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Abstract: In this paper, the propagation of Rossby waves under barotropic-baroclinic interaction in
polar co-ordinates is studied. By starting from the two-layer quasi-geotropic potential vorticity equa-
tion (of equal depth) with the β effect, the coupled KdV equations describing barotropic-baroclinic
waves are derived using multi-scale analysis and the perturbation expansion method. Furthermore,
in order to more accurately describe the propagation characteristics of barotropic-baroclinic waves,
fifth-order coupled KdV-mKdV equations were obtained for the first time. On this basis, the Lie
symmetry and conservation laws of the fifth-order coupled KdV-mKdV equations are analyzed
in terms of their properties. Then, the elliptic function expansion method is applied to find the
soliton solutions of the fifth-order coupled KdV-mKdV equations. Based on the solutions, we further
simulate the evolution of Rossby wave amplitudes and investigate the influence of the high-order
terms—time and wave number—on the propagation of barotropic waves and baroclinic waves. The
results show that the appearance of the higher-order effect makes the amplitude of the wave lower,
the width of the wave larger, and the whole wave flatter, which is obviously closer to actual Rossby
wave propagation. The time and wave number will also influence wave amplitude and wave width.

Keywords: rossby waves; fifth-order coupled KdV-mKdV equations; barotropic-baroclinic coherent
structures; two-layer cylindrical fluids
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1. Introduction

Due to the movement of the atmosphere and the ocean, various nonlinear fluctuations
are generated, such as Rossby waves, ocean internal waves, gravity waves, and so on.
Among them, the stable Rossby waves generated by the ocean atmosphere are the most
classical waves and have always been studied by people. Rossby waves are closely related to
various natural phenomena, such as weather changes and ocean currents [1]. For example,
the Gulf Stream, Kuroshio, and El Niño phenomenon in the ocean [2–4], atmospheric
blockages, the zonal winds in climate change [5], the red dots in the atmosphere of Jupiter,
etc. [6]. In recent years, Rossby waves have been discovered in sundial highlights [7], which
has greatly aroused interest in Rossby waves in the solar atmosphere. Therefore, the study
of Rossby waves still has great theoretical significance and potential application value.

Nonlinear equations can be used to describe various nonlinear fluctuations. Typically,
the classical solitary wave theory is used to characterize the Korteweg-de Vries (KdV)
equation, and this has long been used for the KdV equation to describe Rossby waves in
a single-layer barotropic fluid; this laid a solid foundation for future research [8]. Next,
many scholars tried to describe the solitary waves by using different equations, such as the
modified Korteweg-de Vries (mKdV) equation, the Zakharov-Kuznetsov (ZK) equation,
the Kadomtsev-Petviashvili(KP) equation, etc. [9–11], which led to the rapid development
of classical solitary wave theory. Luo studied nonlinear baroclinic Rossby waves based on
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the KdV equation and the mKdV equation, and the relationship between the baroclinic
Rossby wave and the baroclinic elliptic cosine wave was also obtained [12]. Both barotropic
waves and baroclinic waves may cause a change in sea surface height and weather. In order
to judge and predict the complex and changeable atmosphere or ocean more accurately,
baroclinic waves need to be considered, so many multilayer models for studying wave
propagation have been established. In this paper, we mainly consider the two-layer model.

Pedlosky first established the quasi-geostrophic vorticity conservation equation in
two-layer fluid motion and discussed the influence of physical factors, such as the β effect
and baroclinic instability on wave propagation [13]. Based on the study of Pedlosky,
Steinsaltz continued to consider the influence of topography on wave height [14,15]. Lou
obtained the exact solution and found the existence of multiple soliton solutions for this
equation based on the above equation [16,17]. The coupled nonlinear mKdV equations
and other coupled equations were used to describe Rossby waves, which led to the further
development of solitary wave theory [18]. It is noted that the above equations are all
based on the original model of upper-lower coherent structures. The influence of baroclinic
waves can not be ignored in the two-layer model. Luo analyzed this and stated that a
barotropic wave and two barotropic waves would have a three-wave resonance, and noted
the total energy conservation in the interaction process by introducing the barotropic wave
flow function into the above quasi-geostroic vorticity conservation equation [19]. Zhang
established the coupled KdV equations for barotropic-baroclinic coherent structures by
using this method and analyzed the influence of various physical factors on the amplitude
of the baroclinic flow function [20,21]. As is known to all, the higher-order models can
describe various nonlinear phenomena more accurately under the same conditions. In
this paper, a high-order coupling equation is deduced based on the above-mentioned
two-layer quasi-geostrophic model using a barotropic and baroclinic coherent structure,
which is unprecedented as far as we know. All the above models are based on the zonal
area, which obviously ignores the objective factor that the Earth is a constantly rotating
sphere. Therefore, the establishment of a barotropic-baroclinic coherent structure model
under a rotating fluid in this paper is extremely reasonable and novel.

In recent years, scholars have pay more and more attention to the study of higher-order
models. Ichikawa studied the role of higher-order terms in the simplified perturbation
method [22,23]. Ito proposed the extension of KdV (mKdV)-type nonlinear equations to
several higher-order methods and obtained multi-soliton solutions for higher-order equa-
tions [24]. Grimshaw derived the higher-order KdV equation to describe internal solitary
waves, noting that all the coefficients of the equation were in the integral form and were
clearly obtained according to the parameters of the model [25]. Aly and Biswas conducted
much work on the analytical solutions of nonlinear partial differential equations [26,27].
However, most problems in the past have described wave propagation in terms of a single
higher-order equation or a system of lower-order equations, and systems of higher-order
equations have rarely been addressed. In this paper, the propagation of Rossby waves with
a barotropic-barotropic coherent structure in the polar co-ordinate system will be described
by higher-order KdV equations.

The study of nonlinear problems has concerned many scholars. One of the most
important tasks is to find the solutions to nonlinear equations (systems). The common
solution methods are the exp function method, the homogeneous balance method, the
Jacobi elliptic function expansion method, Darboux transformation, etc. [28–31]. Lie
symmetry and conservation laws also occupy an important place in the study of nonlinear
equations [32–34]. Lie symmetry plays an important role in obtaining the solution of
the equation and can transform the known solution into other solutions, which is of
great significance for solving more complex partial differential problems. The nature of
conservation laws is derived from symmetry. Noether’s theorem states that there is some
important correspondence between Lie symmetry and conservation laws; that is, every
symmetry corresponds to a conservation law. Conversely, for every conservation law, there
must be a symmetry. The physical properties of the equation can be better described by
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conservation laws, and conservation laws are equally important to the integrity of the
equation and the linearization of nonlinear problems.

In this paper, the amplitude evolution of Rossby waves with barotropic-baroclinic
coherent structures is studied by deriving the fifth-order coupled KdV-mKdV equations
in polar co-ordinates. In Section 2, a quasi-geotropic potential vorticity equation with
barotropic-baroclinic interaction in a polar co-ordinate system is derived by introducing the
barotropic flow function and the baroclinic flow function. In the following, based on the
method of scale analysis and perturbation expansion, the coupled fifth-order KdV-mKdV
equations for describing barotropic and barotropic Rossby waves in polar co-ordinates
are derived for the first time. In Section 3, the Lie symmetry and conservation laws of
the above newly deduced equations are discussed. In Section 4, the soliton and periodic
solutions of the newly obtained equation are obtained, combining the Jacobian elliptic
function expansion method. In Section 5, we discuss the influence of the higher-order effect,
time, and wave number on the amplitude of barotropic and baroclinic Rosby waves. In
addition, we also discuss the changes in barotropic wave amplitude and baroclinic wave
amplitude with time. Finally, the conclusions of this paper are given.

2. Establishment of the Coherent Structure Model and the Fifth-Order Coupled
KdV-mKdV Equations in Polar Co-Ordinates

In the past, the models have basically concentrated on the single-layer positive pressure
quasi-geostrophic model. In recent years, many scholars have paid more attention to the
two-layer or multilayer model to study the propagation and evolution of Rossby waves.
It should be noted that baroclinic fluid also has important research value for the ocean
atmosphere, so it is necessary to study the barotropic and baroclinic interaction model. Next,
we will establish a two-layer quasi-geostrophic model with a barotropic and baroclinic
coherent structure in rotating fluids.

2.1. The Coherent Structure Model

In this paper, the two-layer quasi-geotropic potential vorticity equations (of equal
depth) under the β effect in polar co-ordinates are considered as

[
∂

∂t
+

(
1
r

∂ψ1

∂r
∂

∂θ
− 1
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∂ψ1

∂θ

∂
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)][
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∂r

(
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∂ψ1
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)
+
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∂
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β

r
∂ψ2
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(1)

with β effect

β = −d f
dz

= −2ω

a
cos ϕ0, (2)

where a represents the Earth’s radius, ω is the rotational angular velocity of the Earth, and
ϕ0 represents latitude, respectively. In polar co-ordinates (r, θ), r pointing to the lower
dimension is positive and θ counterclockwise is positive. ψ1 and ψ2 represent the flow
function of the upper and lower fluids, respectively. F is the weak coupling coefficient
between two layers of the fluid.

The boundary conditions of Equation (1) are

ψ1(r) = ψ2(r) = 0, r = r1, r2. (3)

In order to have a better understanding of the nonlinear barotropic-baroclinic coherent
structure, the barotropic flow function ψB and the baroclinic flow function ψT are here
introduced. The specific forms of ψB and ψT are as follows:ψB =

1
2
(ψ1 + ψ2),

ψT = ψ1 − ψ2.
(4)
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Thus, the new representation of the upper and lower laminar flow functions ψi(i = 1, 2)
is as follows: 

ψ1 = ψB +
1
2

ψT ,

ψ2 = ψB −
1
2

ψT .
(5)

Upon substituting Equation (5) into Equation (1), we obtain
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(6)

When compared with previous models, this model can describe Rossby waves more
accurately, which is more suitable for the actual complex and changeable marine environ-
ment. Based on Equation (6), we will deduce the fifth-order coupled KdV-mKdV equations
with barotropic-baroclinic coherent structures in the polar co-ordinate system, and we
consider the effect of higher-order terms.

2.2. Derivation of the Third-Order Coupled KdV Equations

We suppose the total flow function satisfies{
ψB = ϕB0(r) + εϕB(r, θ, t),

ψT = εϕT0(t) + εϕT(r, θ, t),
(7)

where ε is a small parameter, ϕB0 and ϕT0 are functions of r only. In particular, ϕB0

represents the basic background fluid of the barotropic flow, and ϕT0 represents the basic
background fluid of the baroclinic flow. ϕB and ϕT are the perturbed flow functions,
describing barotropic and baroclinic fluids.

