix J(u∗0 ,v∗0)
has the following characteristic equation:

Λ2 − tr(J(u∗3 ,v∗3)
)Λ + det(J(u∗3 ,v∗3)

) = 0, (26)

where
tr(J(u∗0 ,v∗0)

) = −β− ε, det(J(u∗0 ,v∗0)
) = βε + εγ. (27)

This might lead to the following discriminant

∆Λ= tr2(J(u∗0 ,v∗0)
)− 4det(J(u∗0 ,v∗0)

) = (β + ε)2 − 4(βε + εγ) = (β− ε)2 − 4εγ.
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The solutions of (26) are obviously dependent on the sing of ∆Λ; therefore, we may
analyze the stability in the following situations.

– If (β − ε)2 > 4εγ, and since βε + εγ > 0, the negativity of the eigenvalues
is determined by the sign of tr(J(u∗0 ,v∗0)

). Furthermore, as −β− ε < 0, and the
eigenvalues Λ1 and Λ2 are real, thus we have

Λ1 =
tr(J(u∗0 ,v∗0)

)−
√

∆Λ

2
< 0. (28)

As a consequence of this, Arg(Λ1) = π. It is self-evident that Arg(Λ1) =
Arg(Λ2) = π. As a result, according to Theorem 3, the equilibrium (u∗0 , v∗0)
is asymptotically stable.

– If (β− ε)2 < 4εγ, then

Λ1 =
tr(J(u∗0 v∗0)

)− i
√
−∆Λ

2
, Λ2 =

tr(J(u∗0 v∗0)
) + i
√
−∆Λ

2
. (29)

Since −β− ε < 0, the system (21) is then asymptotically stable, based on the
identical situation studied before.

– If (β− ε)2 = 4εγ, tr(J(u∗0 ,v∗0)
) cannot be equal to zero. The sign of the eigenvalues

is the same as the sign of tr(J(u∗0 ,v∗0)
). As a result, (u∗0 , v∗0) is asymptotically stable

for all ϑ ∈ (0, 1].

We may deduce that the origin is locally asymptotically stable, regardless of the sing
of ∆Λ.

• Now, assuming that ξ = 0, and the origin is clearly stable according to the previous
investigations, we can thus investigate the stability of the equilibrium point (u∗1 , v∗1).

In this case, we have the Jacobian matrix of the equilibrium point (u∗1 , v∗1) defined by

J(u∗1 ,v∗1)
=

−3
(

β + 1
2

)2
− 2

(β + 1)2

2
− β − 1

εγ − ε

, (30)

and we also have:

tr(J(u∗1 ,v∗1)
) =
−7(β + 1)2

4
− β− ε, det(J(u∗1 ,v∗1)

) =

(
7(β + 1)2

4
+ β

)
ε + εγ. (31)

This may lead us to the discriminant of the eigenvalue problem (26):

∆Λ=
7
2
(β + 1)2

(
7
8
(β + 1)2 − ε + β

)
− 4ε(β + γ) + (β + ε)2.

We notice that det(J(u∗1 ,v∗1)
) > 0 and tr(J(u∗1 ,v∗1)

) < 0, which indicates that, based on the
results we have reached about the stability of the equilibrium point, (u∗0 , v∗0), (u

∗
1 , v∗1)

is asymptotically stable.
• In the last case, we suppose that ξ > 0; thus, the equilibrium point (u∗0 , v∗0) remains

stable, and we will discuss the stability of the two other equilibriums.

– Concering the equilibrium (u∗2 , v∗2) we have

J(u∗2 ,v∗2)
=

−3
(
− β

2
−
√

ξ

)2
+ 2(β + 1)

(
− β

2
−
√

ξ

)
− β − 1

εγ − ε

. (32)
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This leads us to:

tr(J(u∗2 ,v∗2)
)= −3

(
− β

2
−
√

ξ

)2
+ 2(β + 1)

(
− β

2
−
√

ξ

)
− β− ε,

= −β

(
7
4

β + 2
)
−
√

ξ(5β + 2)− 3ξ − ε,

det(J(u∗2 ,v∗2)
)= −ε

(
−3
(
− β

2
−
√

ξ

)2
+ 2(β + 1)

(
− β

2
−
√

ξ

)
− β

)
+ εγ,

= −ε(tr(J(u∗2 ,v∗2)
) + ε) + εγ.

