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Abstract: This paper introduces the optimal auxiliary function method (OAFM) for solving a nonlin-
ear system of Belousov–Zhabotinsky equations. The system is characterized by its complex dynamics
and is treated using the Caputo operator and concepts from fractional calculus. The OAFM provides a
systematic approach to obtain approximate analytical solutions by constructing an auxiliary function.
By optimizing the parameters of the auxiliary function, an approximate solution is derived that closely
matches the behavior of the original system. The effectiveness and accuracy of the OAFM are demon-
strated through numerical simulations and comparisons with existing methods. Fractional calculus
enhances the understanding and modeling of the nonlinear dynamics in the Belousov–Zhabotinsky
system. This study contributes to fractional calculus and nonlinear dynamics, offering a powerful
tool for analyzing and solving complex systems such as the Belousov–Zhabotinsky equation.

Keywords: optimal auxiliary function method; nonlinear system of Belousov–Zhabotinsky Equation;
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1. Introduction

Fractional nonlinear systems of partial differential equations (PDEs) have garnered
substantial research interest owing to their capacity to describe diverse phenomena across
areas such as engineering, physics, and biology. Fractional derivatives, non-local operator
that account for historical impacts, and complicated non-linearities are all part of these
schemes. The usefulness of fractional calculus, which deals with fractional derivatives and
integrals, has been demonstrated in real-world circumstances by simulating memory effects,
long-range interactions, and anomalous diffusion. Simultaneously, nonlinear dynamics in-
vestigates the complicated behavior of complex systems that exhibit nonlinear interactions
among their basic components [1–3]. The combination of these two domains has resulted
in fractional nonlinear partial differential equation (PDE) systems capable of capturing the
complicated dynamics found in several physical and biological systems. The analysis of
fractional nonlinear PDE systems has provided a multitude of intriguing discoveries and
practical applications within this rapidly developing field of study. Current research efforts
are mostly focused on diving into the stability and bifurcation characteristics of solutions,
as well as their uniqueness and existence, which is frequently supported by numerical
simulations. These systems have been applied to a variety of disciplines, including fluid
dynamics, electrochemistry, and population dynamics, each of which provides distinct
insights and opportunities for investigation [4–9].
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One class of nonlinear systems that has attracted significant attention is the nonlinear
system of Belousov–Zhabotinsky equation (NSBZE). The NSBZE is a mathematical model
that describes the complex behavior of reaction–diffusion systems exhibiting chemical
oscillations and pattern formation. It finds applications in diverse areas such as chem-
istry, biology, and material science [10,11]. The nonlinear system of Belousov–Zhabotinsky
equation, initially rooted in chemical reactions, has broadened its impact across multiple sci-
entific domains. It is a cornerstone for understanding chemical kinetics, reaction–diffusion
dynamics, and pattern formation. This equation finds applications in diverse fields, in-
cluding materials science, biological systems, neural networks, artificial life, optics, and
unconventional computing. Its insights inform the study of self-organizing materials,
neural pattern formation, brain dynamics, and innovative information processing methods.
Moreover, the equation’s visually captivating patterns and oscillations make it a valuable
tool for educational outreach and fostering a deeper understanding of complex behaviors
and nonlinear dynamics in various scientific contexts. To tackle the NSBZE, fractional
calculus provides a powerful mathematical framework. Fractional calculus extends the
concept of differentiation and integration to non-integer orders, allowing for analyzing
systems with memory and long-range dependencies. The Caputo operator is commonly
employed in fractional calculus, a fractional derivative operator widely used to describe
the dynamics of physical systems governed by fractional differential equations [12–17].

The optimal auxiliary function method (OAFM) has proven to be a powerful tool
for solving various types of nonlinear differential equations. This method introduces an
auxiliary function that satisfies an ordinary differential equation optimized to yield approx-
imate solutions for the original problem. The OAFM has been used effectively in various
areas, including fluid dynamics, chemical reactions, and population dynamics [18–21]. In
this paper, we aim to combine the optimal auxiliary function method with the Caputo
operator in the context of the nonlinear system of Belousov–Zhabotinsky equation. We aim
to develop an effective numerical technique for obtaining approximate solutions to this
challenging nonlinear system. By utilizing the capabilities of the OAFM and the mathe-
matical foundation provided by fractional calculus, we seek to enhance the accuracy and
efficiency of the solution process.

