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Abstract: In veins, clotting initiation displays a threshold response to flow intensity and injury size.
Mathematical models can provide insights into the conditions leading to clot growth initiation under
flow for specific subjects. However, it is hard to determine the thrombin generation curves that
favor coagulation initiation in a fast manner, especially when considering a wide range of conditions
related to flow and injury size. In this work, we propose to address this challenge by using a neural
network model trained with the numerical simulations of a validated 2D model for clot formation.
Our surrogate model approximates the results of the 2D simulations, reaching an accuracy of 94% on
the test dataset. We used the trained artificial neural network to determine the threshold for thrombin
generation parameters that alter the coagulation initiation response under varying flow speed and
injury size conditions. Our model predictions show that increased levels of the endogenous thrombin
potential (ETP) and peak thrombin concentration increase the likelihood of coagulation initiation,
while an elevated time to peak decreases coagulation. The lag time has a small effect on coagulation
initiation, especially when the injury size is small. Our surrogate model can be considered as a
proof-of-concept of a tool that can be deployed to estimate the risk of bleeding in specific patients
based on their Thrombin Generation Assay results.

Keywords: mathematical modeling; deep learning; numerical simulations; blood clots; bleeding;
neural networks

1. Introduction

Blood coagulation is a complex process that involves the activation of multiple bio-
chemical pathways leading to the formation of a blood clot. This process is highly regulated
and involves the interplay of several factors, including shear stress, flow rate, and the pres-
ence of platelets and other clotting factors. Recent studies have shown that the coagulation
response displays a threshold-like behavior in response to changes in flow intensity [1] and
injury size [2].

In venous conditions, the rate and the extent of clot formation depend on various
factors, including the intensity and duration of exposure to blood circulation. Blood flow
influences clot initiation and growth in multiple ways. First, it transports the coagulation
zymogens to the site of the injury, accelerating the onset of coagulation. At the same time,
high shear flow removes activated coagulation factors and limits the development of the
clot. The size of the injury can significantly affect the growth of a blood clot [3]. A larger
injury size not only increases the likelihood of clot initiation, but typically results in a larger,
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more robust clot. This is because a larger injury will expose more tissue factor, which can
further activate the coagulation cascade and increase the rate of thrombin generation.

Blood coagulability is a crucial factor that affects the process of clot initiation and
growth under flow. Along with flow stasis and endothelial injury, hypercoagulability
constitutes the three pillars of the Virchow triad [4]. However, measuring the coagulability
of blood accurately is a challenging task, as it is usually conducted using in vitro tests
that do not mimic the in vivo conditions of clot formation. One widely accepted method
for assessing blood coagulability is the Thrombin Generation Assay (TGA) [5]. This in
vitro test measures the ability of blood to form clots, and specifically the generation of
thrombin, which is a key enzyme involved in the coagulation process. The assay measures
the amount of thrombin generated over time in response to a stimulus, such as tissue factor,
and provides information on the coagulation status of an individual’s blood. Thus, it can
be used to assess the risk of bleeding or thrombosis, monitor anticoagulant therapy, and
study the mechanisms of blood clotting disorders.

Ordinary differential equation (ODE) models can be used to describe the kinetics of
thrombin generation [6–10]. These coagulation models aim to describe the concentration
evolution of various coagulation factors during the clotting process. However, there are
concerns regarding the extent to which these models accurately represent the physiological
mechanisms underlying blood coagulation, particularly for clinical decision-making. One
notable limitation is the simplification of reactions within the coagulation cascade, neglect-
ing several biochemical pathways. For instance, the protein C-independent inhibitory
action of protein S, which has been shown to play a crucial role in in vivo experiments [11],
is often overlooked. Additionally, existing thrombin generation models exhibit significant
variations in the kinetic constants considered, largely due to disparities in the experimental
conditions used for their measurement [12]. Despite these limitations, these models can be
calibrated to replicate experimentally observed thrombin generation curves, albeit without
fully capturing all of the involved mechanisms.