= ε

(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ + γ

)
.

The discriminant of the eingenvalue problem (26) is as follows:

∆Λ=

(
−β

(
7
4

β + 2
)
+
√

ξ(−3β + 2)− 3ξ + ε

)2
− 4εγ.

This case is identical to the case of the equilibrium point (u∗1 , v∗1), since det(J(u∗2 ,v∗2)
) > 0

and tr(J(u∗2 ,v∗2)
) < 0, which leads us to the same results as the first and second

cases of the demonstration. As a result, (u∗2 , v∗2) is locally asymptotically stable.
– Finally, we investigate the stability of the equilibrium (u∗3 , v∗3), and we have

J(u∗3 ,v∗3)
=

−3
(
− β

2
+
√

ξ

)2
+ 2(β + 1)

(
− β

2
+
√

ξ

)
− β − 1

εγ − ε

. (33)

We might observe from the Jacobian matrix that

tr(J(u∗3 ,v∗3)
)= −3

(
− β

2
+
√

ξ

)2
+ 2(β + 1)

(
− β

2
+
√

ξ

)
− β− ε,

= −β

(
7
4

β + 2
)
+
√

ξ(5β + 2)− 3ξ − ε,

det(J(u∗3 ,v∗3)
)= −ε

(
−3
(
− β

2
+
√

ξ

)2
+ 2(β + 1)

(
− β

2
+
√

ξ

)
− β

)
+ εγ,

= −ε(tr(J(u∗3 ,v∗3)
) + ε) + εγ.

= ε

(
β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ + γ

)
.

The characteristic equation (26) has the following discriminant

∆Λ=

(
−β

(
7
4

β + 2
)
+
√

ξ(5β + 2)− 3ξ + ε

)2
− 4εγ. (34)

Based on (34), we investigate each case independently.

* If ∆Λ > 0 and if det(J(u∗3 ,v∗3)
) > 0, as a result, the eigenvalues’ negativity is

dependent on the sign of tr(J(u∗3 ,v∗3)
), and the eigenvalues Λ1 and Λ2 are real

and may be represented as

Λ1 =
tr(J(u∗3 ,v∗3)

)−
√

∆Λ

2
, Λ2 =

tr(J(u∗3 ,v∗3)
) +
√

∆Λ

2
. (35)
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· If tr(J(u∗3 ,v∗3)
) < 0, then we have

Λ1 =
tr(J(u∗3 ,v∗3)

)−
√

∆Λ

2
< 0. (36)

As a result, Arg(Λ1) = π. Since both eigenvalues are real, it is obvious
that Arg(Λ1) = Arg(Λ2) = π. As a consequence, based on Theorem 3,
the equilibrium (u∗3 ,v ∗3) is asymptotically stable.

· If tr(J(u∗3 ,v∗3)
) > 0, then we have

Λ2 =
tr(J(u∗3 ,v∗3)

) +
√

∆Λ

2
> 0. (37)

Therefore, Arg(Λ2) = 0, and based on Theorem 3, system (21) is unstable.

* If ∆Λ < 0 and if det(J(u∗3 ,v∗3)
) > 0, then

Λ1 =
tr(J(u∗3 ,v∗3)

)− i
√
−∆Λ

2
, Λ2 =

tr(J(u∗3 ,v∗3)
) + i
√
−∆Λ

2
. (38)

We may discuss the solutions based on the sign of tr(J(u∗3 ,v∗3)
).

· If tr(J(u∗3 ,v∗3)
) < 0 or tr(J(u∗3 ,v∗3)

) > 0, then, following the same case
investigated previously, system (21) is asymptotically stable.

· If tr(J(u∗3 ,v∗3)
) = 0, then

Arg
(
−i
√
−∆Λ

2

)
= Arg

(
i
√
−∆Λ

2

)
=

π

2
,

and system (21) is asymptotically stable.