2. Preliminaries

Definition 1. The Caputo fractional derivative of a function R(ζ, τ) with a fractional order α is
expressed as [18]

CDα
t R(ζ, t) = Jm−α

t Rm(ζ, t), m− 1 < α ≤ m, t > 0. (1)

Definition 2. The expression for the Riemann fractional integral can be presented as follows [18]:

Jα
t R(ζ, t) =

1
Γ(α)

∫ t

0
(t− r)α−1R(ζ, r)dr (2)

Lemma 1. For n− 1 < α ≤ n , p > −1 , t ≥ 0 and λ ∈ R, we have [18]:

1. Dα
t tp = Γ(α+1)

Γ(p−α+1) tp−α

2. Dα
t λ = 0

3. Dα
t Iα

t R(ζ, t) = R(ζ, t)

4. Iα
t Dα

t R(ζ, t) = R(α, t)−∑n−1
i=0 ∂iR(ζ, 0) ti

i!

3. General Procedure of OAFM

In this section, we consider the most general type of a nonlinear fractional order
differential equation [18]:

∂αR(ξ, τ)

∂τα
= g(ξ, τ) + N(R(ξ, τ)) (3)
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with the initial condition

∂kR(ξ, 0)
∂τk = hk(ξ), k = 0, 1, 2, · · · . (4)

where ∂α

∂τα represents the fractional derivative of order α, g(ξ, τ) is the unknown function,
and N(R(ξ, τ)) is the nonlinear function involving R, spatial variable ξ, and time variable τ.

Step 1: To solve Equation (3), we will use an approximate solution that has two components,
such as:

R(ξ, τ) = R0(ξ, τ) + R1(ξ, τ, Ci), i = 1, 2, 3, ..., p (5)

Step 2: To determine the zero and first-order solutions, we substitute Equation (5) into
Equation (3), which results in:

∂αR0(ξ, τ)

∂τα
+

∂αR1(ξ, τ)

∂τα
+ g(ξ, τ) + N

[
∂αR0(ξ, τ)

∂τα
+

∂αR1(ξ, τ, Ci)

∂τα

]
= 0 (6)

Step 3: For the purpose of determining the first approximation R0(ξ, τ) based on the
linear equation.

∂αR0(ξ, τ)

∂τα
+ g(ξ, τ) = 0 (7)

Using the inverse operator, we arrive at R0(ξ, τ), which is expressed as follows:

R0(ξ, τ) = g(ξ, τ) (8)

Step 4: The nonlinear term seen in expanding form (6) is,

N
[

∂ρR0(ξ, τ)

∂τα
+

∂Rα
1(ξ, τ, Ci)

∂tα

]
= N[R0(ξ, τ)] +

∞

∑
k=1

Rk
1

k!
N(k)[R0(ξ, τ)] (9)

Step 5: To quickly solve Equation (9) and accelerate the convergence of the first-order
approximations R(ξ, τ), we propose the following alternative equation:

∂αR1(ξ, τ, Ci)

∂τα
= A1[R0(ξ, τ)]N[R0(ξ, τ)] + A2

[
R0(ξ, τ), Cj

]
. (10)

Step 6: We find a first-order solutions R1(ξ, τ) by using the inverse operator after putting
the Auxiliary function into Equation (10).

Step 7: Several methods are used to find the numerical values of the convergence control
parameters Ci, including least squares, Galerkin’s, Ritz, and collocation. To eliminate
mistakes, we employ the least squares approach.

J(Ci, Cj) =
∫ t

0

∫
Ω
<2(y, t; Ci, Cj)dξdτ. (11)

where < denotes the residual,

<(ξ, τ, Ci, Cj) =
∂R(ξ, τ, Ci, Cj)

∂τ
+ g(ξ, τ) + N[R(ξ, τ, Ci, Cj)],

i = 1, 2, . . . , s, j = S + 1, S + 2, . . . , p
(12)
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4. Applications
4.1. Problem 1

Let us consider the Belousov–Zhabotinsky System of fractional order, which is repre-
sented by

Dα
τ R(ξ, τ)− R(ξ, τ)− ∂2R(ξ, τ)

∂ξ2 + R2(ξ, τ) + λT(ξ, τ) = 0,

Dα
τ T(ξ, τ)− ∂2T(ξ, τ)