The substitution of Equation (7) into Equation (6) gives
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(8)

Generally, the nonlinear equation cannot be treated analytically. Therefore, the multi-
scale analysis and the perturbation expansion method are applicable. Firstly, we introduce
the following slow stretch co-ordinates:

ξ = ε(θ − ct), τ1 = ε3t, τ2 = ε4t, τ3 = ε5t, . . . (9)

where ξ, τ1, τ2, τ3, . . . are the slow stretch co-ordinates, and c is a constant.
Hence,

∂

∂θ
= ε

∂

∂ξ
,

∂

∂t
= −cε

∂

∂ξ
+ ε3 ∂

∂τ1
+ ε4 ∂

∂τ2
+ ε5 ∂

∂τ3
+ . . . . (10)

Next, we introduce the following perturbation expansions:{
ϕB = εϕB1 + ε2 ϕB2 + ε3 ϕB3 + . . . ,

ϕT = εϕT1 + ε2 ϕT2 + ε3 ϕT3 + . . . ,
(11)

When substituting Equations (10) and (11) into Equation (8) and collecting the same
order of ε , the system of equations are obtained as follows:

ε2 :

{
L1 ϕB1 = 0,

L2 ϕT1 = 0,
(12)
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∂

∂ξ
(

∂ϕT1

∂r
) +

∂

∂ξ
(

∂2 ϕT1

∂r2 )] +
1
r

∂ϕB1

∂ξ
[− 1

r2
∂ϕT1

∂r
+

1
r

∂2 ϕT1

∂r2 +
∂3 ϕT1

∂r3 − 2F
∂ϕT1

∂r
] +

1
r

∂ϕB2

∂ξ
[− 1

r2
∂ϕT0

∂r
+

1
r

∂2 ϕT0

∂r2 +

∂3 ϕT0

∂r3 ]− 1
r

∂ϕT0

∂r
[
1
r

∂

∂ξ
(

∂ϕB2

∂r
) +

∂

∂ξ
(

∂2 ϕB2

∂r2 )] +
1
r

∂ϕT1

∂ξ
[

− 1
r2

∂ϕB1

∂r
+

1
r

∂2 ϕB1

∂r2 +
∂3 ϕB1

∂r3 ],

(15)

with the boundary conditions

ϕB1 = ϕT1 = ϕB2 = ϕT2 = · · · = 0, r = r1, r2. (16)
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When considering the lowest order, we find that Equation (12) is governed by ϕB1 , ϕT1 .
Thus, it is feasible to introduce the following separable solutions:{

ϕB1 = A1(ξ, τ)M1(r),

ϕT1 = B1(ξ, τ)N1(r),
(17)

where M1(r1) = M1(r2) = N1(r1) = N1(r2) = 0 .
Substituting Equation (17) into Equation (12) gives

∂2M1

∂r2 +
1
r

∂M1

∂r
+ [β− q(r)](

∂ϕB0

∂r
− cr)−1M1 = 0,

∂2N1

∂r2 +
1
r

∂N1

∂r
+ [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1N1 = 0.

(18)

The solutions to Equation (14) are assumed to be{
ϕB2 = A2(ξ, τ)M2(r),

ϕT2 = B2(ξ, τ)N2(r),
(19)

where M2(r1) = M2(r2) = N2(r1) = N2(r2) = 0 .
Upon substituting Equations (17) and (19) into Equation (14), we obtain{

A2 = B1,

B2 = A1,
(20)

and 

∂2M2

∂r2 +
1
r

∂M2

∂r
+ [β− q(r)](

∂ϕB0

∂r
− cr)−1M2 +

1
4

∂ϕT0

∂r

(
∂ϕB0

∂r
− cr)−1(

1
r

∂N1

∂r
+

∂2N1

∂r2 − F)− 1
4

N1 p(r)(
∂ϕB0

∂r
− cr)−1 = 0,

∂2N2

∂r2 +
1
r

∂N2

∂r
+ [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1N1+

∂ϕT0

∂r
(

∂ϕB0

∂r
− cr)−1(

1
r

∂M1

∂r
+

∂2M1

∂r2 )−M1 p(r)(
∂ϕB0

∂r
− cr)−1 = 0,

(21)

where p(r) = − 1
r2

∂ϕT0
∂r + 1

r
∂2 ϕT0

∂r2 +
∂3 ϕT0

∂r3 − 2F
∂ϕT0

∂r ,q(r) = − 1
r2

∂ϕB0
∂r + 1

r
∂2 ϕB0

∂r2 +
∂3 ϕB0

∂r3 .

Equation (8) combined with Equation (10) can be represented by the following form:
L1

∂ϕB
∂ξ

= F,

L2
∂ϕT
∂ξ

= G,
(22)

(see Appendix A for details of F, G).
The compatibility conditions for problem (22) with the boundary conditions (16) are

∫ r2

r1

FM1dr =
∫ r2

r1

L1M1
∂ϕB
∂ξ

dr = 0,∫ r2

r1

GN1dr =
∫ r2

r1

L2N1
∂ϕT
∂ξ

dr = 0.
(23)
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For a combination of the compatibility conditions (23) at O(ε4), Equations (17) and (19)
generate the following equation:

∂A1

∂τ1
+ α1

∂A1

∂ξ
+ α2 A1

∂A1

∂ξ
+ α3B1

∂B1

∂ξ
+ α4

∂3 A1

∂ξ3 = 0,

∂B1

∂τ1
+ β1

∂B1

∂ξ
+ β2 A1

∂B1

∂ξ
+ β3B1

∂A1

∂ξ
+ β4

∂3B1

∂ξ3 = 0.
(24)

Equation (24) is a KdV-like equation describing the amplitude evolution of Rossby
waves with the barotropic-baroclinic interaction of a two-layer rotating fluid with equal
depths. This is the first time that Rossby wave propagation under a baroclinic coherent
structure has been considered in the polar co-ordinate system. When we consider the plane
co-ordinate system, the equation can be found in Zhang (2020) [20]. It is worth noting that
Equation (24) is in the moving co-ordinate system. By using Equation (10), we can get the
following equations in the fixed co-ordinate system.

∂A1

∂t
+ c

∂A1

∂θ
+ ε2(α1

∂A1

∂θ
+ α2 A1

∂A1

∂θ
+ α3B1

∂B1

∂θ
+ α4

∂3 A1

∂θ3 ) = 0,

∂B1

∂t
+ c

∂B1

∂θ
+ ε2(β1

∂B1

∂θ
+ β2 A1

∂B1

∂θ
+ β3B1

∂A1

∂θ
+ β4

∂3B1

∂θ3 ) = 0.
(25)

Many scholars have found that all kinds of nonlinear physical phenomena can not
be described by a single or a set of low-order equations in nature. Therefore, the study of
higher-order equations and higher-order terms is necessary. We will derive higher-order
equations in order to describe the propagation of barotropic and baroclinic Rossby waves
more truthfully and more accurately in a two-layer rotating fluid.

2.3. Derivation of the Fifth-Order Coupled KdV-mKdV Equations

We further set the solutions of Equation (15) as
ϕB3 = I1(r)A1 + I2(r)A2

1 + I3(r)B2
1 + I4(r)

∂2 A1

∂ξ2 ,

ϕT3 = J1(r)B1 + J2(r)A1B1 + J3(r)
∂2B1

∂ξ2 .
(26)

where I1, I2, I3, I4, J1, J2 and J3 should satisfy

∂2 I1

∂r2 =− 1
r

∂I1

∂r
− [β− q(r)](

∂ϕB0

∂r
− cr)−1 I1 + r(

∂ϕB0

∂r
− cr)−1[α1(

1
r

∂M1

∂r
+

∂2M1

∂r2 )− 1
4r

∂ϕT0

∂r
(

1
r

∂N2

∂r
+

∂2N2

∂r2 − 2FN2) +
1
4r

N2 p(r)],

∂2 I2

∂r2 =− 1
r

∂I2

∂r
− [β− q(r)](

∂ϕB0

∂r
− cr)−1 I2 +

1
2

r(
∂ϕB0

∂r
− cr)−1[(α2−

1
r

∂M1

∂r
)(

1
r

∂M1

∂r
+

∂2M1

∂r2 ) +
1
r

M1(−
1
r2

∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )],

∂2 I3

∂r2 =− 1
r

∂I3

∂r
− [β− q(r)](

∂ϕB0

∂r
− cr)−1 I3 +

1
2

r(
∂ϕB0

∂r
− cr)−1[

α3(
1
r

∂M1

∂r
+

∂2M1

∂r2 )− 1
4r

∂N2

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1) +
1
4r

N1(−

1
r2

∂N1

∂r
+

1
r

∂2N1

∂r2 +
∂3N1

∂r3 − 2F
∂N1

∂r
)],

∂2 I4

∂r2 =− 1
r

∂I4

∂r
− [β− q(r)](

∂ϕB0

∂r
− cr)−1 I4 + r(

∂ϕB0

∂r
− cr)−1[α4(

1
r

∂M1

∂r
+

cM1
r2 −

M1

r3
∂ϕB0

∂r
],

(27)
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and 

∂2 J1

∂r2 =− 1
r

∂J1

∂r
− [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1 J1+

r(
∂ϕB0

∂r
− cr)−1[β1(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
1
r

∂ϕT0

∂r
(

1
r

∂M2

∂r
+

∂2M2

∂r2 ) +
1
r

M2 p(r)],

∂2 J2

∂r2 =− 1
r

∂J2

∂r
− [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1 J2+

r(
∂ϕB0

∂r
− cr)−1[β2(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
1
r

∂M1

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1) +
1
r

N1(−
1
r2

∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 ],

∂2 J3

∂r2 =− 1
r

∂J3

∂r
− [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1 J3+

r(
∂ϕB0

∂r
− cr)−1[β3(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
c
r2 N1 −

1
r3

∂ϕB0

∂r
N1].

