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Abstract: This article is devoted to investigating the fixed point theorems for a new contracitivity
contraction, which combines the idea involved in Boyd-Wong contractions, strict almost contractions
and relational contractions. Our results improve and expand existing fixed point theorems of litera-
ture. In process, we deduce a metrical fixed point theorem for strict almost Boyd-Wong contractions.
To demonstrate the credibility of our results, we present a number of a few examples. Applying our
findings, we find a unique solution to a particular periodic boundary value problem.
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1. Introduction

Banach contraction principle (abbreviation: BCP) is most significant and classical
tool in nonlinear functional analysis. Besides guaranteing the prevalence of unique fixed
point, the BCP also provides a constructive method that approximates the fixed point.
Due to its simplicity, the BCP was made attractive from the application aspects. In this
direction, many authors utilized contraction mappings to prove the existence of solutions of
boundary value problems (abbreviated as: BVP), integral equations and matrix equations
etc. Various generalizations of this interesting result have been heavily investigated the
branch of research; however the readers are advised to study some recent work contained
in [1–4].

One of the generalizations of BCP that have attracted much attention during the last
half-century was due to Boyd and Wong [5]. Indeed, Boyd and Wong [5] improved the
contraction condition by replacing Lipschitz constant k ∈ (0, 1) with a control function
belonging to the following family:

Φ =
{

ϕ : [0, ∞)→ [0, ∞) : ϕ(a) < a, for all a > 0 and lim sup
s→a+

ϕ(s) < a, for all a > 0
}

.

Theorem 1 ([5]). Assume that for some ϕ ∈ Φ, a self-function G on a complete metric space (P, ρ)
satisfies

ρ(Gp,Gq) ≤ ϕ(ρ(p, q)), for all p, q ∈ P.

Then G possesses a unique fixed point.

Such contractivity condition is called nonlinear contraction or ϕ-contraction. Un-
der the restriction ϕ(a) = k · a, 0 < k < 1, ϕ-contraction reduces to usual contraction and
Theorem 1 reduces to the BCP.

In 2004, Berinde [6] introduced yet a new generalization of BCP, often called “al-
most contraction”.
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Definition 1 ([6,7]). A self-function G on a metric space (P, ρ) is referred to as an almost contrac-
tion if there exists k ∈ (0, 1) and there exists L ∈ [0, ∞) satisfying

ρ(Gp,Gq) ≤ kρ(p, q) + Lρ(p,Gq), for all p, q ∈ P.

By symmetric property of ρ, the above condition is identical to:

ρ(Gp,Gq) ≤ kρ(p, q) + Lρ(q,Gp), for all p, q ∈ P.

Theorem 2 ([6]). An almost contraction self-function on a complete metric space admits a fixed point.

The idea of almost contraction has been developed by various researchers, e.g.,
see [8–13]. An almost contraction remains weakly Picard operator so that it need not
admit a unique fixed but sequence of Picard iteration converges to a fixed point of under-
lying mapping. To obtain a uniqueness theorem, Babu et al. [8] defined slightly stronger
class of almost contraction condition.

Definition 2 ([8]). A self-function G on a metric space (P, ρ) is named as strict almost contraction
if there exists k ∈ (0, 1) and there exists L ∈ [0, ∞) satisfying

ρ(Gp,Gq) ≤ kρ(p, q) + L min{ρ(p,Gp), ρ(q,Gq), ρ(p,Gq), ρ(q,Gp)}, for all p, q ∈ P.

Clearly, a strict almost contraction is an almost contraction; but not conversely as
shown by Example 2.6 [8].

Theorem 3 ([8]). A strict almost contraction self-function on a complete metric space offers a
unique fixed point.

In recent times, an attractive research direction of metric fixed point theory is to
demonstrate the fixed point results in relational metric space. Such results require that
the contraction for just comparative elements (with respect to underlying binary relation)
be satisfied. As of now, relational contractions are still weaker than to usual contractions.
This trend is initiated by Alam and Imdad [14], wherein the authors obtained a variant of
BCP in the structure of relational metric space. Since than, various results in this direction
have been established. To cite some of them, we refer [15–27] besides others.