∂ξ2 + γT(ξ, τ)T(ξ, τ) = 0, where, 0 < α ≤ 1
(13)

Subject to the following IC’s:

R(ξ, 0) = −1
2
(
1− tanh2(

ξ

2
)
)
,

T(ξ, 0) = −1
2
+ tanh(

ξ

2
) +

1
2

tanh2(
ξ

2
)

(14)

Consider linear terms in Equation (13)

L(R0(ξ, τ)) =
∂αR0(ξ, τ)

∂τα
,

L(T0(ξ, τ)) =
∂αT0(ξ, τ)

∂τα

(15)

Consider nonlinear terms in Equation (13)

N(R0(ξ, τ)) = −R0(ξ, τ)− ∂2R0(ξ, τ)

∂ξ2 + R2
0(ξ, τ) + λT0(ξ, τ),

N(T0(ξ, τ)) = −∂2T0(ξ, τ)

∂ξ2 + γT0(ξ, τ)R0(ξ, τ)

(16)

Zeroth-order approximation

∂αR0(ξ, τ)

∂τα
= 0

∂αT0(ξ, τ)

∂τα
= 0

(17)

By apply of the inverse operator, we obtain result as:

R0(ξ, τ) = −1
2
(
1− tanh2(

ξ

2
)
)
,

T0(ξ, τ) = −1
2
+ tanh(

ξ

2
) +

1
2

tanh2(
ξ

2
)

(18)

By making use of Equation (18) in Equation (16), the system of nonlinear terms becomes

N[R0(ξ, τ)] =
1

14
sech4

(
ξ

2

)
(λ(2 sinh(ξ) + sinh(2x)− 2)− 2(λ− 2) cosh(ξ))

N[T0(ξ, τ)] =
1
4

sech4
(

ξ

2

)
(γ(− sinh(ξ)) + γ + sinh(ξ) + cosh(ξ)− 2)

(19)
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We choose the auxiliary function as:

A1 = c1
(
− 1

2
(
1− tanh2(

ξ

2
)
))

,

A2 = c2
(
− 1

2
(
1− tanh2(

ξ

2
)
))3,

A3 = c3
(
− 1

2
+ tanh(

ξ

2
) +

1
2

tanh2(
ξ

2
)
)5

A4 = c4
(
− 1

2
+ tanh(

ξ

2
) +

1
2

tanh2(
ξ

2
)
)7

(20)

First-order approximation using the OAFM approach, as described in Section 3.

∂αR1(ξ, τ)

∂τα
= −

(
A1[R0(ξ, τ)N[R0(ξ, τ)] + A2[R0(ξ, τ); cj]

)
∂αT1(ξ, τ)

∂τα
= −

(
A3[T0(ξ, τ)N[T0(ξ, τ)] + A4[T0(ξ, τ); cj]

) (21)

using Equations (19) and (20) in Equation (21).

∂αR1(ξ, τ)

∂τρ =
1
8

sech6
(

ξ

2

)
(c1λ sinh(ξ) + c1 cosh(ξ)(λ sinh(ξ)− λ + 2)− c1λ + c2)

∂αT1(ξ, τ)

∂τρ = − 1
256

(sinh(ξ)− 1)5sech14
(

ξ

2

)(
2 sinh(ξ)(−c3γ + c3 − 2c4) + 2c3(γ− 2)

+ 2c3 cosh(ξ)c4 cosh(2ξ) + c4
)

(22)

Using the inverse operator to Equation (22) we get

R1(ξ, τ) =
ταsech6

(
ξ
2

)
(c1λ sinh(ξ) + c1 cosh(ξ)(λ sinh(ξ)− λ + 2)− c1λ + c2)

8Γ(1 + α)

T1(ξ, τ) = −
ταsech14

(
ξ
2

)
(sinh(ξ)− 1)5(2c3(γ− 2) + 2c3 cosh(x) + c4 cosh(2ξ) + c4)

256Γ(α + 1)

−
τα(sinh(ξ)− 1)5sech14

(
ξ
2

)
(2 sinh(ξ)(−c3γ + c3 − 2c4))

256Γ(α + 1)

(23)

According to the OAFM procedure

R(ξ, τ) = R0(ξ, τ) + R1(ξ, τ)

T(ξ, τ) = T0(ξ, τ) + T1(ξ, τ)
(24)