(28)

In order to describe the propagation of barotropic and baroclinic Rossby waves more
truthfully and more accurately, the next order of ε needs to be considered. Equation (8) at
O(ε5) can be expressed as follows:

ε5 :

{
L1 ϕB4 = F11,

L2 ϕT4 = F21,
(29)

(see Appendix A for details of F11, F21).
By substituting Equations (17), (19), and (26) into Equation (29), and by considering

the compatibility conditions (23), we obtain
∂A1

∂τ2
+ α5

∂B1

∂ξ
+ α6

∂A1B1

∂ξ
+ α7

∂3B1

∂ξ3 = 0,

∂B1

∂τ2
+ β5

∂A1

∂ξ
+ β6 A1

∂A1

∂ξ
+ β7B1

∂B1

∂ξ
+ β8

∂3 A1

∂ξ3 = 0.
(30)

The solutions to Equation (29) can be assumed as
ϕB4 = I5(r)B1 + I6(r)A1B1 + I7(r)

∂2B1

∂ξ2 ,

ϕT4 = J4(r)A1 + J5(r)A2
1 + J6(r)B2

1 + J7(r)
∂2 A1

∂ξ2 .
(31)

where I5, I6, I7, J4, J5, J6 and J7 should satisfy
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∂2 I5

∂r2 =− 1
r

∂I5

∂r
− [β− q(r)](

∂ϕB0

∂r
− cr)−1 I5 + r(

∂ϕB0

∂r
− cr)−1[β1(

1
r

∂M2

∂r
+

∂2M2

∂r2 ) + α5(
1
r

∂M1

∂r
+

∂2M1

∂r2 )− 1
4r

∂ϕT0

∂r
(

1
r

∂J1

∂r
+

∂2 J1

∂r2 − 2FJ1)+

1
4r

J1 p(r)],

∂2 I6

∂r2 =− 1
r

∂I6

∂r
− [β− q(r)](

∂ϕB0

∂r
− cr)−1 I6 + r(

∂ϕB0

∂r
− cr)−1[2(β2−

1
r

∂M1

∂r
)(

1
r

∂M2

∂r
+

∂2M2

∂r2 )− 1
2r

∂N2

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)+

2
r

M2(−
1
r2

∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 ) +
1
2r

N1(−
1
r2

∂N2

∂r
+

1
r

∂2N2

∂r2 +

∂3N22
∂r3 − F

∂N2

∂r
)] + r(

∂ϕB0

∂r
− cr)−1[α6(

1
r

∂M1

∂r
+

∂2M1

∂r2 )−

1
4r

∂ϕT0

∂r
(

1
r

∂J2

∂r
+

∂2 J2

∂r2 − 2FJ2) +
1
4r

J2 p(r)],

∂2 I7

∂r2 =− 1
r

∂I7

∂r
− [β− q(r)](

∂ϕB0

∂r
− cr)−1 I7 + r(

∂ϕB0

∂r
− cr)−1[β4(

1
r

∂M2

∂r
+

∂2M2

∂r2 ) + α7(
1
r

∂M1

∂r
+

∂2M1

∂r2 )− 1
4r

∂ϕT0

∂r
(

1
r

∂J3

∂r
+

∂2 J3

∂r2 − 2FJ3+

1
r2 N1) +

1
4r

N1(−
1
r2

∂N1

∂r
+

1
r

∂2N1

∂r2 +
cM2

r2 −
M2

r3
∂ϕT0

∂r
+

1
4r

J3 p(r)],

(32)

and 

∂2 J4

∂r2 =− 1
r

∂J4

∂r
− [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1 J4+

r(
∂ϕB0

∂r
− cr)−1[α1(

1
r

∂N2

∂r
+

∂2N2

∂r2 − 2FN2) + β5(
1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
1
r

∂ϕT0

∂r
(

1
r

∂I1

∂r
+

∂2 I1

∂r2 ) +
1
r

I1 p(r)],

∂2 J5

∂r2 =− 1
r

∂J5

∂r
− [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1 J5+

1
2

r(
∂ϕB0

∂r
− cr)−1[(α2 −

1
r

∂M1

∂r
)(

1
r

∂N2

∂r
+

∂2N2

∂r2 − 2FN2)+

β6(
1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
1
r

∂N2

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 ) +
1
r

M1(

− 1
r2

∂N2

∂r
+

1
r

∂2N2

∂r2 +
∂3N2

∂r3 − 2F
∂N2

∂r
) +

1
r

N2(−
1
r2

∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )− 2
r

∂ϕT0

∂r
(

1
r

∂I2

∂r
+

∂2 I2

∂r2 ) +
2
r

I2 p(r)],

∂2 J6

∂r2 =− 1
r

∂J6

∂r
− [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1 J6+

1
2

r(
∂ϕB0

∂r
− cr)−1[α3(

1
r

∂N2

∂r
+

∂2N2

∂r2 − 2FN2) + β7(
1
r

∂N1

∂r
+

∂2N1

∂r2

− 2FN1)−
1
r

∂M2

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
1
r

∂N1

∂r
(

1
r

∂M2

∂r
+

∂2M2

∂r2 ) +
1
r

M2(−
1
r2

∂N1

∂r
+

1
r

∂2N1

∂r2 +
∂3N1

∂r3 − 2F
∂N1

∂r
) +

1
r

N1(

− 1
r2

∂M2

∂r
+

1
r

∂2M2

∂r2 +
∂3M2

∂r3 )− 2
r

∂ϕT0

∂r
(

1
r

∂I3

∂r
+

∂2 I3

∂r2 ) +
2
r

I3 p(r)],

∂2 J7

∂r2 =
1
r

∂J7

∂r
+ [2cFr− 2F

∂ϕB0

∂r
+ β− q(r)](

∂ϕB0

∂r
− cr)−1 J7+

r(
∂ϕB0

∂r
− cr)−1[α4(

1
r

∂N2

∂r
+

∂2N2

∂r2 − 2FN2) + β8(
1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
1
r

∂ϕT0

∂r
(

1
r

∂I4

∂r
+

∂2 I4

∂r2 +
M1

r2 )+

1
r

I4 p(r) +
c
r2 N2 −

1
r3

∂ϕB0

∂r
N2].

(33)
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Unfortunately, Equation (29) does not describe the evolution of either the barotropic
fluid or the baroclinic fluid, so we need to move onto the next order of Equation (8).

ε6 :

{
L1 ϕB5 = F12,

L2 ϕT5 = F22,
(34)

(see Appendix A for details of F12, F22).
By substituting Equations (17), (19), (26), and (31) into Equation (34) and by consid-

ering the compatibility conditions (23), the coupled KdV-mKdV equations describing the
evolution of Rossby waves in barotropic-baroclinic coherent structures are obtained for a
moving co-ordinate system.

∂A1

∂τ3
+ α8

∂A1

∂ξ
+ α9 A1

∂A1

∂ξ
+ α10B1

∂B1

∂ξ
+ α11 A2

1
∂A1

∂ξ
+ α12B2

1
∂A1

∂ξ
+

α13 A1B1
∂B1

∂ξ
+ α14

∂2 A1

∂ξ2
∂A1

∂ξ
+ α15

∂2B1

∂ξ2
∂B1

∂ξ
+ α16

∂3 A1

∂ξ3 + α17 A1
∂3 A1

∂ξ3

+ α18B1
∂3B1

∂ξ3 + α19
∂5 A1

∂ξ5 = 0,

∂B1

∂τ3
+ β9

∂B1

∂ξ
+ β10 A1

∂B1

∂ξ
+ β11B1

∂A1

∂ξ
+ β12 A2

1
∂B1

∂ξ
+ β13B2

1
∂B1

∂ξ
+

β14 A1B1
∂A1

∂ξ
+ β15

∂2 A1

∂ξ2
∂B1

∂ξ
+ β16

∂2B1

∂ξ2
∂A1

∂ξ
+ β17

∂3B1

∂ξ3 + β18 A1
∂3B1

∂ξ3

+ β19B1
∂3 A1

∂ξ3 + β20
∂5B1

∂ξ5 = 0,

(35)

where the coefficients αi(i = 1, . . . , 19) and βi(i = 1, . . . , 20) of the coupled equations are
shown in Appendix A.

Then, by using Equations (10), (24), and (30), the same equations are obtained for the
fixed co-ordinate system.

∂A1

∂t
+ c

∂A1

∂θ
+ ε2(α1

∂A1

∂θ
+ α2 A1

∂A1

∂θ
+ α4

∂3 A1

∂θ3 + α3B1
∂B1

∂θ
) + ε3(α5

∂B1

∂θ

+ α6 A1
∂B1

∂θ
+ α6B1

∂A1

∂θ
+ α7

∂3B1

∂θ3 ) + ε4(α8
∂A1

∂θ
+ α9 A1

∂A1

∂θ
α11 A2

1
∂A1

∂θ

+ α14
∂2 A1

∂θ2
∂A1

∂θ
+ α16

∂3 A1

∂θ3 + α17 A1
∂3 A1

∂θ3 + α19
∂5 A1

∂θ5 + α10B1
∂B1

∂θ
+

α12B2
1

∂A1

∂θ
+ α13 A1B1

∂B1

∂θ
+ α15

∂2B1

∂θ2
∂B1

∂θ
) = 0,

∂B1

∂t
+ c

∂B1

∂θ
+ ε2(β1

∂B1

∂θ
+ β2 A1

∂B1

∂θ
+ β4

∂3B1

∂θ3 + β3B1
∂A1

∂θ
) + ε3(β5

∂A1

∂θ

+ β6 A1
∂A1

∂θ
+ β7B1

∂B1

∂θ
+ β8

∂3 A1

∂θ3 ) + ε4(β9
∂B1

∂θ
+ β10 A1

∂B1

∂θ
β12 A2

1
∂B1

∂θ

+ β15
∂2 A1

∂θ2
∂B1

∂θ
+ β17

∂3B1

∂θ3 + β18 A1
∂3B1

∂θ3 + β20
∂5B1

∂θ5 + β11B1
∂A1

∂θ
+

β13B2
1

∂B1

∂θ
+ β14 A1B1

∂A1

∂θ
+ β16

∂2B1

∂θ2
∂A1

∂θ
) = 0.

(36)

Equation (36) depicts the amplitude of the propagation of the barotropic and baroclinic
Rossby waves in polar co-ordinates more accurately, and these are new equations that
have never been derived; we call them the fifth-order coupled KdV-mKdV equations. This
should be the first time that the fifth-order coupled KdV-mKdV equations are used to
simulate the evolution of barotropic and baroclinic Rossby waves, and this is also the first
time that this has been considered in the polar co-ordinates. In particular, for when B1 = 0,
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the first expression in Equation (36), becomes a fifth-order KdV equation. This model can
be found in the work by R Grimshaw (2001) [25].

