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Abstract: This paper proposes new existence and uniqueness results for an initial value problem (IVP)
of fractional differential equations of nonlinear variable order. Riemann–Liouville-type fractional
derivatives are considered in the problem. The new fundamental results achieved in this work are
obtained by using the inequalities technique and the fixed point theory. In addition, uniform stability
criteria for the solutions are derived. The accomplished results are new and complement the scientific
research in the field. A numerical example is composed to show the efficacy and potency of the
proposed criteria.
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1. Introduction

Differential equations having fractional-order derivatives can be used as models of
processes that generally possess boundless memory, which finds an advantage over integer-
order differential equations. Indeed, it is known that the heredity properties of processes
and materials are better represented by fractional-order derivatives. In addition, fractional-
order derivatives and integrals provide more degrees of freedom to the model represented.
As such, differential equations in terms of fractional derivatives have been extensively
investigated during the last several decades as a technique for precisely describing real
systems investigated in numerous fields of science, engineering and medicine [1–7].

Note that, historically, the first introduced derivatives and integrals in noninteger
order were those of the Riemann–Liouville type [8,9]. It is also known that although a
Caputo-type derivative of zero is zero, this is not true for the Riemann–Liouville-type
fractional derivatives. The last fact leads to some complications in the investigation of frac-
tional differential equations in terms of Riemann–Liouville-type derivatives. However, the
excellent suggestions of the physical meaning of initial conditions for Riemann–Liouville
fractional differential equations (see, for example, [10]) put these equations into a preferred
modeling tool in various fields of science [2,5,11–13].

As an extension of the classical fractional differential systems, the type of differential
systems with variable order of fractional derivatives has been also studied by numerous
researchers using a variety of analytical and numerical methodologies. The fundamental
idea that led to such an extension is to replace the constant β by a function β(·). The basic
notion of variable order derivatives has been first proposed by Samko and Ross in [14].
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Since then, the investigations of variable order fractional operators in different forms and
their applications have attracted more and more attention. For some excellent contributions
to the theory of fractional differentiable systems with variable order derivatives we will
refer to [15–18] and the corresponding references. The fractional variable order general-
ization makes the fractional differential systems in terms of variable order derivatives a
more flexible apparatus in modeling various processes and natural phenomena. Hence,
there has been an increasing research activity in the theory of such equations [19–24], in-
cluding recently studied applications [25–29] which demonstrated the flexibility of this
modeling approach. In fact, fractional differential equations in terms of variable order
fractional derivatives have proven to be suitable in modeling numerous phenomena such as
anomalous diffusion [28,30], tumor modeling [29], petroleum engineering [31], viscoelastic
mechanics [32] and many others [17,25–27]. In addition, it has been shown [33] that vari-
able order fractional calculus is a potential candidate to provide an accurate mathematical
framework for efficient characterization of complex physical processes and systems.

Even though the substitution of a constant fractional order with a variable fractional
order in the fractional derivatives seems simple, there are numerous difficulties in the
mathematical investigations of differential systems in terms of variable order fractional
derivatives. One of them is related to the absence of the semigroup property [19]. Another
mathematical characterization of fractional variable order calculus which is problematic is
the circumstance that a fractional derivative of variable order is not necessarily a left-inverse
of the corresponding integral [21]. All these complications are reasons for an incomplete
evolution of the theory of variable-order fractional differential systems.

Recently, Souid et al. have intensively contributed to this field [34–42]. A series of
papers is concerned with the questions of the existence and uniqueness of solutions of dif-
ferent classes of differential systems with fractional derivatives of variable order [34,36–42].
Some of our research papers are devoted to the qualitative analysis of such problems. See,
for example, ref. [35] and some of the references therein. In our studies, we apply different
techniques such as fixed point theorem, a measure of noncompactness, upper–lower so-
lution methods, piecewise constant functions and some others. The variety of problems
investigated includes fractional differential systems with variable order derivatives of
Caputo type, Hadamard type and Riemann–Liouville type as well as multiterm fractional
boundary value problems of variable order.