* If ∆Λ = 0, and det(J(u∗3 ,v∗3)
) > 0, tr(J(u∗3 ,v∗3)

) cannot be equal to zero. The sign
of the eigenvalues is the same as the sign of tr(J(u∗3 ,v∗3)

). As a result, (u∗3 , v∗3)
is asymptotically stable for all ϑ ∈ (0, 1] if tr(J(u∗3 ,v∗3)

) < 0 and unstable if
tr(J(u∗3 ,v∗3)

) > 0.

The proof is completed.

4.2. Local Stability of the Diffusion System

We shall now show that in the presence of diffusion, the steady state (u∗, v∗) can be
stable under certain parameter circumstances. We will adopt the same approach as in [50],
first considering the eigenvalues of the following equation:

∆2xi−1(t + hϑ) + Λixi(t + hϑ) = 0, (39)

with the periodic boundary conditions:

x0(t) = xm(t), x1(t) = xm+1(t). (40)

We obtain
C
h̄ ∆ϑ

t0
ui(t) = −

d1

k2 Λiui(t + h̄ϑ)− u3
i (t + h̄ϑ) + (β + 1)u2

i (t + h̄ϑ)− βui(t + h̄ϑ)− vi(t + h̄ϑ),

C
h̄ ∆ϑ

t0
vi(t) = −

d2

k2 Λivi(t + h̄ϑ) + εui(t + h̄ϑ)− εγvi(t + h̄ϑ).
(41)

To explore the system’s local asymptotic stability, we will linearize it. If the eigenvalues
of the linearized system fulfill the conditions of Theorem 3, using fundamental linear
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operator theory and keeping the system’s fractional structure in mind, we might state that
(u∗, v∗) is asymptotically stable.

We derive the following by linearizing the reaction diffusion system (41) about the
steady state, and we obtain

Ji =

−d1

k2 Λi − 3u2
i (t + h̄ϑ) + 2(β + 1)ui(t + h̄ϑ)− β − 1

εγ − d2

k2 Λi − ε

. (42)

The following result is conducted.

Theorem 5. System (17) is asymptotically stable if the following hold:

• We suppose that ξ < 0 and (β− ε)2 > 4εγ. System (17) is asymptotically stable at the steady
state (u∗0 , v∗0) if the following hold:

– If d1 < d2 and d1
k2 Λi ≤ −β.

– If d1 > d2 and d1
k2 Λi ≤ −β, and in addition, the eigenvalues

µj(Λi) =
tr(Ji(u∗0 ,v∗0)

) +−
√

tr(Ji(u∗0 ,v∗0)
)2 − 4det(Ji(u∗0 ,v∗0)

)

2
, j = 1, 2,

satisfy Arg(µj(Λi)) >
ϑπ

2
.

• We suppose that ξ = 0 and (
7
2
(β + 1)2

(
7
8
(β + 1)2 − ε + β

)
> 4ε(β + γ) − (β + ε)2.

System (17) is asymptotically stable at the steady state (u∗1 , v∗1) if the following hold:

– If d1 < d2 and − d1
k2 Λi ≥

7
4
(β + 1)2 + β.

– If d1 > d2 and − d1
k2 Λi ≥

7
4
(β + 1)2 + β, and in addition, the eigenvalues

µj(Λi) =
tr(Ji(u∗1 ,v∗1)

) +−
√

tr(Ji(u∗1 ,v∗1)
)2 − 4det(Ji(u∗1 ,v∗1)

)

2
, j = 1, 2,

satisfy Arg(µj(Λi)) >
ϑπ

2
.

• We suppose that ξ > 0 and we have two cases:

– If
(
−β

(
7
4

β + 2
)
−
√

ξ(3β + 2)− 3ξ + ε

)2
> 4εγ, system (17) is asymptotically

stable at the steady state (u∗2 , v∗2) if the following hold:

* If d1 < d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ.