However, the interpretation of the results of the TGA is challenging, as it provides us
with a curve quantifying the concentration of generated thrombin over time. This curve
can be characterized by four distinct parameters: (i) the lag time, (ii) the peak thrombin
concentration, (iii) the time to peak, and (iv) the endogenous thrombin potential (ETP). The
lag time refers to the time required for the initial amount of thrombin to generate. The peak
thrombin concentration indicates the highest concentration of thrombin generated. The
time to peak defines the velocity of thrombin generation. It corresponds to the moment
when thrombin generation reaches its peak. The area under the curve, referred to as the
endogenous thrombin potential (ETP), represents the net amount of thrombin generated
by the test plasma. While a low ETP and peak concentration suggest an elevated risk of
bleeding, it is hard to predict the actual hemostatic response using solely these parameters,
especially when considering in vivo flow intensity and injury size conditions. Further, the
overall experience with the thrombin generation test as a surrogate measure of hemostatic
efficacy is still rather limited, and there are no guidelines on the interpretation of the results
of these assays.

Various approaches have been employed by mathematical modelers to describe throm-
bus formation under flow in both normal and pathological conditions. One such method
is continuum-based modeling, which is a powerful tool to study thrombus formation in
complex geometries and under different flow conditions. These models typically use the
Navier–Stokes equations to describe blood flow and rely on partial differential equations to
model the distribution of blood components. The coupling between the two is achieved
by considering fibrin polymer as an influencing factor for blood viscosity, or by treat-
ing the clot as a porous medium whose viscosity is dependent on fibrin density [13–18].
Continuum-based models are also suitable for studying thrombus formation in arterial flow
and complex geometries such as aneurysms. Mixture theory is used in some continuous
models to capture the interplay between platelets, plasma, red blood cells (RBCs), and the
clot [19–21]. Another widely used class of models for describing thrombus growth under
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flow is multiscale modeling, which combines continuous and discrete representations of
the underlying mechanisms [22–28]. Multiscale models allow the tracking of individual
blood cells and provide a more accurate description of cell-based processes such as platelet
deposition, transport, and aggregation, as the mechanisms involved span multiple scales
of space and time.

However, numerical simulations come at an expensive computational cost, which
limits their potential for the systematic exploration of a complex system such as thrombus
formation under flow. Further, using simulations to predict the coagulation response of
specific patients under a wide range of flow and injury size conditions would require
many hours to a few days, while clinical intervention relies on time-sensitive decision
making. On the other hand, a data-driven approach such as machine learning can be
used to evaluate the risk of prothrombotic diseases using patient information related to
comorbidities and lifestyle [29,30]. While this approach can provide accurate and timely
predictions, its output usually lacks interpretability, which poses a challenge to their
adoption by healthcare practitioners. Recently, we have developed a method that combines
deep learning with a mathematical model to make fast and explainable predictions on the
effect of anticoagulants [31], as well as the risk of thrombosis in COVID-19 patients [32].

Identifying the features of thrombin generation curves that prevent coagulation ini-
tiation under varying flow and injury conditions is a challenging but highly important
problem. Solving it would allow health practitioners to rely on thrombin generation assays
results to make clinical decisions [33,34]. In this work, we propose to explore this question
using a new approach that combines mathematical modeling with machine learning. In
particular, we propose to identify the thrombin generation thresholds that prevent coagula-
tion initiation under varying flow and injury size conditions. We utilized a deep learning
model that we trained using numerical simulations of a computational fluid dynamics
(CFD) model for coagulation initiation under flow. After validating this CFD model against
microfluidics experiments, we took advantage of our high-performance computing re-
sources to conduct 7675 simulations, describing the clotting initiation and growth. In each
of these simulations, the model parameters related to coagulability, injury size, and flow
pressure difference were randomly sampled, and the thrombin generation parameters were
calculated. The obtained dataset was used to train an artificial neural network, which is
able to predict the initiation of coagulation based on the thrombin generation parameters in
addition to the injury size and flow intensity. We evaluated the accuracy and performance
of the surrogate model. We then used the surrogate model for a fast exploration of thrombin
generation thresholds that alter coagulation under various flow and injury size conditions.
We conclude this paper by discussing how this approach can be further validated and
deployed in clinical settings to help health care providers identify and manage patients
with coagulation disorders on a case-to-case basis.