In this paper, motivated by the above related works in this regard, we investigate the
the following initial value problem (IVP) for fractional differential equations (FDE) with
nonlinear variable order (NVO) derivatives of Riemann–Liouville type, defined as follows:

Dβ(t,y(t))
0+ y(t) = ψ(t, y(t)), t ∈ ∆ := (0, M], 0 < M < ∞, (A)

y(0) = 0, (B)
(IVPFDENVO)

where Dβ(t,y(t))
0+ stands for the Riemann–Liouville fractional derivative of the variable order

β(t, y(t)), ψ is a given function and β satisfies 0 < β∗ ≤ β(t, y(t)) ≤ β∗ < 1.
Note that, although differential equations with nonlinear variable-order fractional

derivatives are already applied as models of numerous problems investigated in science
and engineering, the results related to such equations are limited. Hence, the development
of the area requires the establishment of new existence and stability results.

The main contributions of our paper are stated as follows:
(1) an IVPFDENVO is defined, which extends some existing problems for fractional-

order systems with Riemann–Liouville fractional derivatives of variable order investigated
in the literature;

(2) new inequalities are proved for fractional integrals and derivatives of nonlinear
variable order;

(3) new criteria for the existence and uniqueness of the solutions to the introduced
problem are proposed;
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(3) we consider two different Banach spaces of functions to which we apply the
inequalities technique and fixed points theorems;

(4) novel uniform stability results are established via an inequalities technique.
The body of the manuscript is organized in the following manner. In Section 2 we

present notations, definitions and lemmas that will be necessary to carry out our study.
Section 3 is devoted to new existence results for solutions of the IVPFDENVO. A Banach-
type fixed point theorem is applied to two different spaces of functions. In Section 4,
uniform stability criteria are derived. Section 5 represents numerical applications and
simulations. Finally, conclusion remarks are presented in Section 6.

2. Preliminaries

Some preliminary results will be presented in this section together with the related
notations and definitions.

We consider the Banach space of all real-valued continuous functions x : ∆ → R,
R = (−∞, ∞), with the norm

‖x‖∞ = sup{|x(t)| : t ∈ ∆}

which we will denoted by C(∆,R).
The Banach space of all functions x : ∆→ R such that

0 < γ < 1 and tγx(t) ∈ C(∆,R)

with the norm
‖x‖γ = sup{tγ|x(t)| : t ∈ ∆}

will be denoted by the symbol Cγ(∆,R).
The symbol Lp(∆,R) represents the Banach space of all functions x : ∆ → R which

are Lebesgue measurable such that

p ≥ 1 and
∫ M

0
|x(s)|pds < ∞

with the norm

‖x‖p =:
(∫ M

0
|x(s)|pds

) 1
p .

Remark 1. The following observations are made to make our study easy in the sequel:

(1) if 0 < M ≤ 1 then Mβ(s,y(s))−1 ≤ Mβ∗−1.
(2) if 1 < M then Mβ(s,y(s))−1 ≤ 1.

Set
Λ∗ = max{1, Mβ∗−1}. (1)

(3) The function Γ(β(t, f (t))) is continuous as a composition of two continuous functions, hence
we can set:

M f = max
t∈[0,M]

∣∣∣∣ 1
Γ(β(t, f (t))

∣∣∣∣. (2)

Let us consider two continuous functions β : ∆×R→ (0, β∗] and α : ∆×R→ (0, α∗].
Let f (t) ∈ C(∆,R).