* If d1 > d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ, and in addition,

the eigenvalues

µj(Λi) =
tr(Ji(u∗2 ,v∗2)

) +−
√

tr(Ji(u∗2 ,v∗2)
)2 − 4det(Ji(u∗2 ,v∗2)

)

2
, j = 1, 2,

satisfy Arg(µj(Λi)) >
ϑπ

2
.

– If
(
−β

(
7
4

β + 2
)
+
√

ξ(3β + 2)− 3ξ + ε

)2
> 4εγ, system (17) is asymptotically

stable at the steady state (u∗3 , v∗3) if the following hold:
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* If d1 < d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ.

* If d1 > d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ, and in addition,

the eigenvalues

µj(Λi) =
tr(Ji(u∗3 ,v∗3)

) +−
√

tr(Ji(u∗3 ,v∗3)
)2 − 4det(Ji(u∗3 ,v∗3)

)

2
, j = 1, 2,

satisfy Arg(µj(Λi)) >
ϑπ

2
.

Proof. The proof will be conducted following the same cases investigated in the free
diffusion section.

• We first start with the origin (u∗0 , v∗0), and we have(
− d1

k2 Λi − β − 1
εγ − d2

k2 Λi − ε

)
= Ji(u∗0 ,v∗0)

− λ(Λi)I,

which has the eigenvalue equation

µ2(Λi)− tr(Ji(u∗0 ,v∗0)
)µ(Λi) + det(Ji(u∗0 ,v∗0)

) = 0, (43)

where

tr(Ji(u∗0 ,v∗0)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗0 ,v∗0)

), (44)

and

det(Ji(u∗0 ,v∗0)
) =

d1

k2
d2

k2 Λ2
i +

(
d1

k2 ε +
d2

k2 β

)
Λi + det(J(u∗0 ,v∗0)

),

and its discriminant is

∆i= tr2(Ji(u∗0 ,v∗0)
)− 4det(Ji(u∗0 ,v∗0)

) =

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)
(β− ε)Λi + ∆Λ.

The sign of ∆i is important to the stability of (u∗0 , v∗0). The discriminant of ∆i in relation
to Λi is

∆Λi=

((
d1

k2 −
d2

k2

)
(β− ε)Λi

)2
−
(

d1

k2 −
d2

k2

)2
Λ2

i ∆Λ = 4
(

d1

k2 −
d2

k2

)2
εγ.

Clearly, ∆Λi > 0, because with d1 6= d2 we distinguish two cases:

– If d1 < d2, then (β− ε)2 > 4εγ, and the two solutions of the equation ∆Λi = 0
are both negative. Thus, ∆i > 0 and the roots of (43) are

µ1(Λi) =
tr(Ji(u∗0 ,v∗0)

) +
√

tr(Ji)2 − 4det(Ji(u∗0 ,v∗0)
)

2
,

µ2(Λi) =
tr(Ji(u∗0 ,v∗0)

)−
√

tr(Ji(u∗0 ,v∗0)
)2 − 4det(Ji(u∗0 ,v∗0)

)

2
.

(45)

Note that the solutions are real, and also µ(Λi)1 < 0. In addition, if − d1
k2 Λ1 ≥ β,

then µ(Λi)2 < 0. This leads to

|Arg(µ1(Λi))| = |Arg(µ2(Λi)2)| = π, (46)
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which ensures the asymptotic stability of (u∗0 , v∗0).
– If d1 > d2, we have (β− ε)2 > 4εγ. This returns us to the previous scenario.

Again, for d1
k2 Λ1 ≥ β, det(Ji(u∗0 ,v∗0)

) > 0; thus, µ1(Λi) and µ2(Λi) are negative and
must meet the conditions of Theorem 3.

• Moving on to the second case where ξ = 0, we will investigate the stability of the
equilibrium point (u∗1 , v∗1), and in order to do so we consider the following:

− d1
k2 Λi −

7
4
(β + 1)2 − β − 1

εγ − d2
k2 Λi − ε

 = Ji(u∗1 ,v∗1)
− λ(Λi)I,

where

tr(Ji(u∗1 ,v∗1)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗1 ,v∗1)

), (47)

and

det(Ji(u∗1 ,v∗1)
) =

d1

k2
d2

k2 Λ2
i +

(
d1

k2 ε +
d2

k2

(
7
4
(β + 1) + β

))
Λi + det(J(u∗1 ,v∗1)

),

and its discriminant is

∆i= tr2(Ji(u∗0 ,v∗0)
)− 4det(Ji(u∗0 ,v∗0)

) =

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)
(β− ε)Λi + ∆Λ.