2. Determining Thrombin Generation Thresholds under Flow
2.1. Mathemtical Modeling of Clot Formation under Flow
2.1.1. Spatio-Temporal Distribution of Clotting Factors

We incorporate diffusion and transport by flow in the previously introduced model
of thrombin generation [13]. This thrombin generation model was derived from a more
complete model as shown in Appendix A.1 using fast equilibrium approximations. We
describe the spatial distributions of factor Xa (U), thrombin (T), and prothrombin (P)
as follows:

∂U
∂t

+∇.(uU − Dt∇U) = (K1 + K2T + K3T2)(U0 −U)− K4U, (1)

∂T
∂t

+∇.(uT − Dt∇T) = (K5U + K6T + K7T2 + K8T3)P− K9T, (2)

∂P
∂t

+∇.(uP− Dt∇P) = −(K5U + K6T + K7T2 + K8T3)P. (3)
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Here, the second terms on the left-hand side of the three equations describe the
diffusion of these three proteins and their transport by blood plasma. For prothrombin, we
set an initial and left boundary condition of P = P0 and a zero-flux condition at the rest of
the boundaries. We consider a zero-flux boundary conditions for thrombin and factor Xa
everywhere, except for the injury site where we consider the following condition describing
the activation of factor X by the complex TF-FVIIa during the initiation stage [14]:

∂U
∂n

=
K1(U0 −U)

D(1 + β1(U0 −U))
. (4)

Here, U0 represents the concentration of factor X in the bloodstream. Next, we add
the equations for fibrin polymerization:

∂Fg

∂t
+∇.(uFg − D f∇Fg) = −K11TFg, (5)

∂F
∂t

+∇.(uF− D f∇F) = K11TFg − K12F, (6)

∂Fp

∂t
= K12F. (7)

Here, Fg, F, and Fp describe the concentrations of fibrinogen, fibrin, and fibrin polymer,
respectively. Fibrin polymer does not diffuse and is not transported by flow. Therefore, we
do not consider diffusion and advection terms in the equation for fibrin polymer. We set
the inlet and initial condition of Fg = Fg0 for fibrinogen. The zero-flux condition is set at
the rest of the boundaries. The same condition is applied everywhere for fibrin.

2.1.2. Blood Plasma and Its Interplay with the Clot

To reproduce the microfluidics experiments [1], we model blood plasma as a Newto-
nian incompressible fluid as follows:

ρ
∂u
∂t

+ ρ(u.∇)u = −∇p + µ∆u− µ

K f
u, ∇.u = 0, (8)

where u is the flow velocity, p is the pressure, ρ is the density of the blood, and µ is the
dynamic viscosity, considered to be a constant since we are dealing with a Newtonian fluid.
The influence of the clot is captured through the third term on the right-hand side of the
equation, where K f is the hydraulic permeability of the clot [35]:

1
K f

=
16
α2 F̃

3
2
p

(
1 + 56F̃3

p

)
. (9)

Here, F̃p = min
(

1000
1400 , Fp

7000

)
is the normalized concentration of fibrin polymer in the

clot, considered to be bounded by value corresponding to the normal permeability of the
clot, and α is the radius of the fibers.

We assume that blood plasma is driven by the pressure difference, and we set the
pressure pin at the inlet Γin and the pressure pout at the outlet Γout. We consider no-slip
boundary conditions u = 0 at the other boundaries ∂Ω \ (Γin ∪ Γout). To set the inlet
pressure in dependence on shear rate γ̇, we use the formula pin = 4Lγµ/D, where L is the
length of the vessel, and D is the diameter of the vessel. The outflow pressure is set to zero
pout = 0.