The β effect and the basic background flow are indispensable in the generation of
barotropic and baroclinic Bossby waves. In fact, the depth of the upper and lower fluids
also affects Rossby wave amplitude. But in this paper, the depth of the upper and lower
are assumed to be the same. In the next article, we will consider the higher-order coupled
Boussinesq equations describing Rossby waves with unequal depths. From Equation (36),
we can clearly observe the effect of barotropic and baroclinic interactions on Rossby wave
amplitude. Specifically, whether barobaric-baroclinic interaction, baroclinic-baroclinic inter-
action, or baroclinic-baroclinic interaction controls the propagation of barotropic Rossby
and baroclinic Rossby wave amplitudes. However, we find that the barotropic-baroclinic
interaction has a stronger effect on the propagation of baroclinic Rossby wave amplitudes.
The barotropic-baroclinic interaction has an effect on baroclinic flow propagation in the
higher-order equations, and the barotropic-baroclinic flow propagation has an effect on
baroclinic flow propagation, which is not described in the lower-order coupling equations.
By using the fifth-order coupled KdV-mKdV equations in polar co-ordinates, we obtain
more information about the effects of baroclinic interactions on barotropic and baroclinic
Rossby wave propagation when compared to the lower-order coupled equations. Therefore,
the derivation of higher-order equations has very important theoretical significance and
research value.

3. Conservation Laws of the Fifth-Order Coupled KdV-mKdV Equations in
Polar Co-Ordinates

In Section 2, we obtained the fifth-order coupled KdV-mKdV equations in polar co-
ordinates, and the conservation law of this fifth-order coupled KdV-mKdV equations have
never been studied before. Therefore, it is of great theoretical significance and potential
application value to study it.

3.1. Lie Symmetry Analysis

Firstly, the group of one-parameter Lie transformations is considered as follows:
θ∗ = θ + ερ1(θ, t, A1.B1) + O(ε2),

t∗ = t + ερ2(θ, t, A1.B1) + O(ε2),

A∗1 = A1 + εη1(θ, t, A1.B1) + O(ε2),

B∗1 = B1 + εη2(θ, t, A1.B1) + O(ε2),

(37)

where ε is a group parameter, and ρ1, ρ2, η1, η2 are infinitesimal functions. The correspond-
ing infinitesimal generator V of the Lie algebra can be expressed as

V = ρ1
∂

∂θ
+ ρ2

∂

∂t
+ η1

∂

∂A1
+ η2

∂

∂B1
. (38)

According to the infinitesimal transformation, the invariance of the fifth-order coupled
KdV-mKdV contributes to the following invariance condition:{

Pr(5)V(∆1)|∆1=0 = 0,

Pr(5)V(∆2)|∆2=0 = 0,
(39)
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Pr(5)V is a fifth-order continuation of V in the following form:

Pr(5)V =V + ηt
1

∂

∂A1t
+ ηt

2
∂

∂B1t
+ ηθ

1
∂

∂A1θ
+ ηθ

2
∂

∂B2θ
+ ηθθ

1
∂

∂A1θθ
+ ηθθ

2
∂

∂B2θθ

+ ηθθθ
1

∂

∂A1θθθ
+ ηθθθ

2
∂

∂B2θθθ
+ ηθθθθ

1
∂

∂A1θθθθ
+ ηθθθθ

2
∂

∂B2θθθθ
+

ηθθθθθ
1

∂

∂A1θθθθθ
+ ηθθθθθ

2
∂

∂B2θθθθθ
,

(40)

where ∆1, ∆2 (see Appendix A for details).
The specific expression of ηt

1, ηt
2, ηθ

1 , ηθ
2 , ηθθ

1 , ηθθ
2 , ηθθθ

1 , ηθθθ
2 , ηθθθθ

1 , ηθθθθ
2 , . . . is given by

ηt
1 = Dt(η1)− A1θ Dt(ρ1)− A1tDt(ρ2),

ηt
2 = Dt(η2)− B1θ Dt(ρ1)− B1tDt(ρ2),

ηθ
1 = Dθ(η1)− A1θ Dθ(ρ1)− A1tDθ(ρ2),

ηθ
2 = Dθ(η2)− B1θ Dθ(ρ1)− B1tDθ(ρ2),

ηθθ
1 = Dθ(η

θ
1)− A1θθ Dθ(ρ1)− A1tθ Dθ(ρ2),

ηθθ
2 = Dθ(η

θ
2)− B1θθ Dθ(ρ1)− B1tθ Dθ(ρ2),

ηθθθ
1 = Dθ(η

θθ
1 )− A1θθθ Dθ(ρ1)− A1tθθ Dθ(ρ2),

ηθθθ
2 = Dθ(η

θθ
2 )− B1θθθ Dθ(ρ1)− B1tθθ Dθ(ρ2),

. . . . . .

(41)

where Dt and Dθ are the total derivative operators, which are defined as

Dt =
∂

∂t
+ A1t

∂

∂A1
+ B1t

∂

∂B1
+ A1θt

∂

∂A1θ
+ A1tt

∂

∂A1t
+ B1θt

∂

∂B1θ
+

B1tt
∂

∂B1t
+ . . . ,

Dθ =
∂

∂θ
+ A1θ

∂

∂A1
+ B1θ

∂

∂B1
+ A1θθ

∂

∂A1θ
+ A1tθ

∂

∂A1t
+ B1θθ

∂

∂B1θ
+

B1tθ
∂

∂B1t
+ A1θθθ

∂

∂A1θθ
+ A1tθθ

∂

∂A1tθ
+ A1θtt

∂

∂A1tt
+ . . . .

(42)

The sufficient conditions for Equation (39) to hold are

ηt
1 + (a1 A1θ + a2 A1 A1θ + a3 A1θθθ + a4B1θ + a5B1B1θ)η1 + (a6 + a7 A1+

a8 A2
1 + a9 A1θθ + a10B1 + a11B2

1)η
θ
1 + a12 A1θηθθ

1 + (a13 + a14 A1)η
θθθ
1 +

a15ηθθθθθ
1 + (a16 A1θ + a17B1θ + a18B1 A1θ + a19 A1B1θ)η2 + (a20+

a21 A1 + a22B1 + a23 A1B1 + a24B1θθ)η
θ
2 + a25B1θηθθ

2 + a26ηθθθ
2 = 0,

ηt
2 + (b1 A1θ + b2 A1θ + b3B1B1θ + b4 A1 A1θ)η2 + (b5 + b6 A1 + b7 A2

1+

b8 A1θθ + b9B1 + b10B2
1)η

θ
2 + b11 A1θηθθ

2 + (b12 + b13 A1)η
θθθ
2 + b14ηθθθθθ

2 +

(b15B1θ + b16 A1θ + b17 A1B1θ + b18B1 A1θ + b19B1θθθ)η1 + (b20 + b21 A1+

b22B1 + b23 A1B1 + b24B1θθ)η
θ
1 + b25B1θηθθ

1 + b26ηθθθ
1 = 0,

(43)

where the coefficients ai(i = 1, . . . , 26) and bj(j = 1, . . . , 26) in the coupled equations are
shown in Appendix A.
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By substituting Equations (41) and (42) into Equation (43) when a1 = a16 = 0 by let-
ting the coefficient of 1, A1, A1B1, A2

1 A1θ , A2
1B1θ , A1B1B1θ , B1θθ , B1 A2

1θ , A2
1 A1θ A1t, A2

1 A2
1θθθ ,

A2
1 A1θθθ B1θθθ , A1θθθθθ , B1θθθθθ be zero, we can obtain

ρ1A1 = ρ1B1 = ρ1t = ρ2A1 = ρ2B1 = ρ2θ = 0,

η1t = η1θ = η1B1 = η2t = η2θ = η2A1 = 0,

ρ1θ = ρ2t = η1A1 = η2B1 = c1.

(44)

Thus, 
ρ1 = c1θ + c2,

ρ2 = c1t + c3,

η1 = c1 A1 + c4,

η1 = c1B1 + c5,

(45)

where c1, c2, c3, c4, c5 are arbitrary constants.
Therefore, the generating elements of Equation (36) are

V1 =
∂

∂θ
,

V2 =
∂

∂t
,

V3 = θ
∂

∂θ
+ t

∂

∂t
+ A1

∂

∂A1
+ B1

∂

∂B1
.

(46)

3.2. Conservation Laws

Rewrite Equation (36) in the following form:

A1t + c1 A1θ + c2 A1 A1θ + c3 A1θθθ + c4 A2
1 A1θ + c5 A1θ A1θθ + c6 A1 A1θθθ+

c7 A1θθθθθ + c8B1θ + c9B1B1θ + c10 A1B1θ + c11B1 A1θ + c12B1θθθ+

c13B2
1 A1θ + c14 A1B1B1θ + c15B1θ B1θθ = 0,

B1t + d1B1θ + d2 A1B1θ + d3B1θθθ + d4 A2
1B1θ + d5B1θ A1θθ + d6 A1B1θθθ+

d7B1θθθθθ + d8 A1θ + d9B1 A1θ + d10 A1 A1θ + d11B1B1θ + d12 A1θθθ+

d13B2
1B1θ + d14 A1B1 A1θ + d15 A1θ B1θθ = 0,

(47)

where the coefficients ci(i = 1, . . . , 15) and dj(j = 1, . . . , 15) in the coupled equations are
shown in Appendix A.

The Lagrangian form of Equation (47) is

L =u(θ, t)(A1t + c1 A1θ + c2 A1 A1θ + c3 A1θθθ + c4 A2
1 A1θ + c5 A1θ A1θθθ+

c6 A1 A1θθθ + c7 A1θθθθθ + c8B1θ + c9B1B1θ + c10 A1B1θ + c11B1 A1θ+

c12B1θθθ + c13B2
1 A1θ + c14 A1B1B1θ + c15B1θ B1θθ) + v(θ, t)(B1t + d1B1θ+

d2 A1B1θ + d3B1θθθ + d4 A2
1B1θ + d5B1θ A1θθ + d6 A1B1θθθ + d7B1θθθθθ+

d8 A1θ + d9B1 A1θ + d10 A1 A1θ + d11B1B1θ + d12 A1θθθ + d13B2
1B1θ+

d14 A1B1 A1θ + d15 A1θ B1θθ),

(48)

where u(θ, t), v(θ, t) are new variables.
Consider the adjoint equation as follows:

F∗1 =
δL

δA1
= 0,

F∗2 =
δL
δB1

= 0,
(49)
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where δ
δA1

, δ
δB1

can be represented as



δ

δA1
=

∂

∂A1
− Dθ

∂

∂A1θ
− Dt

∂

∂A1t
+ Dθθ

∂

∂A1θθ
+ Dθt

∂

∂A1θθ
− Dθθθ

∂

∂A1θθθ
+

Dθθθθ
∂

∂A1θθθθ
− Dθθθθθ

∂

∂A1θθθθθ
,

δ

δB1
=

∂

∂B1
− Dθ

∂

∂B1θ
− Dt

∂

∂B1t
+ Dθθ

∂

∂B1θθ
+ Dθt

∂

∂B1θθ
− Dθθθ

∂

∂B1θθθ
+

Dθθθθ
∂

∂B1θθθθ
− Dθθθθθ

∂

∂B1θθθθθ
.