In this paper, we subsume two contractivity conditions mentioned as earlier (i.e.,
ϕ-contraction and strict almost contraction). We undertake the relation-preserving variant
of this newly obtained contraction and adopted it for demonstrating the existence and
uniqueness of fixed points in the structure of relational metric space. Our existence result
assumes the underlying relation to be G-closed and locally G-transitive. However, unique-
ness result requires to impose an additional hypothesis (i.e., S-directedness) on certain
subset of ambient space. Several examples are delivered, which attest to the credibility of
our findings.

As was already indicated, a weaker contraction condition is implemented compared to
what is found in the most recent research. Due to such limitations, the results demonstrated
here can be applied in certain types of boundary value problems, nonlinear matrix equations
and nonlinear integral equations, wherein classical fixed point theorems cannot be applied.
For the sake of limitation, we adopt an application of our results to a BVP satisfying certain
additional hypotheses, which shows the validation of our results.

2. Preliminaries

In what follows, the set of: natural numbers, whole numbers and real numbers will be
denoted by N, N0 and R, respectively. Recall that a subset of P2 is said to a binary relation
(or, a relation) on the set P.
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Let us assume that P is the given set, G : P→ P is a mapping, S is a relation on P and
ρ remains a metric on P.

Definition 3 ([14]). The points p, q ∈ P are called S-comparative if (p, q) ∈ S or (q, p) ∈ S . We
denote such a pair by [p, q] ∈ S .

Definition 4 ([28]). The relation S−1 := {(p, q) ∈ P2 : (q, p) ∈ S} is called inverse of S . Also,
S s := S ∪ S−1 defines a symmetric relation on P, often called symmetric closure of S .

Remark 1 ([14]). (p, q) ∈ S s ⇐⇒ [p, q] ∈ S .

Definition 5 ([29]). For a subset Q ⊆ P, the set

S|Q := S ∩Q2,

a relation on Q, is termed as the restriction of S on Q.

Definition 6 ([14]). S is referred to as G-closed if for every pair p, q ∈ P verifying (p, q) ∈ S ,
one has

(Gp,Gq) ∈ S .

Definition 7 ([14]). A sequence {pn} ⊂ P satisfying (pn, pn+1) ∈ S , for all n ∈ N, is termed as
S-preserving.

Definition 8 ([15]). The metric space (P, ρ) is called S-complete if each S-preserving Cauchy
sequence in P converges.

Definition 9 ([15]). The mapping G is referred to as S-continuous at p ∈ P if for every S-
preserving sequence {pn} ⊂ P with pn

ρ−→ p,

G(pn)
ρ−→ G(p).

A mapping, which remains S-continuous function at every point, is called S-continuous.

Definition 10 ([14]). S is termed as ρ-self-closed if each S-preserving convergent sequence in P
contains a subsequence, within which each term is S-comparative to the limit of sequence.

Definition 11 ([30]). A subset Q ⊆ P is termed as S-directed if for every pair p, q ∈ Q, ∃ m ∈ P
satisfying (p, m) ∈ S and (q, m) ∈ S .

Definition 12 ([16]). S is referred as locally G-transitive if for each S-preserving sequence {pn} ⊂
G(P) (with range E = {pn : n ∈ N}), S|E remains transitive.

Proposition 1 ([16]). If S is G-closed, then S is Gn-closed, for each n ∈ N0.

Definition 13 ([31]). A sequence {pn} ⊂ P is called semi-Cauchy if for all n ∈ N, it satisfies

lim
n→∞

ρ(pn, pn+1) = 0.

Clearly, every Cauchy sequence is semi-Cauchy but not conversely.

Lemma 1 ([32]). If {pn} remains a sequence in a metric space (P, ρ), which is not a Cauchy, then
there exists ε0 > 0 and there exists subsequences {pnk} and {plk} of {pn} verifying

(i) k ≤ lk < nk for all k ∈ N,
(ii) ρ(plk , pnk ) > ε0 for all k ∈ N,
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(iii) ρ(plk , pnk−1) ≤ ε0 for all k ∈ N.