In this discussion, we analyze the behavior of the Belousov–Zhabotinsky (BZ) system,
as shown in Figures 1 and 2. The BZ system is an example of a nonlinear chemical oscillator
and is widely studied due to its oscillatory behavior, which can be observed in various
fields such as biology, chemistry, and physics. We focus on the response functions R(ξ, τ)
and T(ξ, τ), which describe the behavior of the system under varying conditions. The
parameter α plays a crucial role in these response functions and is investigated in this
discussion. Figure 1a presents a 2D plot of the response function R(ξ, τ) at different
values of the parameter α. As the parameter α increases, the plot illustrates the change in
the oscillatory behavior of the BZ system. The response function exhibits more complex
oscillatory patterns with increasing values of α. This suggests that the parameter α has
a significant impact on the system’s response and can be used to control its behavior.
Similarly, Figure 1b shows a 2D plot of the response function T(ξ, τ) at different values
of the parameter α. The plot reveals that the oscillatory behavior of the BZ system also
changes with varying values of α in the case of T(ξ, τ). This further supports the idea that
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the parameter α is a key factor in determining the overall behavior of the BZ system. To
provide a more comprehensive understanding of the BZ system, Figure 2a,b display 3D
plots of the response functions R(ξ, τ) and T(ξ, τ), respectively, at different values of the
parameter α. These 3D plots offer a more detailed perspective on the complex oscillatory
behavior of the BZ system. Figure 2a demonstrates how the 3D plot of the response function
R(ξ, τ) changes as the parameter α is varied. The plot exhibits intricate patterns, indicating
the complex relationship between ξ, τ, and α. Similarly, Figure 2b showcases a 3D plot of the
response function T(ξ, τ) at different values of α. This plot also displays intricate patterns,
further highlighting the significance of the parameter α in the BZ system’s behavior. In
Tables 1 and 2, a comparison of the R(ξ, τ) and T(ξ, τ) OAFM solution and exact solution
and their corresponding absolute error at fractional order α = 1 where λ = 2 and γ = 3 for
Problem 1. In conclusion, the graphical analysis of Figures 1 and 2 clearly demonstrates
that the parameter α plays a crucial role in determining the behavior of the BZ system. The
response functions R(ξ, τ) and T(ξ, τ) exhibit complex oscillatory patterns that change
with varying values of α. This analysis is beneficial for understanding and controlling the
oscillatory behavior of the BZ system and other similar nonlinear chemical oscillators.

Figure 1. The 2D-plots of R(ξ, τ) and T(ξ, τ) using the OAFM solution where λ = 1.5 and γ = 2.5.

Figure 2. The 3D-plots of R(ξ, τ) and T(ξ, τ) using OAFM solution where the values λ = 1.5 and
γ = 2.5.
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Table 1. A comparison of the R(ξ, τ) OAFM solution and exact solution and their corresponding
absolute error at fractional order α = 1 where λ = 2 and γ = 3 for Problem 1.

ξ R(ξ, τ) OAFM R(ξ, τ) Exact Abs.error

0.1 −0.4987 −0.4987 5.1 × 10−5

0.2 −0.495 −0.4950 3.3 × 10−5

0.3 −0.4889 −0.4889 1.5 × 10−5

0.4 −0.4805 −0.4805 2.7 × 10−6

0.5 −0.470 −0.4700 2.0 × 10−5

0.6 −0.4576 −0.4575 3.7 × 10−5

0.7 −0.4434 −0.4434 5.2 × 10−5

0.8 −0.4279 −0.4278 6.6 × 10−5

0.9 −0.411 −0.411 7.8 × 10−5

1 −0.3933 −0.3932 8.9 × 10−5

Table 2. Comparison of the T(ξ, τ) OAFM solution and exact solution and their corresponding
absolute error at fractional order α = 1 for Problem 1.