(50)

Therefore, Equation (49) can also be expressed as

F∗1 =− ut + (c10B1θ − c11B1 − c13B2
1 + c14B1B1θ)u− (c1 + c2 + c4 A2

1+

c5 A1θθ)uθ + c5 A1θuθθ − (c3 + c6 A1)uθθθ − c7uθθθθθ + (d2B1θ+

2d4 A1B1θ + d5B1θθθ + d6B1θθθ − d9B1θ − d14 A1B1θ − d15B1θθθ)v−
(d8 + d9B1 + d10 A1 + d14 A1B1 + d15B1θθθ)vθ + d5B1θvθθ − d12vθθθ ,

F∗2 =− vt − (d2 A1θ + 2d4 A1 A1θ + d5 A1θθθ + d6 A1θθθ − d9 A1θ − d14 A1 A1θ−
d15 A1θθθ)v− (d1 + d2 + d4 A2

1 + d5 A1θθ)vθ + d15 A1θvθθ − (d3+

d6 A1)vθθθ − d7vθθθθθ + (−c10 A1θ + c11 A1θ + 2c13B1 A1θ − c14B1 A1θ)u−
(c8 + c9B1 + c10 A1 + c14 A1B1 + c15B1θθθ)uθ + c15B1θuθθ − c12uθθθ .

(51)

According to the Lie characteristic function,{
W1 = A1 − θA1θ − tA1t,

W2 = B1 − θB1θ − tB1t,
(52)

the conserved vectors of the fifth-order coupled KdV-mKdV equations in polar co-ordinates
are expressed as

C1 =ρ1L + W1[
∂L

∂A1t
] + W2[

∂L
∂B1t

],

C2 =ρ2L + W1[
∂L

∂A1θ
− Dθ

∂L
∂A1θθ

+ Dθθ
∂L

∂A1θθθ
+ Dθθθθ

∂L
∂A1θθθθθ

]+

Dθ(W1)[
∂L

∂A1θθ
− Dθ

∂L
∂A1θθθ

− Dθθθ
∂L

∂A1θθθθθ
] + Dθθ(W1)[

∂L
∂A1θθθ

+

Dθθ
∂L

∂A1θθθθθ
] + Dθθθ(W1)[Dθ

∂L
∂A1θθθθθ

] + Dθθθθ(W1)[
∂L

∂A1θθθθθ
]+

W2[
∂L

∂B1θ
− Dθ

∂L
∂B1θθ

+ Dθθ
∂L

∂B1θθθ
+ Dθθθθ

∂L
∂B1θθθθθ

] + Dθ(W2)

[
∂L

∂B1θθ
− Dθ

∂L
∂B1θθθ

− Dθθθ
∂L

∂B1θθθθθ
] + Dθθ(W2)[

∂L
∂B1θθθ

+

Dθθ
∂L

∂B1θθθθθ
] + Dθθθ(W2)[Dθ

∂L
∂B1θθθθθ

] + Dθθθθ(W2)[
∂L

∂B1θθθθθ
].

(53)

Equation (46) is the Lie algebra of the point symmetries of the fifth-order coupled
KdV-mKdV equations, whereas Equation (53) is the conservation laws of the fifth-order
coupled KdV-mKdV equations. They are all obtained here first and have potential value
for physics and mathematical research.

4. The Solutions of the Fifth-Order Coupled KdV-mKdV Equations

It is necessary to study its solution for a new system of equations in order to have a
better understanding of the nonlinear problem. In this section, The solitary wave solutions
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of the fifth-order coupled KdV-mKdV equation are calculated by the Jacobian elliptic
function expansion method.

Firstly, the following traveling wave solutions are considered as

A1 = A1(ζ), B1 = B1(ζ), ζ = k(θ − ct), (54)

where k is the wave number, and c is the wave speed. Substituting Equation (54) into
Equation (47) leads to

− cA1ζ + c1 A1ζ + c2 A1 A1ζ + c3k2 A1ζζζ + c4 A2
1 A1ζ + c5k2 A1ζ A1ζζ+

c6k2 A1 A1ζζζ + c7k4 A1ζζζζζ + c8B1ζ + c9B1B1ζ + c10 A1B1ζ + c11B1 A1ζ+

c12k2B1ζζζ + c13B2
1 A1ζ + c14 A1B1B1ζ + c15k2B1ζ B1ζζ = 0,

− cB1ζ + d1B1ζ + d2 A1B1ζ + d3k2B1ζζζ + d4 A2
1B1ζ + d5k2B1ζ A1ζ+

d6 A1k2B1ζζζ + d7k4B1ζζζζζ + d8 A1ζ + d9B1 A1ζ + d10 A1 A1ζ + d11B1B1ζ+

d12k2 A1ζζζ + d13B2
1B1ζ + d14 A1B1 A1ζ + d15k2 A1ζ B1ζζ = 0.

(55)

We suppose n = 2 in order to balance the highest order derivative terms ∂5 A1
∂ζ5 , ∂5B1

∂ζ5 and
the nonlinear terms in Equation (55). Thus, A1(ζ) and B1(ζ) can be expressed as follows:{

A1(ζ) = m0 + m1snζ + m2sn2ζ,

B1(ζ) = n0 + n1snζ + n2sn2ζ.
(56)

Notice that
cn2ζ = 1− sn2ζ, dn2ζ = 1−m2sn2ζ. (57)

By substituting Equation (56) into Equation (55) and collecting the same order of snζ
and setting the polynomial coefficients to zero, we obtain

m1 = n1 = 0. (58)

The solutions of the fifth-order coupled KdV-mKdV equations are obtained.{
A1(ζ) = m0 + m2sn2ζ,

B1(ζ) = n0 + n2sn2ζ,
(59)

where m2 satisfies the following equation, which can be solved by Maple and is not
specifically expanded in this paper.

[c4 + (c13 + c14)a2]m2
2 + [(c5 + c6)k2m2 + (c13 + c14)a1 + 6c15k2m2a2]m2+

6c15k2m2 = 0,
(60)

and n2, m0, n0 can be represented by m2, as follows:

n2 =±

√
− 1

d13
(6d5 + 12d6 + 6d15)k2m2m2 −

1
d13

(d4 + d14)m2
2,

m0 =(
1

2c4d14m4
2 + 12c6d14k2m2m3

2 + [c14d14 − (2c13 + c14)(2d4 + d14)]m2
2n2

2

− 1
12d6k2m2(2c13 + c14)m2n2

2 + 2d13(2c13 + c14)m3
2n2

)(b f − ce),

n0 =(
1

2c4d14m4
2 + 12c6d14k2m2 + [c14d14 − (2c13 + c14)(2d4 + d14)]m2

2n2
2

− 1
12d6k2m2(2c13 + c14)m2n2

2 + 2d13(2c13 + c14)
)(cd− a f ),

(61)
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where the coefficients a, b, c, d, e, f are shown in Appendix A.
When m→ 1 and cnζ → sechζ, the solitary wave solution of Equation (47) is obtained.{

A1(ζ) = m0 + m2 + m2sech2ζ,

B1(ζ) = n0 + n2 + n2sech2ζ.
(62)

Furthermore, the approximate solutions for barotropic and baroclinic flow fields are
obtained as follows:{

ψB = ϕB0(r) + ε2M1(r){m0 + m2 + m2sech2[k(θ − ct)]},
ψT = ϕT0(r) + ε2N1(r){n0 + n2 + n2sech2[k(θ − ct)]}.

(63)

5. Evolution of Rossby Waves in Barotropic-Baroclinic Coherent Structures

Rosby waves are ubiquitous in the atmosphere and ocean, and large-scale weather
processes are influenced by them. Thus, the simulation and evolution of Rossby wave
amplitude is of great research significance for ocean and atmospheric science. In this
section, we will discuss the evolution of Rossby waves with barotropic-baroclinic coherent
structures. Firstly, the propagation of the barotropic Rossby wave amplitude will be
discussed.

By solving the Equation (60), we can obtain two solutions, and n2 also contains two
solutions. The two solutions of m2 are basically consistent with its corresponding Rossby
wave amplitude evolution, so we select m2 > 0 for the following research. Figure 1a
shows the propagation of the barotropic Rossby waves A1 where m2 > 0 and n2 > 0 in a
three-dimensional plane, and Figure 1b shows the propagation of the barotropic Rossby
waves A1 where m2 > 0 and n2 < 0 in a three-dimensional plane. The barotropic Rossby
waves can be excited under certain conditions.

(a) (b)

Figure 1. Evolution of the barotropic Rossby wave amplitude A1 with d3 = 50, ci = 1
(i = 1, 2, . . . , 15), dj = 1 (j = 1, 2, 4, . . . , 15), k = 1, m = 1, c = 5, and t = 0.

When taking d7 = c7 = 0, the higher-order terms vanish. In the following, the effect
of the higher-order terms on the barotropic Rossby wave will be considered. Figure 2
shows the propagation of the wave amplitude A1 when the higher-order effect is removed.
As shown in Figure 2, the wave width and amplitude are changed due to higher-order
nonlinearity and dispersion perturbation terms. Without higher-order terms, the wave
moves overall downward, and the wave width becomes narrower, which results in the
whole Rossby wave being steep. It can be seen that the solutions of the higher-order system
of equations are closer to the evolution of the real wave.
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Figure 2. Evolution of the barotropic Rossby wave amplitude A1 without high-order terms under the
same parameters.

As shown in Figures 3a,b, we discuss the effect of the wave number k with and without
higher-order terms. The amplitude A1 increases with the increase in k, whereas the wave
width decreases with the increase in k, which leads to the strengthening of the nonlinearity
of the Rossby waves. This k-induced trend does not change when the higher-order terms
vanish, but the change is more insignificant than the higher-order terms that exist.
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(a) (b)

Figure 3. Influence of wave number k.