In this case, we have the discriminant of ∆i in relation to Λi, defined by

∆Λi=

((
d1

k2 −
d2

k2

)
(β− ε)Λi

)2
−
(

d1

k2 −
d2

k2

)2
Λ2

i ∆Λ = 4
(

d1

k2 −
d2

k2

)2
εγ.

We can clearly notice that the discriminant in this case is identical to the one calculated
previously; therefore, we summarized the dynamics of the system concerning the
(u∗1 , v∗1) in Theorem 5.

• Moving on to the last case where ξ > 0, we will investigate the stability of the
equilibrium points (u∗2 , v∗2) and (u∗3 , v∗3).

– We start by considering the Jacobian matrix of (u∗2 , v∗2), and we have− d1
k2 Λi − β

(
7
4

β + 2
)
−
√

ξ(5β + 2)− 3ξ − 1

εγ − d2
k2 Λi − ε

 = Ji(u∗2 ,v∗2)
− λ(Λi)I,

where

tr(Ji(u∗2 ,v∗2)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗2 ,v∗2)

), (48)

and

det(Ji(u∗2 ,v∗2)
) =

d1

k2
d2

k2 Λ2
i +

d1

k2 ε +
d2

k2

(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ

)
Λi + det(J(u∗2 ,v∗2)

),

and its discriminant is

∆i=

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ − ε

)
Λi + ∆Λ.

The discriminant of ∆i in relation to Λi is
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∆Λi=

((
d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ − ε

))2
−
(

d1

k2 −
d2

k2

)2
Λ2

i ∆Λ,

= 4
(

d1

k2 −
d2

k2

)2
εγ.

The discriminant in this situation is obviously similar to the one determined
previously; therefore, we summarized the dynamics of the system concerning
the (u∗2 , v∗2) in Theorem 5.

– Finally, let us consider the equilibrium point (u∗3 , v∗3)− d1
k2 Λi − β

(
7
4

β + 2
)
+
√

ξ(5β + 2)− 3ξ − 1

εγ − d2
k2 Λi − ε

 = Ji(u∗3 ,v∗3)
− λ(Λi)I,

where

tr(Ji(u∗3 ,v∗3)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗3 ,v∗3)

), (49)

and

det(Ji(u∗3 ,v∗3)
) =

d1

k2
d2

k2 Λ2
i +

d1

k2 ε +
d2

k2

(
β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ

)
Λi + det(J(u∗3 ,v∗3)

),

and its discriminant is

∆i=

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ − ε

)
Λi + ∆Λ.

The discriminant of ∆i in relation to Λi is

∆Λi=

((
d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ − ε

)2
−
(

d1

k2 −
d2

k2

))2

Λ2
i ∆Λ,

= 4
(

d1

k2 −
d2

k2

)2
εγ.

We can easily see that the discriminant in this case is also similar to the one
determined previously; thus, we outlined the dynamics of the system concerning
the (u∗3 , v∗3) in Theorem 5.

5. Global Stability

In this part, we define the global asymptotic stability of the constant steady-state
solution. It is possible to rewrite the discrete-time fractional FitzHugh–Nagumo system
(17) as follows:

C
h̄ ∆ϑ

t0
ui(t) =

k1

∆2
x

∆2ui−1(t + h̄ϑ) + ( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗),

C
h̄ ∆ϑ

t0
vi(t) =

k2

∆2
x

∆2vi−1(t + h̄ϑ) + εγ(
ui(t + h̄ϑ)

ϑ
− u∗

ϑ
− (vi(t + h̄ϑ)− v∗)).