Moreover, if {pn} is semi-Cauchy then

(iv) lim
k→∞

ρ(plk , pnk ) = ε0,

(v) lim
k→∞

ρ(plk , pnk+1) = ε0,

(vi) lim
k→∞

ρ(plk+1, pnk ) = ε0,

(vii) lim
k→∞

ρ(plk+1, pnk+1) = ε0.

Making use of symmetric property of metric ρ, we can conclude the following:

Proposition 2. Given any ϕ ∈ Φ and a constant L ≥ 0, the following conditions are equivalent:

(I) ρ(Gp,Gq) ≤ ϕ(ρ(p, q)) + L min{ρ(p,Gp), ρ(q,Gq), ρ(p,Gq), ρ(q,Gp)},
for all p, q ∈ P with (p, q) ∈ S .

(II) ρ(Gp,Gq) ≤ ϕ(ρ(p, q)) + L min{ρ(p,Gp), ρ(q,Gq), ρ(p,Gq), ρ(q,Gp)},
for all p, q ∈ P with [p, q] ∈ S .

3. Main Results

Firstly, we present the following result on the existence of fixed point for relational
strict almost ϕ-contraction.

Theorem 4. Suppose that (P, ρ) is a metric space, S is a relation on P while G : P→ P remains a
mapping. Also, suppose the following assumptions are contented:

(i) (P, ρ) is S-complete,
(ii) there exists p0 ∈ P satisfying (p0,Gp0) ∈ S ,
(iii) S is locally G-transitive and G-closed,
(iv) P is S-continuous, or S is ρ-self-closed,
(v) there exists ϕ ∈ Φ and L ≥ 0 verifying

ρ(Gp,Gq) ≤ ϕ(ρ(p, q)) + L min{ρ(p,Gp), ρ(q,Gq), ρ(p,Gq), ρ(q,Gp)},
for all p, q ∈ P with (p, q) ∈ S .

Then, G admits a fixed point.

Proof. We’ll prove the outcome in several steps:
Step-1. We’ll construct Picard sequence {pn} ⊂ P with initial point p0 ∈ P as follows:

pn := Gn(p0) = G(pn−1), for all n ∈ N. (1)

Step-2. We’ll that {pn} is an S-preserving sequence. By assumption (ii), G-closedness of S
and Proposition 1, we derive

(Gn p0,Gn+1 p0) ∈ S ,

which due to availability of (1) reduces to

(pn, pn+1) ∈ S , for all n ∈ N0. (2)

Step-3. We’ll show that {pn} is semi-Cauchy, i.e., lim
n→∞

ρ(pn, pn+1) = 0.

Let us denote ρn := ρ(pn, pn+1). If ρn0 = ρ(pn0 , pn0+1) = 0 for some n0 ∈ N0, then in
lieu of (1), one has G(pn0) = pn0 . Thus, pn0 is a fixed point of G and hence we are done.

In case ρn > 0, for all n ∈ N0, employing assumption (v), (1) and (2), we get

ρn = ρ(pn, pn+1) = ρ(Gpn−1,Gpn)

≤ ϕ(ρ(pn−1, pn)) + L min{ρ(pn−1, pn), ρ(pn, pn+1), ρ(pn−1, pn+1), 0},
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so that

ρn ≤ ϕ(ρn−1) for all n ∈ N0. (3)

Employing the property of ϕ in (3), we derive

ρn ≤ ϕ(ρn−1) < ρn−1, for all n ∈ N,

i.e., {ρn} is a monotonically decreasing sequence of positive reals. Further, {ρn}
remains bounded below by ‘0’. Consequently, there exists l ≥ 0 such that

lim
n→∞

ρn = l. (4)

Now, we assert that l = 0. Quite the contrary, if l > 0 then letting upper limit in (3)
and using (4) and the property of Φ, we find

l = lim sup
n→∞

ρn ≤ lim sup
n→∞

ϕ(ρn−1) = lim sup
ρn→l+

ϕ(ρn−1) < l,

which is a contradiction so that l = 0. Thus, we have

lim
n→∞

ρn = 0. (5)

Step-4. We’ll show that {pn} is a Cauchy sequence. If {pn} is not Cauchy, then by Lemma
1, ∃ ε0 > 0 and there exists subsequences {pnk} and {plk} of {pn} satisfying

k ≤ lk < nk, ρ(plk , pnk ) > ε0 ≥ ρ(plk , pnk−1), for all k ∈ N.