Figure 4 shows that the absolute value of amplitude A1 of barotropic Rossby waves
gradually propagates eastward with time, and the waveform and wave speed do not change
during the propagation. The energy propagation process is not dissipated when friction
dissipation is not considered. So, the waveform and wave velocity remain unchanged,
which is consistent with the conclusion of this paper. Next, we will continue to discuss the
propagation of the baroclinic Rossby wave B1.

Figures 5a,b show the evolution of the amplitude of baroclinic Rossby waves B1 when
m2 > 0 and n2 > 0 and B1 when m2 > 0 and n2 < 0 in a three-dimensional plane. The
amplitudes of the waves are obviously different in these two cases. By taking Figure 5a as
an example, the influence of the higher-order term, the wave number k, and the time t are
considered below. By comparing Figures 1 and 5, we can clearly see that the amplitude
of the barotropic wave is higher than that of the baroclinic wave, and the wave shape is
sharper under the same conditions.
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Figure 4. The propagation of A1 with time t.

(a) (b)

Figure 5. Evolution of the barotropic Rossby wave amplitude B1 with d3 = 50, ci = 1
(i = 1, 2, . . . , 15), dj = 1 (j = 1, 2, 4, . . . , 15), k = 1, m = 1, c = 5, and t = 0.

Figure 6 depicts the evolution of the baroclinic wave amplitude B1 without the in-
fluence of higher-order terms in the three-dimensional, respectively. In the absence of
higher-order terms, the amplitude of the wave is increased, and the wave pattern becomes
steep. This conclusion is consistent with the change in barotropic Rossby waves.

Figure 6. Evolution of the barotropic Rossby wave amplitude B1 without high-order terms under the
same parameters.

Figure 7 shows the effect of the wave number k on the baroclinic amplitude B1. As
shown in Figure 7a, the amplitude of the wave increases with the increase in k, and the
width of the wave narrows when the higher-order terms are present and the other variables
are the same. Figure 7b shows that the evolution trend of baroclinic wave amplitude does
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not change when there are no higher-order terms, meaning that the higher-order action
disappears.
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Figure 7. Influence of wave number k.

Figure 8 shows that the time evolution of the baroclinic Rossby wave amplitude B1 is
similar to that of the barotropic Rossby amplitude A1, and the wave shape and velocity
have not changed during the eastward movement. The number of waves generated by
B1 during the propagation process in the same time period is the same as that generated
by A1.

Figure 8. The propagation of B1 with time t.

Rossby waves are closely related to various natural phenomena, such as weather
changes, ocean currents, atmospheric high-pressure blocking, eddies in the Gulf of Mex-
ico current, etc. Many scholars have used different types of KdV equations to simulate
the evolution of Rossby wave amplitude, which has been widely used in oceanography,
meteorology, and other fields. In this section, the amplitude evolution of Rossby waves
with barotropic-baroclinic coherent structures is studied according to the solutions of the
fifth-order coupled KdV-mKdV equations in polar co-ordinates. The Rossby waves can
be excited and spread steadily with time under certain conditions. The above discussion
focuses on the influence of higher-order terms and wave numbers on the amplitude of
Rossby waves under barotropic and baroclinic interaction. It is interesting to find that
higher-order equations are more practical than lower-order equations in describing the
propagation of Rossby waves. These are the inheritance and development of previous
theories, and they may have an important impact on many physical fields. According to
the actual collected data, meteorologists can establish the fifth-order coupled KdV-mKdV
equations to predict a change in Rossby waves, which has certain theoretical significance
and practical value for predicting changes in the weather.
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6. Conclusions

In this paper, we first obtain the fifth-order coupled KdV-mKdV equations in polar
co-ordinates, according to the two-layer quasi-geostrophic vorticity equations; then, the
evolution mechanism of Rossby wave amplitude under barotropic-baroclinic coherent
structures was studied. The fifth-order coupled KdV-mKdV equations were analyzed
through Lie symmetry and conservation laws. By utilizing the Jacobi elliptic function
method, we obtained the soliton solutions for the fifth-order coupled KdV-mKdV equa-
tions. Next, we analyzed the higher-order effect, time, and wave number on Rossby wave
propagation characteristics by using numerical simulations. The results show that the
existence of high-order terms makes the wave deform, which shows that the amplitude
decreases and the wave width widens. The amplitude of the barotropic wave is higher than
that of the baroclinic wave, and the wave shape is sharper under the same conditions. The
barotropic and baroclinic Rossby waves propagate steadily with time, and their amplitudes
are affected by wave number.

In a word, the fifth-order coupled KdV-mKdV equations used to simulate the am-
plitude evolution of Rossby waves can be regarded as an extension of and supplement
to the previous model. It provides ideas for scholars in the future to study nonlinear
barotropic-baroclinic interaction dynamics, and it has potential application value in the
study of natural phenomena, such as changes in weather.

In future research, it might be considered valuable to study the evolution of Rossby
wave flow fields based on the fifth-order coupled KdV-mKdV equations, which were
derived for the first time in this paper. Dipole blocking and its influence on weather changes
will be further discussed. This will greatly enrich the meaning of the above-mentioned
equations and the description of related physical phenomena.
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∂r2 ) +
M2

1
r

(− 1
r2

∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )dr,

α3 =
1
a
{
∫ r2

r1

−M1

4r
∂N2

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)+

M1N1

4r
(− 1

r2
∂N1

∂r
+

1
r

∂2N1

∂r2 +
∂3N1

∂r3 − 2F
∂N1

∂r
)dr},

α4 =
1
a

∫ r2

r1

M2
1(

c
r2 −

1
r3

∂ϕB0

∂r
)dr,

α5 =
1
a

∫ r2

r1

(
M1

r
∂M2

∂r
+ M1

∂2M2

∂r2 )β1 −
M1

2r
∂ϕT0

∂r
(

1
2r

∂J1

∂r
+

1
2

∂2 J1

∂r2 − FJ1) +
M1P(r)

4r
J1dr,

α6 =
1
a

∫ r2

r1

(
M1

r
∂M2

∂r
+ M1

∂2M2

∂r2 )β2 + [−M1

r
∂M2

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 )−

M1

4r
∂N1

∂r
(

1
r

∂N2

∂r
+

∂2N2

∂r2 − FN2) +
M2

1
r

(− 1
r2

∂M2

∂r
+

1
r

∂2M2

∂r2 +
∂3M2

∂r3 )+

M1N2

4r
(− 1

r2
∂N1

∂r
+

1
r

∂2N1

∂r2 +
1
2

∂3N1

∂r3 − F
∂N1

∂r
)]− M1

4r
∂ϕT0

∂r
(

1
r

∂J2

∂r
+

∂2 J2

∂r2 −

2FJ2) +
M1P(r)

2r
J2dr,

α7 =
1
a

∫ r2

r1

(
M1

r
∂M2

∂r
+ M1

∂2M2

∂r2 )β4 + (
M1M2c

r2 − M1M2

r3
∂ϕB0

∂r
− M1N1

4r3
∂ϕT0

∂r
)−

M1

4r
∂ϕT0

∂r
(

1
r

∂J3

∂r
+

∂2 J3

∂r2 − 2FJ3) +
M1P(r)

2r
J3,

α8 =
1
a
{
∫ r2

r1

M1

r
(

∂I1

∂r
α1 +

∂M2

∂r
β5) + M1(

∂2 I1

∂r2 α1 +
∂2M2

∂r2 β5)−

M1

4r
∂ϕT0

∂r
(

1
r

∂J5

∂r
+

∂2 J5

∂r2 − 2FJ5) +
M1

4r
J5 p(r)dr},

α9 =
1
a
{
∫ r2

r1

M1

r
(

∂I1

∂r
α2 + 2

∂I2

∂r
α1 +

∂M2

∂r
β6) + M1(

∂2 I1

∂r2 α2 + 2
∂2 I2

∂r2 α1 +
∂2M2

∂r2 β6)−

M1

r
∂M1

∂r
(

1
r

∂I1

∂r
+

∂2 I1

∂r2 )− M1

r
∂I1

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 )− M1

4r
∂ϕT0

∂r
(

1
r

∂J6

∂r
+

∂2 J6

∂r2 −

2FJ6)−
M1

4r
∂N2

∂r
(

1
r

∂N2

∂r
+

∂2N2

∂r2 − FN2) +
M2

1
r

(− 1
r2

∂I1

∂r
+

1
r

∂2 I1

∂r2 +
∂3 I1

∂r3 )+

M1 I1

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 ) +
M1N2

4r
(− 1

r2
∂N2

∂r
+

1
r

∂2N2

∂r2 +
∂3M1

∂r3 −

F
∂N2

∂r
) +

M1

2r
p(r)J6dr},
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α10 =
1
a
{
∫ r2

r1

M1

r
(

∂I1

∂r
α3 + 2

∂I3

∂r
β1 +

∂M2

∂r
β7) + M1(

∂2 I1

∂r2 α3 + 2
∂2 I3

∂r2 β1 +
∂2M2

∂r2 β7)−

M1

r
∂M2

∂r
(

1
r

∂M2

∂r
+

∂2M2

∂r2 )− M1

4r
∂J1

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − FN1)−
M1

4r
∂ϕT0

∂r
(

1
r

∂J7

∂r
+

∂2 J7

∂r2 − 2FJ7)−
M1

4r
∂N1

∂r
(

1
r

∂J1

∂r
+

∂2 J1

∂r2 − FJ1) +
M1M2

r
(− 1

r2
∂M2

∂r
+

1
r

∂2M2

∂r2 +

∂3M2

∂r3 ) +
M1N1

4r
(− 1

r2
∂J1

∂r
+

1
r

∂2 J1

∂r2 +
∂3 J1

∂r3 − F
∂J1

∂r
) +

M1 J1

4r
(− 1

r2
∂N1

∂r
+

1
r

∂2N1

∂r2 +

∂3N1

∂r3 − F
∂N1

∂r
) +

M1

2r
p(r)J7dr},

α11 =
1
a
{
∫ r2

r1

2
M1

r
∂I2

∂r
α2 + 2M1

∂2 I2

∂r2 α2 −
2M1

r
∂M1

∂r
(

1
r

∂I2

∂r
+

∂2 I2

∂r2 )− M1

r
∂I2

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 ) +
M2

1
r

(− 1
r2

∂I2

∂r
+

1
r

∂2 I2

∂r2 +
∂3 I2

∂r3 ) + 2
M1 I2

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )dr},

α12 =
1
a
{
∫ r2

r1

2
M1

r
∂I3

∂r
β2 + 2M1

∂2 I3

∂r2 β2 −
M1

r
∂I3

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 )− M1

4r
∂N1

∂r
(

1
r

∂J2

∂r
+

∂2 J2

∂r2 − 2FJ2) +
M2

1
r

(− 1
r2

∂I3

∂r
+

1
r

∂2 I3

∂r2 +
∂3 I3

∂r3 ) + 2
M1 I3

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +

∂3M1

∂r3 )dr},

α13 =
1
a
{
∫ r2

r1

2
M1
r

(
∂I2
∂r

α3 +
∂I3
∂r

β2) + 2M1(
∂2 I2

∂r2 α3 +
∂2 I3

∂r2 β2)−
2M1

r
∂M1

∂r
(

1
r

∂I3
∂r

+
∂2 I3

∂r2 )