(50)

We define the variables Ui = ui − u∗ and Vi = vi − v∗, such that the function f (ui) is
defined as follows:

f (ui) = −u3
i + (β + 1)u2

i − βui. (51)
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Theorem 6. System (17) is globally asymptotically stable if the following holds:

(ui(t)− u∗)( f (ui)− f (u∗)) > 0, 1 ≤ i ≤ m. (52)

Proof. To achieve the unique equilibrium point’s global asymptotic stability (u∗, v∗), we
evaluate the following function:

L(t) =
1
2

m

∑
i=1

((
ui(t)

γ
− u∗

γ

)2

+ (vi(t)− v∗)2

)
. (53)

Taking the Caputo h-difference operator and using Lemma 3, we have

C
h̄ ∆ϑ

t0
L(t) =

1
2

m

∑
i=1

(
C
h̄ ∆ϑ

t0

(
ui(t)

γ
− u∗

γ

)2

+C
h̄ ∆ϑ

t0
(vi(t)− v∗)2

)
,

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
C
h̄ ∆ϑ

t0

(
ui(t)

γ
− u∗

γ

)
+ (vi(t + h̄ϑ)− v∗)C

h̄ ∆ϑ
t0
(vi(t)− v∗),

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(

k1

∆2
x

∆2ui−1(t + h̄ϑ) + ( f (ui)− f (u∗))

− (vi(t + h̄ϑ)− v∗)) + (vi(t + h̄ϑ)− v∗)(
k2

∆2
x

∆2vi−1(t + h̄ϑ)

+ εγ

(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗)

)
,

≤
m

∑
i=1

k1

∆2
x

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
∆2ui−1(t + h̄ϑ) +

k2

∆2
x
(vi(t + h̄ϑ)− v∗)∆2vi−1(t + h̄ϑ)

+
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗))

+
m

∑
i=1

(vi(t + h̄ϑ)− v∗)(εγ(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗))),

= J1(t) + J2(t),

where

J1(t) =
m

∑
i=1

k1

∆2
x

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
∆2ui−1(t + h̄ϑ) +

k2

∆2
x
(vi(t + h̄ϑ)− v∗)∆2vi−1(t + h̄ϑ), (54)

J2(t) =
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(( f (ui)− f (u∗)) (55)

− (vi(t + h̄ϑ)− v∗)) + (vi(t + h̄ϑ)− v∗)
(

εγ

(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗)

))
. (56)

We then examine the J1 and J2 signs:
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J1(t) =
m

∑
i=1

k1

∆2
x

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
∆2ui−1(t + h̄ϑ) +

k2

∆2
x
(vi(t + h̄ϑ)− v∗)∆2vi−1(t + h̄ϑ),

=
m

∑
i=1

k1

γ∆2
x
(ui(t + h̄ϑ)− u∗)∆2(ui−1(t + h̄ϑ)− u∗) +

k2

∆2
x
(vi(t + h̄ϑ)− v∗)∆2(vi−1(t + h̄ϑ)− v∗)

=
m

∑
i=1

k1

γ∆2
x
(ui(t + h̄ϑ)− u∗)∆(ui−1(t + h̄ϑ)− u∗)|m+1

1

+
k2

∆2
x
(vi(t + h̄ϑ)− v∗)∆(vi−1(t + h̄ϑ)− v∗)|m+1

1 −
m

∑
i=1

k1

γ∆2
x
(∆(ui−1(t + h̄ϑ)− u∗))2

− k2

∆2
x
(∆(vi−1(t + h̄ϑ)− v∗))2 < 0.

J2(t) =
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗))

+ (vi(t + h̄ϑ)− v∗)(εγ(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗))),

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
( f (ui)− f (u∗))− ε

γ
(ui(t + h̄ϑ)− u∗)(vi(t + h̄ϑ)− v∗)

+
ε

γ
(vi(t + h̄ϑ)− v∗)(ui(t + h̄ϑ)− u∗)− (vi(t + h̄ϑ)− v∗)2,

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

ϑ

)
( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗)2.

Now, the following hold:

• If ui(t + h̄ϑ) ≤ u∗ , then (ui(t + h̄ϑ)− u∗)( f (ui)− f (u∗)) < 0.
• If ui(t + h̄ϑ) ≥ u∗ , then (ui(t + h̄ϑ)− u∗)( f (ui)− f (u∗)) < 0.