Denote δk := ρ(plk , pnk ). As {pn} is S-preserving (due to (2)) and {pn} ⊂ G(P) (due
to (1)), using locally G-transitivity of S , we find (plk , pnk ) ∈ S . Therefore, by using the
contractivity condition (v), we obtain

ρ(plk+1, pnk+1) = ρ(Gplk ,Gpnk )

≤ ϕ(ρ(plk , pnk )) + L min{ρ(plk ,Gplk ), ρ(pnk ,Gpnk ), ρ(plk ,Gpnk ), ρ(pnk ,Gplk )}

so that

ρ(plk+1, pnk+1) ≤ ϕ(δk) + L min{ρlk , ρnk , ρ(plk , pnk+1), ρ(pnk , plk+1)}. (6)

Letting upper limit in (6) and making use of Lemma 1 and the property of Φ, we find

ε0 = lim sup
k→∞

ρ(plk+1, pnk+1) ≤ lim sup
k→∞

ϕ(δk) + L min{0, 0, ε0, ε0} = lim sup
s→ε+0

ϕ(s) < ε0,

which arises a contradiction. Thus, {pn} remains Cauchy.
Since the sequence {pn} is an S-preserving and Cauchy, therefore by assumption (i),

there exists p̄ ∈ P verifying pn
ρ−→ p̄.

Step-5. We’ll show that p̄ is the fixed point of G by using the assumption (iv). Suppose

that the mapping G is S-continuous. As {pn} remains S-preserving verifying pn
ρ−→ p̄,

S-continuity of G yields that pn+1 = G(pn)
ρ−→ G( p̄). Owing to the uniqueness property

of convergence limit, we get G( p̄) = p̄.
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If S is ρ-self-closed, then {pn} contains a subsequence {pnk} verifying [pnk , p̄] ∈
S , for all k ∈ N. Using assumption (v), Proposition 2 and [pnk , p̄] ∈ S , we obtain

ρ(pnk+1,G p̄) = ρ(Gpnk ,G p̄)

≤ ϕ(ρ(pnk , p̄)) + L min{ρ(pnk , pnk+1), 0, ρ(pnk , p̄), ρ( p̄, pnk+1)}
= ϕ(ρ(pnk , p̄)).

We claim that
ρ(pnk+1,G p̄) ≤ ρ(pnk , p̄), for all k ∈ N. (7)

If ρ(pnk0
, p̄) = 0 for some k0 ∈ N, then we find ρ(Gpnk0

,G p̄) = 0 so that ρ(pnk0
+1,G p̄) =

0 and hence (7) occurs for such k0 ∈ N. In either case, we have ρ(pnk , p̄) > 0 for all k ∈ N.
By the definition of Φ, we get ρ(pnk+1,G p̄) ≤ ϕ(ρ(pnk , p̄)) < ρ(pnk , p̄) for all k ∈ N.

Thus (7) occurs for any k ∈ N. Putting limit of (7) and utilizing pnk

ρ−→ p̄, we derive

pnk+1
ρ−→ G( p̄). Due to uniqueness property of limit, we find G( p̄) = p̄ so that p̄ remains a

fixed point of G.

Next, we present the following uniqueness result.

Theorem 5. Along with the hypotheses of Theorem 4, if G(P) is S-directed, then G possesses a
unique fixed point.