− M1
4r

∂J2
∂r

(
1
r

∂M1
∂r

+
∂2 M1

∂r2 − 2FM1)−
M1
4r

∂N1
∂r

(
1
r

∂J2
∂r

+
∂2 J2

∂r2 − 2FJ2) +
M1N1

4r

(− 1
r2

∂J2
∂r

+
1
r

∂2 J2

∂r2 +
∂3 J2

∂r3 − F
∂J2
∂r

) +
M1 J2

4r
(− 1

r2
∂N1
∂r

+
1
r

∂2N1
∂r2 +

∂3N1
∂r3 − F

∂N1
∂r

)dr},

α14 =
1
a
{
∫ r2

r1

−M1
r

∂I4
∂r

(
1
r

∂M1
∂r

+
∂2 M1

∂r2 )+

M2
1

r
(− 1

r2
∂I4
∂r

+
1
r

∂2 I4
∂r2 +

∂3 I4
∂r3 −

2
r3 M1 +

1
r2

∂M1
∂r

)dr},

α15 =
1
a
{
∫ r2

r1

−M1
4r

∂J4
∂r

(
1
r

∂N1
∂r

+
∂2N1
∂r2 − FN1)+

M1N1
4r

(− 1
r2

∂J4
∂r

+
1
r

∂2 J4
∂r2 +

∂3 J4
∂r3 −

2
r3 N1 +

1
r2

∂N1
∂r
− 2F

∂J4
∂r

)dr},

α16 =
1
a
{
∫ r2

r1

M1
r

(
∂I1
∂r

α4 +
∂I4
∂r

α1 +
∂M2

∂r
β8) + M1(

∂2 I1
∂r2 α4 + 2

∂2 I4
∂r2 α1 +

∂2 M2

∂r2 β8)+

cM1 I1
r2 +

M2
1

r2 α1 −
M1 I1

r3
∂ϕB0

∂r
− M1

4r
∂ϕT0

∂r
(

1
r

∂J8
∂r

+
∂2 J8

∂r2 − 2FJ8 +
N2

2r2 ) +
M1
2r

p(r)J8dr},

α17 =
1
a
{
∫ r2

r1

M1
r

(2
∂I2
∂r

α4 +
∂I4
∂r

α2) + M1(2
∂2 I2

∂r2 α4 +
∂2 I4
∂r2 α2) + 2

cM1 I2

r2 +
M2

1
r2 α2−

2
M1 I2

r3
∂ϕB0

∂r
− M1

r
∂M1

∂r
(

1
r

∂I4
∂r

+
∂2 I4
∂r2 +

M1
r2 ) +

M1 I4
r

(− 1
r2

∂M1
∂r

+
1
r

∂2 M1
∂r2 +

∂3 M1
∂r3 )dr},
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α18 =
1
a
{
∫ r2

r1

M1
r

(2
∂I3
∂r

β4 +
∂I4
∂r

α2) + M1(2
∂2 I3

∂r2 β4 +
∂2 I4
∂r2 α4) + 2

cM1 I3

r2 +
M2

1
r2 α3−

2
M1 I3

r3
∂ϕB0

∂r
− M1

4r
∂N1
∂r

(
1
r

∂J4
∂r

+
∂2 J4
∂r2 +

M1
r2 − 2FJ4)dr},

α19 =
1
a
{
∫ r2

r1

M1
r

∂I4
∂r

α4 + M1
∂2 I4
∂r2 α4 +

cM1 I4
r2 +

M2
1

r2 α4 −
M1 I4

r3
∂ϕB0

∂r
dr}.

b =
∫ r2

r1

(−N1
r

∂N1
∂r
− N1

∂2N1
∂r2 + 2FN1)dr

β1 =
1
b
{
∫ r2

r1

−N1
r

∂ϕT0

∂r
(

1
r

∂M2
∂r

+
∂2 M2

∂r2 )+

N1 M2
r

(− 1
r2

∂ϕT0

∂r
+

1
r

∂2 ϕT0

∂r2 +
∂3 ϕT0

∂r3 − 2F
∂ϕT0

∂r
)dr},

β2 =β3 =
1
b
{
∫ r2

r1

−N1
r

∂M1
∂r

(
1
r

∂N1
∂r

+
∂2N1
∂r2 − 2FN1)+

N2
1

r
(− 1

r2
∂M1

∂r
+

1
r

∂2 M1
∂r2 +

∂3 M1
∂r3 )dr},

β4 =
1
b
{
∫ r2

r1

N2
1 (

c
r2 −

1
r3

∂ϕB0

∂r
)dr},

β5 =
1
b
{
∫ r2

r1

(
N1
r

∂N2
∂r

+ N1
∂2N2

∂r2 + 2FN1N2)α1 −
N1
r

∂ϕT0

∂r
(

1
r

∂I1
∂r

+
∂2 I1
∂r2 ) +

N1 p(r)
r

I1dr},

β6 =
1
b
{
∫ r2

r1

(
N1
r

∂N2
∂r

+ N1
∂2N2

∂r2 + 2FN1N2)α2 + [−N1
r

∂M1
∂r

(
1
r

∂N2
∂r

+
∂2N2

∂r2 − 2FN2)−

N1
r

∂N2
∂r

(
1
r

∂M1
∂r

+
∂2 M1

∂r2 ) +
M1N1

r
(− 1

r2
∂N2
∂r

+
1
r

∂2N2

∂r2 +
∂3N2

∂r3 − 2F
∂N2
∂r

) +
N1N2

r

(− 1
r2

∂M1
∂r

+
1
r

∂2 M1
∂r2 +

∂3 M1
∂r3 )]− N1

r
∂ϕT0

∂r
(

1
r

∂I2
∂r

+
∂2 I2

∂r2 ) +
N1P(r)

r
I2)dr},

β7 =
1
b
{
∫ r2

r1

(
N1

r
∂N2

∂r
+ N1

∂2N2

∂r2 + 2FN1N2)α3 + [−N1

r
∂N2

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)

− N1

r
∂N1

∂r
(

1
r

∂M2

∂r
+

∂2M2

∂r2 ) +
M2N1

r
(− 1

r2
∂N1

∂r
+

1
r

∂2N1

∂r2 +
∂3N1

∂r3 − 2F
∂N1

∂r
)+

N2
1

r
(− 1

r2
∂M2

∂r
+

1
r

∂2M2

∂r2 +
∂3M2

∂r3 )]− N1

r
∂ϕT0

∂r
(

1
r

∂I3

∂r
+

∂2 I3

∂r2 ) +
N1P(r)

r
I3)dr},

β8 =
1
b
{
∫ r2

r1

(
N1

r
∂N2

∂r
+ N1

∂2N2

∂r2 + 2FN1N2)α4 + (
N1N2c

r2 − N1N2

r3
∂ϕB0

∂r
)−

N1

r
∂ϕT0

∂r
(

1
r

∂I4

∂r
+

∂2 I4

∂r2 +
1
r2 M1) +

N1P(r)
r

I4dr},

β9 =
1
b
{
∫ r2

r1

N1

r
(

∂J1

∂r
β1 +

∂N2

∂r
α5) + N1(

∂2 J1

∂r2 β1 +
∂2N2

∂r2 α5)− 2FN1(J1β1 + α5N2)−

N1

4r
∂ϕT0

∂r
(

1
r

∂I5

∂r
+

∂2 I5

∂r2 ) +
N1

4r
I5 p(r)dr},

β10 =
1
b
{
∫ r2

r1

N1

r
(

∂J1

∂r
β2 +

∂J2

∂r
β1 +

∂N2

∂r
α6) + N1(

∂2 J1

∂r2 β2 +
∂2 J2

∂r2 β1 +
∂2N2

∂r2 β6)−

2FN1(J1β2 + J2β1 + N2α6)−
N1

r
∂M1

∂r
(

1
r

∂J1

∂r
+

∂2 J1

∂r2 − 2FJ1)−
N1

r
∂I1

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1)−
N1

r
∂ϕT0

∂r
(

1
r

∂I6

∂r
+

∂2 I6

∂r2 )− N1

r
∂N2

∂r
(

1
r

∂M2

∂r
+

∂2M2

∂r2 )+

N2
1

r
(− 1

r2
∂I1

∂r
+

1
r

∂2 I1

∂r2 +
∂3 I1

∂r3 ) +
N1 J1

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )+

M2N1

r
(− 1

r2
∂N2

∂r
+

1
r

∂2N2

∂r2 +
∂3M2

∂r3 − F
∂N2

∂r
) +

N1

r
p(r)I6dr},
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β11 =
1
b
{
∫ r2