Definition 1 ([14,16,18]). The left Riemann–Liouville type integral of fractional variable order β,
β = β(t, f (t)) for f (t) is

Iβ(t, f (t))
a+1

f (t) =
∫ t

a1

(t− s)β(s, f (s))−1

Γ(β(s, f (s)))
f (s)ds, t > a1, (3)
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where Γ(·) denotes the Gamma function and a1 ∈ ∆.
If β(t, y(t)) is a constant β, then (3) will be reduced to the standard Riemann–Liouville

fractional integral of a constant fractional order given by [2,3,5]

Iβ

a+1
f (t) =

1
Γ(β)

∫ t

β∗
(t− s)β−1 f (s)ds, t > a1. (4)

Definition 2 ([14,16,18]). The left Riemann–Liouville type derivative of fractional variable order
α, α = α(t, f (t)) for a function f (t) is given by

Dα(t, f (t))
a+1

f (t) =
d
dt

I1−α(t, f (t))
a+1

f (t) =
d
dt

∫ t

a1

(t− s)−α(s, f (s))

Γ(1− α(s, f (s)))
f (s)ds, t > a1. (5)

If α(t, y(t)) is a constant α, then (5) will become

Dα
a+1

f (t) =
d
dt

I1−α
a+1

f (t) =
d
dt

∫ t

a1

(t− s)−α

Γ(1− α)
f (s)ds, t > a1, (6)

which represents the Riemann–Liouville derivative of a constant fractional order α [2,3,5].

For more characteristics of the integrals and derivatives of fractional constant orders
we refer to [2,3,5], and about the integrals and derivatives of fractional variable orders,
see [14,16,19].

Remark 2. It is observed that the semigroup property is not always fulfilled for general functions
β(t, y(t)), α(t, y(t)); i.e., it is possible

Iβ(t, f (t))
a+1

Iα(t, f (t))
a+1

f (t) 6= Iβ(t, f (t))+α(t, f (t))
a+1

f (t).

For more details, see [23,38,43].

We will present some specifications of the fractional integrals of the Riemann–Liouville
type of constant orders which will be used in the coming lemmas.

Lemma 1 ([3]). If γ ∈ R, then the Riemann–Liouville type integral of fractional constant order is
bounded in Cγ(∆,R) and we have for f ∈ Cγ(∆,R)

‖Iα
0+ f ‖γ ≤

MαΓ(1− γ)

Γ(1 + α− γ)
‖ f ‖γ, α > 0 (7)

Lemma 2 ([3]). If γ ∈ R, then the Riemann–Liouville type fractional integral is bounded in
Lp(∆,R) and we have for f ∈ Lp(∆,R)

‖Iα
0+ f ‖p ≤

Mα

αΓ(α)
‖ f ‖p, α > 0. (8)

On the base of Lemmas 1 and 2, we will prove similar inequalities for fractional
integrals of nonlinear variable order of Riemann–Liouville type.

Lemma 3. If β : ∆× R → (0, 1] is a continuous function, such that 0 < β∗ ≤ β(t, f (t)) ≤
β∗ < 1, then Iβ(t,y(t))

0+ f (t) ∈ Cγ(∆,R) for f ∈ Cγ(∆,R). Moreover, we have:
(i)

‖Iβ(t, f (t))
0+ f ‖γ ≤

MΓ(1− γ)Γ(β∗)M f Λ∗

Γ(1 + β∗ − γ)
‖ f ‖γ. (9)
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(ii) For f , g ∈ Cγ(∆,R), we have

‖Iβ(t, f (t))
0+ f − Iβ(t,g(t))

0+ g‖γ ≤
4MBΓ(β∗)Λ∗Γ(1− γ)

Γ(1 + β∗ − γ)
‖ f − g‖γ, (10)

where B = max
{

M f , Mg

}
, Λ∗ is defined by Equation (1) and M f and Mg are defined by

Equation (2).

Proof. (i) Let f ∈ Cγ(∆,R). From Equation (3) we have

|Iβ(t, f (t))
0+ f (t)| ≤ M f

∫ t

0
(t− s)β(s, f (s))−1| f (s)|ds

≤ M f

∫ t

0
Mβ(s, f (s))−1

(
t− s

M

)β(s, f (s))−1
| f (s)|ds

≤
M f Λ∗

Mβ∗−1

∫ t

0
(t− s)β∗−1| f (s)|ds

≤
Γ(β∗)M f Λ∗

Mβ∗−1 Iβ∗
0+ | f (t)|.