Proof. In view of Theorem 4, choose p̄, q̄ ∈ P verifying

G( p̄) = p̄ and G(q̄) = q̄. (8)

As p̄, q̄ ∈ G(P), by our hypothesis, there exists m ∈ P satisfying

( p̄, m) ∈ S and (q̄, m) ∈ S . (9)

Denote $n := ρ( p̄,Gnm). Using (8), (9) and assumption (v), one obtains

$n = ρ( p̄,Gnm) = ρ(G p̄,G(Gn−1m))

≤ ϕ(ρ( p̄,Gn−1m)) + L min{0, ρ(Gn−1m,Gnm), ρ( p̄,Gnm), ρ(Gn−1m, p̄)}
= ϕ($n−1)

so that
$n ≤ ϕ($n−1). (10)

If for some n0 ∈ N, $n0 = 0, then we have $n0 ≤ $n0−1. Otherwise in case $n >
0, for all n ∈ N, using the definition of Φ, (10) reduces to $n < $n−1. Hence, in both cases,
we have

$n ≤ $n−1.

Using the arguments similar to Theorem 4, above inequality gives rise to

lim
n→∞

$n = lim
n→∞

ρ( p̄,Gnm) = 0. (11)

Similarly, one can find
lim

n→∞
ρ(q̄,Gnm) = 0. (12)

By using (11), (12) and the triangular inequality, one has

ρ( p̄, q̄) = ρ( p̄,Gnm) + ρ(Gnm, q̄)→ 0, as n→ ∞.

This asserts that p̄ = q̄. Therefore, G possesses a unique fixed point.
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4. Examples and Consequences

Intending to illustrate Theorems 4 and 5, consider the following examples.

Example 1. Take P = [0, ∞) with usual metric. Let G : P → P be a mapping defined by
G(p) = p

p+1 . Consider S := {(p, q) ∈ P2 : p − q > 0}. Then (P, ρ) is S-complete and G
is S-continuous. Also, S is locally G-transitive and G-closed binary relation on P. Define the
auxiliary function ϕ : [0, ∞)→ [0, ∞) by ϕ(a) = a

a+1 and choose L ≥ 0 arbitrarily. Then for all
(p, q) ∈ S , we have

ρ(Gp,Gq) =

∣∣∣∣ p
p + 1

− q
q + 1

∣∣∣∣ = ∣∣∣∣ p− q
1 + p + q + pq

∣∣∣∣
≤ p− q

1 + (p− q)
=

ρ(p, q)
1 + ρ(p, q)

≤ φ(ρ(p, q)) + L min{ρ(p,Gp), ρ(q,Gq), ρ(p,Gq), ρ(q,Gp)}.

Therefore, the assumption (v) of Theorem 4 is satisfied. Similarly, rest of the conditions of
Theorem 4 and Theorem 5 hold. Consequently, G admits a unique fixed point p̄ = 0.

Example 2. Take P = [0, 1] with usual metric. Let G : P→ P be a mapping defined by

G(p) =

{
p2, if 0 ≤ p < 1/4
0, if 1/4 ≤ p ≤ 1.

Consider S :=≤. Clearly, (P, ρ) is S-complete. Also, S is locally G-transitive and G-closed binary
relation on P. Here, G is not S-continuous. But S is ρ-self-closed. Also, G satisfies the contractivity
condition (v) for the auxiliary function ϕ(a) = a/2 and for the constant L = 1. Similarly, rest
of the conditions of Theorem 4 and Theorem 5 hold. Consequently, G admits a unique fixed point
p̄ = 0.

Example 3. Take P = (0, 4] with usual metric. Let G : P→ P be a mapping defined by

G(p) =

{
1, if 0 ≤ p < 3
4, if 3 ≤ p ≤ 4.

Define a relation S := {(p, q) : 1 ≤ p ≤ q ≤ 2 or 3 ≤ p ≤ q ≤ 4} on P. Clearly, (P, ρ) is
S-complete and G is S-continuous. Also, S is locally G-transitive and G-closed binary relation on
P. Here, G satisfies the contractivity condition (v) for the auxiliary function

ϕ(a) =

{
1/2 if 0 ≤ a ≤ 1
a− 1/2 if a > 1

and for the constant L ≥ 1. Similarly, rest of the conditions of Theorem 4 hold. Consequently, G
admits a fixed point.