The reaction–diffusion system of the equation is solved numerically with a finite
difference method and an upwinding scheme in discretizing convective terms in order to
avoid numerical instabilities in the convection-dominated cases. A regular 160 × 20 mesh
corresponding to a rectangular domain of a length equal to 8 mm and a height of 1 mm is
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used in the numerical simulations. Accuracy of the results was controlled by decreasing the
time and space steps in previous studies [14]. The model was implemented in C++ using
an object-oriented architecture. The CPU time of a simulation corresponding to 1200 s of
physical time is 8 min 34 s on a workstation with 16 cores and 64 GB of RAM.

2.2. The Artificial Neural Network for the Fast Prediction of the Coagulation Response

We used a workstation to run 7675 CFD simulations and generate the necessary data
to train neural network models. To speed up the process, we ran eight simulations in
parallel, where the parameters related to coagulability (K2, K3, K4, K5, K6, K7, K8, K9, U0,
and P0), injury size (δ), and flow intensity (∆p) were randomly sampled from uniform
distributions. For each simulation, we considered coagulation to be initiated if the height of
the clot exceeds 50% of the vessel height. In this case, it continues growing until the vessel
is completely obstructed. It is impossible to achieve a partial occlusion with the current
model due to the absence of activated protein C. When coagulation is initiated, the clot
first expands horizontally, leading to a decrease in flow velocity because of the constant
pressure difference condition [14]. This, in turn, allows the clot to grow vertically and fully
occlude the vessel. However, we stopped the simulation at this point to minimize the time
of calculation. The areas occupied by the clot correspond to the locations where the fibrin
polymer concentration exceeds 1000 nM. We labeled each simulation with a 1 if coagulation
was initiated and with a 0 otherwise. We then calculated the lag time, endogenous thrombin
potential (ETP), peak concentration, and time to peak by analyzing the thrombin generation
curve, obtained by solving the system of factor X, prothrombin, and thrombin without
diffusion and advection:

∂U
∂t

= (K1 + K2T + K3T2)(U0 −U)− K4U, (10)

∂T
∂t

= (K5U + K6T + K7T2 + K8T3)P− K9T, (11)

∂P
∂t

= −(K5U + K6T + K7T2 + K8T3)P. (12)

This model describes the dynamics of thrombin generation in in vitro lab conditions,
in the absence of flow velocity and diffusion. One important feature of this model is that it
can reproduce the thrombin generation curves of real patients [36]. The mean and standard
deviation of the ranges from which the parameters were sampled are shown in Table 1.
The mean of these ranges corresponds to the parameter values of a healthy subject [36,37].
These data were collected in the clinical studies NCT02540187 and NCT02300519, which
were approved by the French Ethical Review Board South East I. The subjects were included
after having signed an informed consent form in accordance with the ethical principles of
the Helsinki declaration. Since we are assuming the same tissue factor concentrations for
all simulations, we also used the same K1 for all of our calculations of thrombin generation
curves. For each simulation, we only kept the four parameters of coagulability (lag time,
ETP, thrombin peak concentration, and time to peak), in addition to the injury size (δ) and
the pressure difference (∆p). We conducted a total of 7675 simulations and used 70% of the
obtained dataset for the training of the neural network and 30% for testing its performance.
The mean and standard deviation of the four coagulability parameters in the generated
virtual patients population is given in Table 2. We used a neural network architecture that
consists of three hidden layers of 500× 250× 100 nodes (Figure 1). Initial values of weights
were set with the uniform (Xavier) initialization [38]. The Adam learning rate optimization
algorithm was used to fit the weights of the ANN [39].
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Table 1. The mean and standard deviation of the parameters used in the simulations to generate the
training dataset. The values of parameters related to coagulability were generated by considering
the parameters of a real patient and adding a perturbation sampled from a uniform distribution [36],
while we determined the average values of injury size and pressure difference according to the values
used in in vitro experiments [1]. The radius of the interval of the uniform distribution used to sample
the parameters is equal to 20% of the mean values.