(11)

The above estimate implies

‖Iβ(t, f (t))
0+ f ‖γ ≤

Γ(β∗)M f Λ∗

Mβ∗−1 ‖Iβ∗
0+ | f |‖γ.

We apply (7) to obtain

‖Iβ(t, f (t))
0+ f ‖γ ≤

MΓ(1− γ)Γ(β∗)M f Λ∗

Γ(1 + β∗ − γ)
‖ f ‖γ.

(ii) For f , g ∈ Cγ(∆,R), we have

∣∣∣Iβ(t, f (t))
0+ f (t)− Iβ(t,g(t))

0+ g(t)
∣∣∣ =

∣∣∣∣∣
∫ t

0

(t− s)β(s, f (s))−1

Γ(β(s, f (s)))
f (s)ds− (t− s)β(s,g(s))−1

Γ(β(s, g(s)))
g(s)ds

∣∣∣∣∣
≤ 2BΛ∗

∫ t

0

((
t− s

M

)β(s, f (s))−1
+

(
t− s

M

)β(s,g(s))−1
)

×| f (s)− g(s)|ds

≤ 4BΛ∗

Mβ∗−1

∫ t

0

(
(t− s)β∗−1

)
| f (s)− g(s)|ds

≤ 4BΓ(β∗)Λ∗

Mβ∗−1 Iβ∗
0+ | f (s)− g(s)|,

(12)

which, after the application of (7), implies

‖Iβ(t, f (t))
0+ f − Iβ(t,g(t))

0+ g‖γ ≤
4MBΓ(β∗)Λ∗Γ(1− γ)

Γ(1 + β∗ − γ)
‖ f − g‖γ.

Lemma 4. If β : ∆× R → (0, 1] is a continuous function, such that 0 < β∗ ≤ β(t, f (t)) ≤
β∗ < 1, then Iβ(t, f (t))

0+ f (t) ∈ Lp(∆,R) for f ∈ Lp(∆,R). Moreover, we have:
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(i)

‖Iβ(t, f (t))
0+ f ‖p ≤

MM f Λ∗

β∗
‖ f ‖p. (13)

(ii) For f , g ∈ Lp(∆,R) we have

‖Iβ(t, f (t))
0+ f − Iβ(t,g(t))

0+ g‖p ≤
4MBΛ∗

β∗
‖ f − g‖p. (14)

Proof. (i) Using (9), we obtain

‖Iβ(t, f (t))
0+ f ‖p ≤

Γ(β∗)M f Λ∗

Mβ∗−1 ‖Iβ∗
0+ | f |‖p.

Now, we apply Equation (8) to obtain

‖Iβ(t, f (t))
0+ f ‖p ≤

MM f Λ∗

β∗
‖ f ‖p.

(ii) We combine Equation (12) with the Hölder’s inequality to obtain

|Iβ(t, f (t))
0+ f (t)− Iβ(t,g(t))

0+ g(t)|p ≤
[

4BΓ(β∗)Λ∗

Mβ∗−1 Iβ∗
0+ | f (s)− g(s)|

]p

≤
[

4BΓ(β∗)Λ∗

Mβ∗−1

]p(
Iβ∗
0+ | f (s)− g(s)|

)p
.

(15)

Integrating both sides of (15) on [0, M] and take 1
p -root on both sides, we obtain

‖Iβ(t, f (t))
0+ f − Iβ(t,g(t))

0+ g‖p ≤
4MBΛ∗

β∗
‖ f − g‖p.

The proof of (12) is completed.

The following lemma will also be useful.

Lemma 5 ([44]). Let Θ be a nonempty, bounded Banach space and F : Θ −→ Θ be a mapping
such that for some n ∈ N, Fn is a contraction, where Fn = F ◦ F ◦ . . . ◦ F n times. Then F has a
unique fixed point in Θ.