r1

N1

r
(

∂J1

∂r
β2 +

∂J2

∂r
α1 +

∂N2

∂r
α6) + N1(

∂2 J1

∂r2 β2 +
∂2 J2

∂r2 α1 +
∂2N2

∂r2 β6)−

2FN1(J1β2 + J2β1 + N2α6)−
N1

r
∂M2

∂r
(

1
r

∂N2

∂r
+

∂2N2

∂r2 − 2FN2)−

N1

r
∂J1

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 )− N1

r
∂ϕT0

∂r
(

1
r

∂I6

∂r
+

∂2 I6

∂r2 )− N1

r
∂N1

∂r
(

1
r

∂I1

∂r
+

∂2 I1

∂r2 )+

N1M1

r
(− 1

r2
∂J1

∂r
+

1
r

∂2 J1

∂r2 +
∂3 J1

∂r3 − 2F
∂J1

∂r
) +

N1 I1

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )+

N1N2

r
(− 1

r2
∂M2

∂r
+

1
r

∂2M2

∂r2 +
∂3M2

∂r3 ) +
N1

r
p(r)I6dr},

β12 =
1
b
{
∫ r2

r1

N1

r
∂J2

∂r
β2 + N1

∂2 J2

∂r2 β2 − 2FN1 J2β2 −
N1

r
∂M1

∂r
(

1
r

∂J2

∂r
+

∂2 J2

∂r2 − 2FJ2)−

N1

r
∂I1

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1) +
N2

1
r
(− 1

r2
∂I2

∂r
+

1
r

∂2 I2

∂r2 +
∂3 I2

∂r3 )+

N1 J2

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )dr},

β13 =
1
b
{
∫ r2

r1

N1

r
∂J2

∂r
α3 + N1

∂2 J2

∂r2 α3 − 2FN1 J2α3 −
2N1

r
∂N1

∂r
(

1
r

∂I3

∂r
+

∂2 I3

∂r2 )−

N1

r
∂I3

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1) +
N2

1
r
(− 1

r2
∂I3

∂r
+

1
r

∂2 I3

∂r2 +
∂3 I3

∂r3 )+

2N1 I3

r
(− 1

r2
∂N1

∂r
+

1
r

∂2N1

∂r2 +
∂3N1

∂r3 − 2F
∂N1

∂r
)dr},

β14 =
1
b
{
∫ r2

r1

2
N1

r
∂J2

∂r
(α2 + β2) + N1

∂2 J2

∂r2 (α2 + β2)− 2FN1 J2(α2 + β2)−
N1

r
∂M1

∂r

(
1
r

∂J2

∂r
+

∂2 J2

∂r2 − 2FJ2)−
N1

r
∂J2

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 )− 2N1

r
∂N1

∂r
(

1
r

∂I2

∂r
+

∂2 I2

∂r2 )+

M1N1

r
(− 1

r2
∂J2

∂r
+

1
r

∂2 J2

∂r2 +
∂3 J2

∂r3 − 2F
∂J2

∂r
) +

2N1 I1

r
(− 1

r2
∂N1

∂r
+

1
r

∂2N1

∂r2 +
∂3N1

∂r3 −

F
∂N1

∂r
) +

N1 J2

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )dr},

β15 =
1
b
{
∫ r2

r1

−N1

r
∂I4

∂r
(

1
r

∂N1

∂r
+

∂2N1

∂r2 − 2FN1) +
N1 J2

r
(− 1

r2
∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 −
2
r3 M1 +

1
r

∂M1

∂r
)dr},

β16 =
1
b
{
∫ r2

r1

−N1

r
∂J3

∂r
(

1
r

∂M1

∂r
+

∂2M1

∂r2 ) +
N1M1

r
(− 1

r2
∂J3

∂r
+

1
r

∂2 J3

∂r2 +
∂3 J3

∂r3 − 2F
∂J3

∂r
−

2
r3 N1 +

1
r2

∂N1

∂r
)dr},

β17 =
1
b
{
∫ r2

r1

N1

r
(

∂J1

∂r
β4 +

∂J4

∂r
β1 +

∂N2

∂r
α7) + N1(

∂2 J1

∂r2 β4 + 2
∂2 J4

∂r2 β1 +
∂2N2

∂r2 α7)−

2FN1(J1β4 + J4β1 + N2α7) +
cN1 J1

r2 +
N2

1
r2 β1 −

N1 J1

r3
∂ϕB0

∂r
− N1

r
∂ϕT0

∂r
(

1
r

∂I7

∂r
+

∂2 I7

∂r2 +
M2

r2 ) +
N1

r
p(r)I7dr},
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β18 =
1
b
{
∫ r2

r1

N1

r
(

∂J2

∂r
β4 +

∂J4

∂r
β2) + N1(

∂2 J2

∂r2 β4 +
∂2 J4

∂r2 β2)− 2FN1(J2β4 + J4β2)+

cN1 J2

r2 +
N2

1
r2 β2 −

N1 J2

r3
∂ϕB0

∂r
− N1

r
∂M1

∂r
(

1
r

∂J4

∂r
+

∂2 J4

∂r2 − 2FJ4) +
N1 J3

r

(− 1
r2

∂M1

∂r
+

1
r

∂2M1

∂r2 +
∂3M1

∂r3 )dr},

β19 =
1
b
{
∫ r2

r1

N1

r
(

∂J2

∂r
α4 +

∂J4

∂r
β2) + N1(

∂2 J2

∂r2 α4 +
∂2 J4

∂r2 β2)− 2FN1(J2α4 + J4β2)+

cN1 J2

r2 +
N2

1
r2 β2 −

N1

r
∂N1

∂r
(

1
r

∂I4

∂r
+

∂2 I4

∂r2 +
M1

r2 ) +
N1M1

r
(− 1

r2
∂J3

∂r
+

1
r

∂2 J3

∂r2 +

∂3 J3

∂r3 − 2F
∂J3

∂r
+

2
r3 N1 +

1
r2

∂N1

∂r
)dr},

β20 =
1
b
{
∫ r2

r1

N1

r
∂J4

∂r
β4 + N1

∂2 J4

∂r2 β4 − 2FN1 J4β4 +
cN1 J4

r2 +
N2

1
r2 β4 −

N1 J4

r3
∂ϕB0

∂r
dr}.

41 =
∂A1

∂τ
+ c

∂A1

∂θ
+ ε2(α1

∂A1

∂θ
+ α2 A1

∂A1

∂θ
+ α4

∂3 A1

∂θ3 + α3B1
∂B1

∂θ
) + ε3(α5

∂B1

∂θ
+

α6 A1
∂B1

∂θ
+ α6B1

∂A1

∂θ
+ α7

∂3B1

∂θ3 ) + ε4(α8
∂A1

∂θ
+ α9 A1

∂A1

∂θ
α11 A2

1
∂A1

∂θ
+

α14
∂2 A1

∂θ2
∂A1

∂θ
+ α16

∂3 A1

∂θ3 + α17 A1
∂3 A1

∂θ3 + α19
∂5 A1

∂θ5 + α10B1
∂B1

∂θ
+ α12B2

1
∂A1

∂θ
+

α13 A1B1
∂B1

∂θ
+ α15

∂2B1

∂θ2
∂B1

∂θ
),

42 =
∂B1

∂τ
+ c

∂B1

∂θ
+ ε2(β1

∂B1

∂θ
+ β2 A1

∂B1

∂θ
+ β4

∂3B1

∂θ3 + β3B1
∂A1

∂θ
) + ε3(β5

∂A1

∂θ
+

β6 A1
∂A1

∂θ
+ β7B1

∂B1

∂θ
+ β8

∂3 A1

∂θ3 ) + ε4(β9
∂B1

∂θ
+ β10 A1

∂B1

∂θ
β12 A2

1
∂B1

∂θ
+

β15
∂2 A1

∂θ2
∂B1

∂θ
+ β17

∂3B1

∂θ3 + β18 A1
∂3B1

∂θ3 + β20
∂5B1

∂θ5 + β11B1
∂A1

∂θ
+ β13B2

1
∂B1

∂θ
+

β14 A1B1
∂A1

∂θ
+ β16

∂2B1

∂θ2
∂A1

∂θ
).

a1 = ε2α2 + ε4α9; a2 = 2ε4α11; a3 = ε4α17; a4 = ε3α6; a5 = ε4α13; a6 = c + ε2α1 + ε4α8;

a7 = ε2α2 + ε4α9; a8 = ε4α11; a9 = ε4α14; a10 = ε4α6; a11 = ε4α12; a12 = ε4α14;

a13 = ε2α4 + ε4α16; a14 = ε4α17; a15 = ε4α19; a16 = ε3α6; a17 = ε2α3 + ε4α10;

a18 = 2ε4α12; a19 = ε4α13; a20 = ε3α5; a21 = ε3α6; a22 = ε2α3 + ε4α10; a23 = ε4α13;

a24 = ε4α15; a25 = ε4α15; a26 = ε3α7;

b1 = ε3β7; b2 = ε2β3 + ε4β11; b− 3 = ε4β13; b4 = ε4β14; b5 = c + ε2β1 + ε4β9;

b7 = ε4β912; b8 = ε4β15; b9 = ε3β7; b10 = ε4β13; b11 = ε4β16; b12 = ε2β4 + ε4β17;

b13 = ε4β18; b14 = ε4β20; b15 = ε2β2 + ε4β10; b16 = ε3β6; b17 = 2ε4β12; b18 = ε4β14;

b19 = ε4β18; b20 = ε3β5; b21 = ε3β6; b22 = ε2β3 + ε4β11; b23 = ε4β14; b24 = ε4β16;

b25 = ε4β15; b26 = ε3β8; b6 = ε2β2 + ε4β10;
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c1 = c + ε2α1 + ε4α8; c2 = ε2α2 + ε4α9; c3 = ε2α4 + ε4α16; c4 = ε4α11; c5 = ε4α14;

c6 = ε4α17; c7 = ε4α19; c8 = ε2α3 + ε4α10; c9 = ε3α5; c10 = ε3α6; c11 = c10; c12 = ε3α7;

c13 = ε4α12; c14 = ε4α13; c15 = ε4α15;

d1 = c + ε2β1 + ε4β9; d2 = ε2β2 + ε4β10; d3 = ε2β4 + ε4β17; d4 = ε4β12; d5 = ε4β15;

d6 = ε4β18; d7 = ε4β20; d8 = ε2β3 + ε4β11; d9 = ε3β5; d10 = ε3β6; d11 = ε3β7;

d12 = ε3β8; d13 = ε4β13; d14 = ε4β14; d15 = ε4β16;

a = 2c4m2
2 + 12c6k2m2m2 + c14n2

2; b = (2c13 + c14)m2n2;

c = [12c3k2m2 − 240c7k4m2(1 + m2)]m2 + [c2 − 4c5k2(1 + m2)− 4c6k2(1 + m2)]m2
2+

12c12k2m2n2 + [c9 − 4c15k2(1 + m2)]n2
2 + (c10 + c11)n2m2;

d = 2d4m2n2 + 12d6k2m2n2 + 2d13m2
2 + d14m2n2; e = d14m2

2;

f = 12d12k2m2m2 + d10m2
2 + [12d3k2m2 − 240d7k4m2(1 + m2]n2 + d11n2

2+

[d2 − 4d5k2(1 + m2)− 4d6k2(1 + m2) + d9 − 4d15k2(1 + m2)]m2n2.
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