ξ T(ξ, τ) OAFM T(ξ, τ) Exact Abs.error

0.1 −0.4487 −0.4487 4.9 × 10−5

0.2 −0.3953 −0.3953 8.2 × 10−5

0.3 −0.34 −0.3399 1.0 × 10−4

0.4 −0.2831 −0.283 1.1 × 10−4

0.5 −0.2251 −0.225 1.2 × 10−4

0.6 −0.1663 −0.1661 1.2 × 10−4

0.7 −0.1071 −0.1069 1.2 × 10−4

0.8 −0.0479 −0.0478 1.2 × 10−4

0.9 0.0109 0.01102 1.2 × 10−4

1 0.06889 0.06901 1.1 × 10−4

The values of auxiliary constant obtained by collocation method.
c1 = −2.358192481417809, c2 = 0.7753100423748968, c3 = 83.49971233901873
and c4 = −33.24684800337086

4.2. Problem 2

Let us consider the system of a nonlinear fractional-order equation, which is repre-
sented by

Dα
τ R(ξ, τ)− T(ξ, τ)

∂2R(ξ, τ)

∂ξ2 − R(ξ, τ)
∂2T(ξ, τ)

∂ξ2 − 2 + 2ξ2 + 2τ2 = 0,

Dα
τ T(ξ, τ)− T(ξ, τ)

∂2T(ξ, τ)

∂ξ2 + R(ξ, τ)
∂2R(ξ, τ)

∂ξ2 − 1− 3
2

ξ2 − 3
2

τ2 = 0, where , 1 < α ≤ 2
(25)

Subject to the following IC’s:

R(ξ, 0) = ξ2, ∂τ R(ξ, 0) = 0

T(ξ, 0) =
1
2

ξ2, ∂τT(ξ, 0) = 0
(26)

Consider linear terms in Equation (25)

L(R0(ξ, τ)) =
∂αR0(ξ, τ)

∂τα
,

L(T0(ξ, τ)) =
∂αT0(ξ, τ)

∂τα

(27)
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Consider nonlinear terms in Equation (25)

N(R0(ξ, τ)) = −T0(ξ, τ)
∂2R0(ξ, τ)

∂ξ2 − R0(ξ, τ)
∂2T0(ξ, τ)

∂ξ2 ,

N(T0(ξ, τ)) = −T0(ξ, τ)
∂2T0(ξ, τ)

∂ξ2 + R0(ξ, τ)
∂2R0(ξ, τ)

∂ξ2

(28)

Zeroth-order approximation

∂αR0(ξ, τ)

∂τα
= 0

∂αT0(ξ, τ)

∂τα
= 0

(29)

By applying of the inverse operator, we obtain result as:

R0(ξ, τ) = ξ2,

T0(ξ, τ) =
1
2

ξ2
(30)

By making use of Equation (30) in Equation (28), the system of nonlinear terms becomes

N[R0(ξ, τ)] = −2ξ2

N[T0(ξ, τ)] =
3
2

ξ2
(31)

We choose the auxiliary function as:

A1 = (c1 + ξc2)ξ
2, A2 = c3(ξ

2)3,

A3 = (c4 + ξc5)(
3
2

ξ2)4, A4 = c6(
3
2

ξ2)7
(32)

First-order approximation using the OAFM approach, as described in Section 3.

∂αR1(ξ, τ)

∂τα
= −

(
A1[R0(ξ, τ)N[R0(ξ, τ)] + A2[R0(ξ, τ); cj]

)
∂αT1(ξ, τ)

∂τα
= −

(
A3[T0(ξ, τ)N[T0(ξ, τ)] + A4[T0(ξ, τ); cj]

) (33)

using Equations (30) and (32) in Equation (33)

∂αR1(ξ, τ)

∂τρ = 2ξ4(c1 + c2ξ)− c3ξ6

∂αT1(ξ, τ)

∂τρ = − 3
32

ξ10(c4 + c5ξ)− c6ξ14

128

(34)

applying inverse operator to Equation (34) we get

R1(ξ, τ) =
ξ4τα(2c1 + ξ(2c2 − c3ξ))

Γ(α + 1)

T1(ξ, τ) = −
ξ10τα

(
12c4 + 12c5ξ + c6ξ4)
128Γ(α + 1)

(35)

According to the OAFM procedure

R(ξ, τ) = R0(ξ, τ) + R1(ξ, τ)

T(ξ, τ) = T0(ξ, τ) + T1(ξ, τ)
(36)
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The values of auxiliary constant obtained by collocation method.
c1 = 31, 430.6586668333, c2 = −110, 362.31997412356, c3 = −182, 153.25836719057,
c4 = 125, 830.5231198654, c5 = 41, 444.51349867818 and c6 = −2.0600130170669805× 10−6