3. Achieved Existence Results

Definition 3. A function y ∈ Cγ(∆,R) or y ∈ Lp(∆,R) is said to be a solution for (IVPFDENVO)
if and only if it verifies (IVPFDENVO(A)) and (IVPFDENVO(B)), simultaneously.

In order to present our new existence results in the Banach spaces Cγ(∆,R) and
Lp(∆,R), we will analyze an equivalent integral form of the IVPFDENVO(A).

Lemma 6. Let y be an element of Cγ(∆,R) or Lp(∆,R). Then, equation (IVPFDENVO(A)) is
equivalent to

I1−β(t,y(t))
0+ y(t) =

∫ t

0

(t− s)−β(s,y(s))

Γ(1− β(s, y(s)))
y(s)ds =

∫ t

0
ψ(s, y(s))ds, t ∈ ∆. (16)
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Proof. Let y ∈ Cγ(∆,R) or y ∈ Lp(∆,R). Then, for equation (IVPFDENVO(A)) we have
the following representation

Dβ(t,y(t))
0+ y(t) =

d
dt

∫ t

0

(t− s)−β(s,y(s))

Γ(1− β(s, y(s)))
y(s)ds = ψ(t, y(t)). (17)

Then, both sides of (17) can be integrated from [0, t], to obtain

∫ t

0

(t− s)−β(s,y(s))

Γ(1− β(s, y(s)))
y(s)ds = c0 +

∫ t

0
ψ(s, y(s))ds. (18)

Evaluating (18) at t = 0 gives us c0 = 0.
Conversely, differentiating both sides of (16) to reach

d
dt

∫ t

0

(t− s)−β(s,y(s))

Γ(1− β(s, y(s)))
y(s)ds = ψ(t, y(t)), (19)

from which we obtain (IVPFDENVO(A)).
The proof is concluded.

The following assumptions will be essential in our analysis.

(A1) The function β : ∆×R→ (0, β∗] is continuous on its domain.
(A2) The function ψ : ∆×R→ R is a continuous function with respect to its first variable

and satisfies:
|ψ(s, χ1)− ψ(s, χ2)| ≤ k|χ1 − χ2|, ∀ χ1, χ2 ∈ R

for t ∈ ∆ and k > 0.

3.1. Existence Result in Cγ(∆,R)
The first obtained result is based on Lemma 5.

Theorem 1. Assume that (A1) and (A2) are satisfied. Then the (IVPFDENVO) has a unique
solution in C1−β∗(∆,R).

Proof. Let us consider γ = 1− β∗ and the set of elements Θ in the space Cγ(∆,R) such
that y(0) = 0. Define the following operator

Π : Θ→ Θ,

where

(Πy)(t) = y(t) + I1−β(t,y(t))
0+ y(t)−

∫ t

0
ψ(s, y(s))ds. (20)

First, for two x, y : ∆→ R using (A2), we have∣∣∣∣∫ t

0
[ψ(s, x(s))− ψ(s, y(s))]ds

∣∣∣∣ ≤ kt−γ||y− x||γ.

Then, from (18) we can obtain the following estimation

|(Πx)(t)− (Πy)(t)| ≤ |y(t)− x(t)|+ |I1−β(t,x(t))
0+ x(t)− I1−β(t,y(t))

0+ y(t)|

+

∣∣∣∣∫ t

0
[ψ(s, x(s))− ψ(s, y(s))]ds

∣∣∣∣
≤ t−γ||y− x||γ + |I1−β(t,x(t))

0+ x(t)− I1−β(t,y(t))
0+ y(t)|+ kt−γ||y− x||γ.

(21)
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We multiply both sides of Equation (21) with tγ and take the sup of both sides to obtain

||Πx−Πy||γ ≤ ||y− x||γ + ||I1−β(t,x(t)
0+ x− I1−β(t,y(t)

0+ y||γ + k||y− x||γ.

Using Equation (10) we obtain

||Πx−Πy||γ ≤ ||y− x||γ +
4MBΓ(β∗)2Λ∗

Γ(2β∗)
‖y− x‖γ + k||y− x||γ.