Parameter Mean Standard Deviation

K2 1.109932 × 10−5 6.382294 × 10−7

K3 2.448583 × 10−7 1.420816 × 10−8

K4 0.000479 0.000028
K5 0.000019 0.000001
K6 3.764441 × 10−6 2.170468 × 10−7

K7 1.285508 × 10−10 7.473447 × 10−12

K8 4.064636 × 10−10 2.327669 × 10−11

K9 0.020216 0.001173
U0 135.062467 14.774695
P0 1401.066678 160.943197
∆p 135.062467 14.774695
δ 1401.066678 160.943197

t

T

Tpeak

Cpeak

ETP

Lag time

injury size (δ)

pressure difference (Δp)

clotting initiation

no clotting initiation

...

...

...

Figure 1. The architecture of the neural network used to predict the initiation of coagulation depend-
ing on coagulability, flow intensity, and injury site. The lag time, ETP, peak thrombin concentration,
and time to peak were calculated for each thrombin generation curve, obtained by solving the
system (10)–(12). To these parameters, we added the injury size and the flow intensity as inputs for
the NN. We used an architecture that consists of three hidden layers, composed of 500× 250× 100
nodes, chosen to prevent under- and over-fitting. In the output layer, we used one node that takes a
value of 1 in the case where coagulation is initiated and 0 otherwise.

We trained the neural network for 200 periods and evaluated its performance by
computing metrics such as the multi-cross entropy in log scale and the confusion matrix
(Figure 2). Further, accuracy was evaluated at 94% on the test dataset. The performances
of other NN architectures and classification algorithms are provided in Appendix A.2. To
implement these algorithms, we used the Python libraries Scikit-learn [40] and tensor-
flow [41]. The database and the algorithm code are publicly available through the following
github repository: https://github.com/MPS7/ML_coag (accessed on 8 August 2023).

https://github.com/MPS7/ML_coag
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Periods (10 training steps)

(A) (B)

Figure 2. (A) Multi-cross entropy in log scale during training. The value of this metric was computed
at the end of each period, consisting of 10 training steps. It measures how close the predictions of
the model are to the actual test data. As loss decreases, the probability that the model predictions
match the target value increases. (B) The confusion matrix measuring the classification precision of
the ANN architecture. The confusion matrix represents the percentage of true and false predictions
for each label.

Table 2. The mean and standard deviation of thrombin generation parameters calculated by solving
the system (10)–(12) for each coagulability parameter set.

Parameter Mean Standard Deviation

lag time (min) 2.44537 0.3893
ETP (nM.min) 779.68770 169.85197

peak concentration (nM) 47.18947 12.6126
time to peak (nM) 26.19182 6.3149

3. Results
3.1. Model Calibration and Validation

We utilized the CFD thrombus growth model (Section 2.1) to study the initiation of clot-
ting under flow by simulating in vitro experiments [1]. The experiment involved Newtonian
flow of normal pooled plasma (NPP) through a tube with rigid walls, driven by a constant
pressure drop. We ran numerical simulations for a physical time of 1200 s to determine the
initiation time of blood coagulation, which corresponded to the start of the propagation phase
where a sudden increase in the maximal value of generated fibrin polymer was observed
near the tissue factor (TF) patch. This coincided with the time when the vessel became less
permeable and the clot subsequently occluded the vessel. We controlled the initial shear rate
by varying the pressure drop, and determined the value of the shear rate that prevented the
initiation of coagulation by running consecutive simulations (Figure 3).