This means that L(t) < 0, and according to Theorem 2, the system is globally asymp-
totically stable.

6. Numerical Simulations

In this part, we show some exemplary simulations of the theoretical properties of the
stability of the discrete-time fractional FitzHugh–Nagumo reaction–diffusion system. We
can observe the behavior of the system by modifying its parameters and order. We use the
following numerical solution, and the system (17) appears as follows:



ui(nh̄) = φ1(xi) +
h̄ϑ

Γ(ϑ) ∑n
j=1

Γ(n− j + ϑ)

Γ(n− j + 1)
[s

ui+1((j− 1)h̄)− 2ui((j− 1)h̄) + ui−1((j− 1)h̄)
k2

−u3((j− 1)h̄) + (β + 1)u2((j− 1)h̄)− βu((j− 1)h̄)− vi((j− 1)h̄)],

vi(nh̄) = φ2(xi) +
h̄ϑ

Γ(ϑ) ∑n
j=1

Γ(n− j + ϑ)

Γ(n− j + 1)
[
vi+1((j− 1)h̄)− 2vi((j− 1)h̄) + vi−1((j− 1)h̄)

k2

+εui((j− 1)h̄)− εγvi((j− 1)h̄)],
1 ≤ i ≤ m,
n > 0.

(57)
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Example 1. Consider the following parameter values of model (17): N = 110, (β, ε, γ, d1, d2) =
(0.139, 0.7, 0.18, 2, 3) h̄ = 0.18, t ∈ [0, 20], x ∈ [0, 20] , and the boundary conditions (u0(t), v0(t)) =
(2, 3), (u1(t), v1(t)) = (2, 3), with the initial conditions{

φ1(xi) = 1− sin(πxi),
φ2(xi) = 3− sin(πxi).

We see that all of our model’s solutions converge at some point to the equilibrium point
(u∗, v∗) = (0.64, 0.12). The unique equilibrium is thus asymptotically stable. This numerical
conclusion is consistent with our earlier theoretical results. Figures 1–3 display the results mentioned
earlier for different orders.

Example 2. In this example, we set the following parameter of the model (17): N = 110,
(β, ε, γ, d1, d2) = (0.3, 0.01, 0.1, 0.1, 0.7) h̄ = 0.4, t ∈ [0, 20], x ∈ [0, 20] and the boundary
conditions (u0(t), v0(t)) = (1, 3), (u1(t), v1(t)) = (1, 3), with the initial conditionsφ1(xi) = 3 + cos

(πxi
2

)
,

φ2(xi) = 2 + cos
(πxi

2

)
.

We can observe that the solutions of the model converge to the equilibrium point (u∗, v∗) =
(0, 0). As a result, the unique equilibrium is asymptotically stable. This numerical solution
agrees with the theories provided in the previous sections, as displayed in Figures 4–6 for different
fractional orders.
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Figure 1. State trajectories of r ui(t) and vi(t) for ϑ = 0.3.
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Figure 4. Numerical solution of ui(t) and vi(t) for (β, ε, γ, d1, d2) = (0.3, 0.01, 0.1, 0.1, 0.7) and ϑ = 0.2.
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7. Conclusions

In this paper, we looked at a discrete-time fractional-order variant of the reaction
diffusion FitzHugh–Nagumo system. We provided adequate constraints for the unique
equilibrium’s local asymptotic stability. Moreover, with the help of the direct Lyapunov tech-
nique, the steady-state solution’s global asymptotic stability was established. Finally, the
simulation results illustrate all of the theoretical investigations’ results. In the future, further
research will be performed to examine this kind of discrete-time reaction–diffusion system.

Moreover, the linearization approach and the Lyapunov functional may be utilized to
solve the issue of stability in discrete fractional reaction–diffusion models. In addition, the
results of this study may be readily applicable to many various types of discrete fractional
spatiotemporal systems with reaction–diffusion terms, as well as to other dynamical issues,
such as chaos and synchronization control.
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