If we set ζ =

(
1 +

4MBΓ(β∗)2Λ∗

Γ(2β∗)
+ k
)

, then we have

||Πx−Πy||γ ≤ ζ||y− x||γ.

By induction, it is trivial to prove that

||Πnx−Πny||γ ≤
ζn

n!
||y− x||γ,

where Πn = Π ◦Π ◦ ... ◦Π n times.
Since ζn

n! is the general term of the convergent exponential series eζ , it approaches zero
as n approaches infinity, and so for n sufficiently large we have

ζn

n!
< 1.

Lemma 5 asserts that the operator Π has a unique fixed point in Θ.
This implies that

I1−β(t,y(t))
0+ y(t) =

∫ t

0
ψ(s, y(s))ds (22)

with y(0) = 0
Finally, from Lemma 6, we obtain

Dβ(t,y(t))
0+ y(t) = ψ(t, y(t)) with y(0) = 0. (23)

This concludes our proof.

3.2. Existence Result in Lp(∆,R)
Theorem 2. Under the assumptions (A1) and (A2), the (IVPFDENVO) has a unique solution in
the Banach space Lp(∆,R).

Proof. We consider the set Θ as an element in Lp(∆,R) such that y(0) = 0, and the operator

Π : Θ→ Θ,

where

(Πy)(t) = y(t) + I1−β(t,y(t))
0+ y(t)−

∫ t

0
ψ(s, y(s))ds.

Then, we have from (A2) that for x, y : ∆→ R,∣∣∣∣∫ t

0
ψ(s, x(s))− ψ(s, y(s))ds

∣∣∣∣ ≤ kM1/p||y− x||p
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and

|(Πx)(t)− (Πy)(t)|p ≤ 2p
(
|y(t)− x(t)|p + |I1−β(t,x(t))

0+ x(t)− I1−β(t,y(t))
0+ y(t))|p

+

∣∣∣∣∫ t

0
ψ(s, x(s))− ψ(s, y(s))ds

∣∣∣∣p)

≤ 2p
(
|y(t)− x(t)|p + |I1−β(t,x(t))

0+ x(t)− I1−β(t,y(t))
0+ y(t)|p

+ kp M||y− x||pp
)

.

(24)

Integrating Equation (24) on [0, M], we obtain

||Πx−Πy||pp ≤ 2p
(
||y− x||pp + ||I

1−β(t,x(t))
0+ x− I1−β(t,y(t))

0+ y||pp + kp M2||y− x||pp
)

.

Using Equation (14) from Lemma 4, we obtain

||Πx−Πy||pp ≤ 2p(||y− x||pp +
[

4MBΛ∗

1− β∗

]p
‖y− x‖p

p + kp M2||y− x||pp)

≤ 2p
(

1 +
[

4MBΛ∗

1− β∗

]p
+ kp M2

)
||y− x||pp.

If we denote ζ = 2
(

1 +
[

4MBΛ∗
1−β∗

]p
+ kp M2

) 1
p
, then the assertion of the theorem can be

proved analogously to the final part of the proof of Theorem 1.
This concludes our proof.

Remark 3. Since the operators involved in the description of fractional differential equations of
variable nonlinear fractional order have complex properties, the research results in this direction are
still limited [23,34,36–43]. With the proposed new criteria in Theorems 1 and 2, we complement
and extend the existence of theoretical results for such initial value problems. The delivered results
are obtained by using fixed point theory and are presented in two different Banach spaces.

Remark 4. The criteria presented in this section are also extensions and generalizations of some
announced results that are considered initial value problems for fractional constant-order differential
equations to the variable order case [45–48]. In fact, the consideration of nonlinear variable orders
leads to the definition of more complex and generalized problems that can be used in the applications.