The concentration of TF expressed at the activation patch was varied to reproduce
the results of experiments. In the default case where the patch size is 0.2 mm, the shear
rate threshold which prevents coagulation initiation was estimated at ≈27.5 s−1. We also
conducted simulations where the TF patch size was changed. In the case where the patch
size is small (δ = 0.1 mm), a shear rate equal to 12 s−1 was sufficient to prevent the initiation
of coagulation, while a shear rate of 42.5 s−1 was required to stop clotting initiation when
the size of the TF patch is higher (δ = 0.3 mm).
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(A) (B)

(C)

≥

7.8

1000 1000

38

µm
µm
µm

Figure 3. The initiation time of coagulation in the numerical simulations and comparison with
experimental data [1]. The initiation time corresponds to the moment when the height of the clot
reaches 20% of the vessel height. (A) Simulation snapshots showing the velocity profile and fibrin
polymer concentration in the case where coagulation is initiated and the clot partially occludes the
vessel. (B) Simulated flow velocity and fibrin polymer in the case where fast flow circulation prevents
clot formation. (C) The initiation time in a series of simulations where the shear rate (γ̇) and the
injury size (δ) are varied. These results show that the threshold of shear rate which prevents clot formation
depends on the size of the injury.

3.2. The Threshold of Coagulation Initiation under Flow in Hyper-Coagulable and Normal States

The threshold of coagulation initiation under flow corresponds to the level of shear
stress or shear rate required to prevent the initiation of the coagulation cascade and the
subsequent formation of a clot in flowing blood. In hypo-coagulable states, such as bleed-
ing disorders or the presence of anticoagulants, it is expected that a lower threshold is
necessary to prevent coagulation compared to normal states. This is because there are fewer
procoagulant factors available to trigger the coagulation cascade. In contrast, in hyper-
coagulable states, the shear rate threshold that prevents coagulation initiation is higher
due to the presence of a sufficient amount of procoagulant factors that can readily initiate
coagulation upon exposure to tissue factor or other triggers. We estimate this threshold
for two cases corresponding to two values of the ETPs (Figure 4). In the case where ETP is
normal (700 nM.min), the threshold of flow velocity that prevents coagulation corresponds
to a shear rate of approximately γ̇ = 28 s−1 if the injury size is equal to 200 µm, while a
higher threshold of γ̇ = 37 s−1 is required when the ETP corresponds to a hyper-coagulable
state, for the same injury size value.
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Figure 4. The threshold of coagulation initiation as a function of the pressure difference and injury
size for a normal (left) and upregulated (right) value of the ETP. The black cases correspond to an
absence of coagulation initiation, whereas the beige ones represent the cases where coagulation is
initiated. The likelihood of coagulation initiation increases when the ETP is upregulated. Note that
the increase of the injury size on the vertical axis is directed downwards.

3.3. The Threshold of ETP, Peak Concentration, and Time to Peak That Induces Clot Formation
under Varying Flow Conditions

The balance between pro-coagulant and anti-coagulant forces determines thrombin
generation. Four parameters, including the lag time, ETP, peak concentration, and time to
peak, characterize the result of the TGA. However, it is challenging to evaluate the inde-
pendent effect of each parameter on coagulation because clotting occurs in the presence of
hemodynamic forces and injury size. Further, statistical analysis of thrombin generation pa-
rameters does not allow us to determine the effect of each of them, due to the dependencies
between them.

Our surrogate models provide a means to examine the impact of each thrombin
generation parameter on coagulation initiation, as depicted in Figure 5. We begin by
studying the effect of the ETP parameter. Our estimates indicate that the threshold shear rate
required to prevent coagulation initiation increases with an increase in ETP. Additionally,
larger injury sizes further increase this threshold. The time to peak parameter describes
the speed at which thrombin is generated, and an increase in this parameter causes a
delay in thrombin generation dynamics. Our surrogate model suggests that, as the time
to peak increases, the threshold shear rate required to prevent clotting decreases. This
finding suggests that higher time to peak values correspond to a lower coagulability of the
plasma. The peak concentration parameter increases the threshold flow intensity required
to prevent coagulation initiation, indicating that elevated peak concentration can be linked
to hyper-coagulable states. The lag time has approximately no effect on the shear rate
threshold that prevents coagulation, especially for small injury size values.
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Figure 5. (A) The threshold of ETP under various flow conditions for two injury size values. (B) The
threshold of the time to peak that stops coagulation initiation as a function of the flow intensity.
(C) The threshold of peak concentration that leads to coagulation initiation for different values of
pressure differences.