Figures 3 and 4 present the graphical representations of the reflection, R(ξ, τ), and
transmission, T(ξ, τ), coefficients obtained for a nonlinear fractional system of partial
differential equations using the optimal amplitude frequency modulation (OAFM) method.
Figure 3 illustrates the 2D plots of the coefficients: (a) represents the 2D plot of the reflection
coefficient, R(ξ, τ), and (b) displays the 2D plot of the transmission coefficient, T(ξ, τ).
The horizontal axis in both plots represents the spatial variable, ξ, while the vertical axis
represents the temporal variable, τ. The variation in color intensity indicates the magnitude
of the coefficients. The 2D plots enable a clear visualization of the coefficients’ behavior
with respect to the spatial and temporal variables, as well as how they change in the
presence of nonlinearities. Figure 4, on the other hand, provides a more comprehensive
representation of the coefficients through 3D plots. In this figure, (a) is the 3D plot of the
reflection coefficient, R(ξ, τ), while (b) is the 3D plot of the transmission coefficient, T(ξ, τ).
The horizontal plane represents the spatial variable, ξ, and the temporal variable, τ. The
vertical axis illustrates the magnitude of the coefficients. By using a 3D representation, it
becomes easier to visualize the distribution of the coefficients and how they evolve in the
nonlinear fractional system. Tables 3 and 4 are a comparison of the OAFM solution and
exact solution and their corresponding absolute error at fractional order α = 2 for R(ξ, τ)
and T(ξ, τ) for Problem 2. In conclusion, Figures 3 and 4 offer a graphical representation of
the reflection and transmission coefficients, R(ξ, τ) and T(ξ, τ), for a nonlinear fractional
system of partial differential equations using the OAFM method. The 2D and 3D plots
allow for an in-depth understanding of the coefficients’ behavior and how they are affected
by the nonlinearities present in the system.

Figure 3. The 2D-plots of R(ξ, τ),T(ξ, τ) using OAFM solution at different values of fractional order.

Figure 4. The 3D-plots of R(ξ, τ),T(ξ, τ) using OAFM solution at different values of fractional order.
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Table 3. A comparison of the OAFM solution and exact solution and their corresponding absolute
error at fractional order α = 2 for Problem 2.

ξ R(ξ, τ) OAFM R(ξ, τ) Exact Abs.error

0.1 0.01 0.01 4.06 × 10−7

0.15 0.0225 0.0225 2.72 × 10−6

0.2 0.04001 0.04 7.12 × 10−6

0.25 0.06251 0.0625 1.30 × 10−5

0.3 0.09002 0.09 1.90 × 10−5

0.35 0.12252 0.1225 2.10 × 10−5

0.4 0.16002 0.16 1.70 × 10−5

0.45 0.2025 0.2025 2.74 × 10−6

0.5 0.24998 0.25 2.20 × 10−5

Table 4. A comparison of the OAFM solution and exact solution and their corresponding absolute
error at fractional order α = 2 for Problem 2.

ξ T(ξ, τ) OAFM T(ξ, τ) Exact Abs.error

0.10 0.005 0.005 2.000 × 10−8

0.15 0.01125 0.01125 2.0001 × 10−8

0.20 0.0200 0.0200 2.0025 × 10−8

0.25 0.03125 0.03125 2.0242 × 10−8

0.30 0.0450 0.04500 2.1515 × 10−8

0.35 0.06125 0.06125 2.7125 × 10−8

0.40 0.0800 0.0800 4.7134 × 10−8

0.45 0.10125 0.10125 1.0770 × 10−7

0.50 0.1250 0.12500 2.6870 × 10−7

5. Conclusions

In conclusion, the optimal Auxiliary function method (OAFM) has proven to be a
powerful and effective technique for analyzing nonlinear systems, as demonstrated in this
paper by applying it to the nonlinear system of the Belousov–Zhabotinsky equation. By
utilizing the Caputo operator and concepts from fractional calculus, the OAFM provides
a valuable approach to solving and understanding complex dynamic systems. The inte-
gration of Caputo operators further enhances the accuracy and authenticity of the model,
enabling a more faithful representation of the underlying physical phenomena. The OAFM
not only allows for accurate and efficient computations but also offers insights into the
behavior and stability of the system. The results obtained using the OAFM highlight its
effectiveness in addressing challenging problems in nonlinear dynamics. The combination
of the OAFM, nonlinear systems, and fractional calculus opens up new avenues for future
research, paving the way for further advancements and applications in various scientific
and engineering domains.
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