Remark 5. Different from the existing results for differential systems with fractional derivatives
of variable order, in this study, we consider fractional derivatives of Riemann–Liouville types of
order β : ∆ × R → (0, 1]. Instead of the approaches introduced in [23,43], such as piecewise
continuous functions and the Picard scheme, we apply the operator approach and a Banach-type
fixed point theorem, which we consider as more appropriate for the considered problem from the
applied perspective. The proposed strategy can be applied to similar problems considering delays and
impulsive factors, which can motivate future research.

4. Uniform Stability

In this Section, the newly achieved existence and uniqueness results will be applied to
derive uniform stability criteria for the solution of the (IVPFDENVO).

Consider a solution x(t) of the equation IVPFDENVO(A) corresponding to an initial
condition y(0) = x0. Let x̄(t) be another solution of equation IVPFDENVO(A) correspond-
ing to an initial condition x̄(0) = x̄0.
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Definition 4 ([49]). The solution x(t) of the IVPFDENVO(A) is uniformly stable if for any ε > 0,
there exists υ(ε) > 0 such that |x0 − x̄0| ≤ υ(ε) implies

‖x− x̃‖∞ ≤ ε.

Note that we will apply Definition 4 for the (IVPFDENVO), i.e., we will consider the
unique solution y(t) which satisfies the zero initial condition IVPFDENVO(B). Also, in the
proof, we will use functions from the class C1−β∗(∆,R).

Theorem 3. Assume that (A1)–(A2) are satisfied and, in addition,(
4MBΓ(β∗)2Λ∗

Γ(2β∗)
+ k
)
< 1. (25)

Then, the unique solution of IVPFDENVO is uniformly stable.

Proof. Theorem 1 guarantees that the IVPFDENVO has a unique solution y(t). Consider a
solution ȳ(t) of the IVPFDENVO(A) which corresponds to an initial condition ȳ(0) = ȳ0.

For the solution y(t), we have from Lemma 6,

I1−β(t,y(t))
0+ y(t) =

∫ t

0
ψ(s, y(s))ds, t ∈ ∆. (26)

Similarly, for ȳ(t), from (16) we obtain

I1−β(t,ȳ(t))
0+ ȳ(t) = ȳ0 +

∫ t

0
ψ(s, ȳ(s))ds, t ∈ ∆. (27)

Hence,

|y(t)− ȳ(t)| ≤ |ȳ0|+
∣∣∣I1−β(t,y(t))

0+ y− I1−β(t,ȳ(t))
0+ ȳ

∣∣∣+ ∣∣∣∣∫ t

0
ψ(s, y(s))− ψ(s, ȳ(s))ds

∣∣∣∣
≤ |ȳ0|+

∣∣∣I1−β(t,y(t))
0+ y− I1−β(t,ȳ(t))

0+ ȳ
∣∣∣+ kt−γ||y− ȳ||γ.

(28)

Using Equation (10) for γ = 1− β∗, we obtain

||y− ȳ||γ ≤ M1−β∗ |ȳ0|+
4MBΓ(β∗)2Λ∗

Γ(2β∗)
‖y− ȳ‖γ + k||y− ȳ||γ.

Thus

||y− ȳ||γ ≤ M1−β∗
(

1− 4MBΓ(β∗)2Λ∗

Γ(2β∗)
− k
)−1

|ȳ0|.

Therefore, if |ȳ0| = |y(0)− ȳ0| < υ(ε), then ||y− ȳ||∞ < ε, which completes the proof
of the theorem.

Remark 6. Theorem 3 presents criteria for uniform stability of in C1−β∗(∆,R). A similar uniform
stability result can be proved using the norm in Lp(∆,R).

Remark 7. Stability results for fractional differential systems with derivatives of variable order
have been considered in the existent literature [20,35,38,40]. Hence, the proposed new stability
criteria are a contribution to the development of the stability theory of such equations. Different from
all existing studies which mainly considered Ulam–Hyers stability, we establish a uniform stability
result. Also, the obtained qualitative result shows the applicability of the derived fundamental results
in the previous section.
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5. Approximate Numerical Applications

Example 1. Let us consider the following fractional initial value problem{
Dβ(t,y(t))

0+ y(t) = ψ(t, y(t)), t ∈ ∆ := [0, 1], (A)
y(0) = 0, (B)

(IVPNFDEVO)

with
β(t, y) =

1
4

√
t +

1
4(1 + 2y3)

and

ψ(t, y(t)) =
e−t | y(t) |

(4 + e2t)(1+ | y(t) |) .