4. Discussion

This paper presents a new approach to explore the complex interplay between coagu-
lation initiation thresholds in venous flow conditions. We utilized a previously developed
CFD model to simulate the initiation of coagulation [13,14]. We calibrated our model to
reproduce experimental observations and ran a large number of simulations to investigate
the effects of blood coagulability, injury size, and flow intensity on coagulation initiation.
We then post-processed the obtained dataset to calculate the thrombin generation parame-
ters for each simulation, including the lag time, the ETP, the peak concentration, and the
time to peak, which are crucial in quantifying plasma coagulability. By using an artificial
neural network to analyze the post-processed dataset, we were able to predict the initiation
of coagulation under varying coagulability, injury size, and flow intensity conditions. After
training the model, we achieved a high accuracy of 94% on the test dataset, suggesting that
the surrogate model can be used to effectively predict the outcome of simulations without
resorting to the computationally intensive CFD model.

We took advantage of the accuracy of the surrogate model and its capacity to predict
the outcome of coagulation initiation under a large number of conditions in a few seconds
to study thresholds of thrombin generation parameters that alter the coagulation initiation
dynamics. In particular, we were able to determine these thresholds for varying conditions
of flow intensity and injury size. Our model predictions were in good agreement with
the reported experimental findings in the literature. Indeed, it was shown experimentally
that elevated ETP and peak concentrations values were associated with hypercoagulable
states [42], while an increased time to peak was associated with poor coagulation [43,44]. It
was also shown that the lag time has a minimal effect on coagulation, which also agrees
with our model findings. These results indicate that ETP, peak concentration, and time to
peak are the most reliable indicators of the likelihood of coagulation initiation.
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Our study provides a robust and reliable framework for investigating the complex
interplay between the components of the Virchow triad in a systemic way, and has the
potential to contribute to the development of new strategies for preventing and treating
thrombotic disorders. Still, it is important to note that the current implementation of the
model relies on a few assumptions. First, the simulations that were used to calibrate the
model were performed in in vitro settings. As a result, the application of this approach
in clinical settings would require more validation against in vivo data. Second, our study
does not consider the effect of platelets on coagulation. Since we are validating our model
against experiments that utilize normal-pooled plasma, we decided to exclude platelets
in the present study. However, we have studied their effects on the development of
coagulation under venous flow in a previous study [13]. Third, the present study does
not consider the effect of a complex blood rheology. This is because the experiments that
we used for validation were performed with blood plasma, which displays a Newtonian
rheology [1]. Finally, it is important to use the surrogate model to make predictions for
parameter values within physiologically accepted ranges, although the model can provide
predictions for non-physiological cases as well. For instance, it is impossible to have
thrombin generation curves with peak concentrations equal to zero and a high endogenous
thrombin potential. However, the surrogate model provides predictions for these values,
as shown in Figure 5C.

The presented approach can serve as a basis for the development of a digital twin
patient to design treatment for disorders of the hemostatic system. To achieve this, the
model can be extended by including the effect of activated protein C, which localizes the clot.
The effect of anticoagulant therapy can then be included using specific pharmacokinetics–
pharmacodynamics models [31,45]. First, we must validate the framework’s utility by
comparing its efficacy and safety to other assay methods in randomized clinical trials. In a
forthcoming work, we will evaluate the effect of aerobic exercise on the risk of developing
blood coagulation disorders using data collected from real subjects [46,47].
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Appendix A

Appendix A.1. Derivation of the Thrombin Generation Model

Let us consider a previously developed model to describe thrombin generation [48]:

∂[Va]
∂t

= k1T − h1[Va], (A1)

∂[VII Ia]
∂t

= k2T − h2[VII Ia], (A2)

∂[XIa]
∂t

= k3T − h3[XIa], (A3)

https://github.com/MPS7/ML_coag
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∂[IXa]
∂t

= k4[XIa]− h4[IXa], (A4)

∂U
∂t

= (k̄5[TF] + k5[XIa] + k55[VII Ia][IXa])(U0 −U)− h5U, (A5)

∂T
∂t

= (k6U + k66U[Va])P− K9T, (A6)

where ki denotes the activation coefficient rates and hi the inhibition rates. The factors
Va and Xa form the prothrombinase complex Va− Xa, while VII Ia and IXa constitute
the complex VII Ia− IXa. They are introduced in (A5) and (A6) in the form of the terms
k55[VII Ia][IXa] and k66U[Va], obtained using the assumption of a detailed equilibrium for
fast reactions. The concentrations of coagulation factors can be expressed as follows:

[Va] =
k1

h1
T, [VII Ia] =

k2

h2
T, [XIa] =

k3

h3
T, [IXa] =

k3k4

h3h4
T, (A7)

and assuming that Equation (A5) has reached equilibrium during the amplification phase
(k̄5[TF] = 0 and considering a zero-order reaction instead of a first-order one), using the
detailed equilibrium assumption, we obtain

[Xa] =
k3k4

h3h4
T
(

k5

h5
+

k55k2

h2h5

)
. (A8)

Substituting these concentrations with their expression in (A5) and (A6), we obtain
two equations for factor XI (U) and thrombin (T), and we add to the system one equation
for prothrombin (P):

∂U
∂t

= (K1 + K2T + K3T2)(U0 −U)− K4U, (A9)

∂P
∂t

= −(K5U + K6T + K7T2 + K8T3)P, (A10)

∂T
∂t

= (K5U + K6T + K7T2 + K8T3)P− K9T, (A11)

where

K1 = k̄5[TF], K2 =
k5k4k3

h4h3
, K3 =

k55k2k4k3

h2h4h3
, K4 = h5,

K5 = k6, K6 =
k3k4k5k6

h3h4h5
, K7 =

k2k3k4k55k6

h2h3h4h5
+

k1k3k4k5k66

h1h3h4h5
, K8 =

k1k2k3k4k55k66

h1h2h3h4h5
.

(A12)

These expressions are obtained by applying the detailed equilibrium approximation
for fast reactions on the system (A1)–(A6). The reduced model gives a good approximation
of the rate of clot growth described by the system (A1)–(A6) [49]. The nine parameters
K1, K2, . . . , K9, as well as the concentrations of prothrombin (P0) and factor Xa (U0), can be
fitted to approximate the thrombin generation curves of real patients [36]. The obtained
model can be extended to determine the hemostatic response of patients under flow [31].

Appendix A.2. Performance Evaluation of Deep Learning Models

Figure A1 shows a comparison of the accuracies obtained using different classification
methods on the same dataset. The evaluated methods include deep neural networks,
support vector machines (SVMs) [50] with bagging and grid search, decision trees [51],
XGBoost [52], and CatBoost [53]. We apply these algorithms to the same dataset that
consists of the simulated coagulation initiation response under various parameters corre-
sponding to flow characteristics, injury size, and blood coagulatiblity.
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Figure A1. A comparison of the accuracies reached by the various classification algorithms when
applied to the same coagulation initiation dataset.

We also evaluated the performance of four deep neural network architectures: (500×
250× 100), (200× 100× 50), (100× 50× 25), and (10× 5× 2). The accuracies obtained
using these four architectures exceeded 90%. It further increases when simpler architectures
are considered.

The performance of support vector machines was satisfactory as well, especially when
grid search was used to determine the most suitable hyperparameters. A high accuracy
was also obtained by decision tree algorithms. It exceeded 90% when the depth of the
division tree was set to three levels. We opted for neural networks over traditional machine
learning due to their proficiency with high-dimensional data, in anticipation of expansions
that we plan to introduce in future studies.

Higher level boosting algorithms were also evaluated. Both the XGBoost and CatBoost
algorithms yielded accuracies that were above 95%. Note that we have used the default
values of the hyperparameters for these two algorithms. We decided to not use them for
our main study to prevent over-fitting.
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