We have that β is a continuous function on ∆×R and 0 < β(t, s) < 1.
Also,

|ψ(t, x)− ψ(t, y)| ≤ e−t

(4 + e2t)

∣∣∣∣ x
1 + x

− y
1 + y

∣∣∣∣
≤ e−t|x− y|

(4 + e2t)(1 + x)(1 + y)

≤ e−t

(4 + e2t)
|x− y|

≤ 1
5
|x− y|,

It is easy to check that for the given choice of nonlinear functions β and ψ Assumptions
(A1) and (A2) are satisfied. Therefore, by Theorems 1 and 2, the problem (IVPNFDEVO) has a
unique solution.

Example 2. Let us consider the following fractional initial value problem{
Dβ(t,y(t))

0+ y(t) = ψ(t, y(t)), t ∈ ∆ := [0, 1], (A)
y(0) = 0, (B)

(IVPNFDEVO)

with

β(t, y) =
t3

3
+

t
3
+

1
3(y2 + 1)

and

ψ(t, y(t)) =
| y(t) |

4
+

1
6
+
√

t, t ∈ ∆.

We have that β is a continuous function on ∆×R and 0 < β(t, y) < 1.
Also,

|ψ(t, x)− ψ(t, y)| ≤
∣∣∣∣ | x |

4
+

1
6
+
√

t−
(
| y |

4
+

1
6
+
√

t
)∣∣∣∣

≤
∣∣∣∣ | x |

4
− | y |

4

∣∣∣∣
≤ 1

4
|x− y|, x, y ∈ R.

Hence, for the given choice of nonlinear functions β and ψ Assumptions (A1) and (A2) are
satisfied. Therefore, by Theorems 1 and 2, the problem (IVPNFDEVO) has a unique solution.

In the remaining part, some numerical applications are demonstrated.
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The approximate solution y(t) for β(t, y) =
t3

3
+

t
3
+

1
3(y2 + 1)

with t ∈ [0, 1] is represented

in Figure 1.
On the other hand, Figures 2 and 3 present the graphs of the functions β(t, y) and ψ(t, y).
In Table 1, we present our β(t, y) and y(t) with different value of t ∈ [0, 1].

Figure 1. The approximate solution y(t) in [0, 1] with β(t, y) = t3

3 + t
3 + 1

3(y2+1) .

Figure 2. The function β(t, y) for t ∈ [0, 1] and y ∈ [0, 20].

Table 1. Some values of y(t) and β(t, y) for t ∈ [0, 1].

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y(t) 0.23 0.72 1.6 3.1 5.15 7.7 10.5 13.32 15.9 18

β(t, y(t)) 0.35 0.3 0.20 0.2 0.22 0.3 0.35 0.44 0.54 0.7
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Figure 3. The function ψ(t, y) for t ∈ [0, 1] and y ∈ [0, 20].

6. Conclusions

In this study, we introduce an initial value problem for a class of nonlinear differential
equations with fractional Riemann–Liouville-type derivative of variable nonlinear order.
The existence and uniqueness of the solution are investigated in two different Banach
spaces and new criteria are achieved. A Banach-type fixed point theorem is applied as a
proof technique. In addition, a uniform stability result is established for the solution of
the investigated problem which shows the efficiency of the existence criteria. The newly
achieved outcomes complement results for different classes of variable-order fractional
differential equations and provide an extension of the theory of such problems. Numerical
applications are also elaborated. The introduced problem and the achieved results can be
developed. Some directions of the future expansion of the topic include considering delay
terms, reaction-diffusion terms and impulsive effects.
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