Note that G(P) is not S-directed as there is no element in P which remains simultaneously
S-comparative with 1 and 4. Thus far Theorem 5 is not applicable to present example. Indeed, G
possesses two fixed points, (p = 1 and q = 4).

Now, making use of our results, we’ll obtain some well known fixed point theorems
from a review of current research.. Under the restriction S = P2, the universal relation,
Theorem 5 deduces the following metrical fixed point theorem under strict almost Boyd-
Wong contraction.
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Corollary 1. Suppose that (P, ρ) is a complete metric space and G : P → P is a function. If ∃
ϕ ∈ Φ and L ≥ 0 verifying

ρ(Gp,Gq) ≤ ϕ(ρ(p, q)) + L min{ρ(p,Gp), ρ(q,Gq), ρ(p,Gq), ρ(q,Gp)}, for all p, q ∈ P,

then G admits a unique fixed point.

Corollary 1 further reduces to Theorem 1 for L = 0, while it reduces to Theorem 3 for
ϕ(a) = ka, k ∈ (0, 1).

Particularly for L = 0, Theorem 5 deduces the following result of Alam and Imdad [16].

Corollary 2. [16] Suppose that (P, ρ) is metric space, S is a relation on P while G : P → P
remains a mapping. Also,

(i) (P, ρ) is S-complete,
(ii) there exists p0 ∈ P satisfying (p0,Gp0) ∈ S ,
(iii) S is G-closed,
(iv) P is S-continuous, or S is ρ-self-closed,
(v) there exists ϕ ∈ Φ verifying

ρ(Gp,Gq) ≤ ϕ(ρ(p, q)), for all p, q ∈ P with (p, q) ∈ S .

Then, G admits a fixed point. Moreover, if G(P) is S-directed, then G possesses a unique
fixed point.

Taking S =�, a partial order in Corollary 2, we get Theorem 9 of Kutbi et al. [33],
which sharpens and enriches several existing results, viz., Theorem 2.1 of Wu and Liu [34],
Theorem 5 of Kutbi et al. [35], Theorem 10 of Karapinar et al. [36] and Theorem 1.2 of
Karapinar and Roldán-López-de-Hierro [37].

Example 2 can not be covered by Corollary 2 for if we take p = 1/5 and q = 1/4, then
the inequality

ρ(Gp,Gq) ≤ ϕ(ρ(p, q))

is never satisfied. This substantiates the utility and novelty of Theorem 5 over Corollary 2.

5. Applications to Boundary Value Problems

Let us consider the following BVP:{
v′(r) = Ψ(r, v(r)), r ∈ [0, c]
v(0) = v(c)

(13)

wherein Ψ : [0, c]×R→ R is a continuous function.
In the follow-up, by Θ, we’ll denote the class of continuous and monotonically increas-

ing functions θ : [0, ∞)→ [0, ∞) verifying θ(a) < a, for all a > 0. Obviously, Θ ⊂ Φ.
As usual, the collection of real valued continuous (continuously differentiable) func-

tions on the interval [0, c] will be denoted by C[0, c] (C ′[0, c]).
Following [38], we say that ṽ ∈ C ′[0, c] is a lower solution of (13) if{

ṽ′(r) ≤ Ψ(r, ṽ(r)), r ∈ [0, c]
ṽ(0) ≤ ṽ(c).

Our main result of this section runs as under:

Theorem 6. Along with the Problem (13), if there exists τ > 0, and θ ∈ Θ satisfying
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0 ≤ [Ψ(r, b) + τb]− [Ψ(r, a) + τa] ≤ τθ(b− a), for all r ∈ [0, c] and for all a, b ∈ R with a ≤ b, (14)

then the Problem (13) possesses a unique solution provided it has a lower solution.

Proof. Rewrite (13) as{
v′(r) + τv(r) = Ψ(r, v(r)) + τv(r), for all r ∈ [0, c]
v(0) = v(c)

which remains equivalent to the Fredholm integral equation:

v(r) =
∫ c

0
M(r, ξ)[Ψ(ξ, v(ξ)) + τv(ξ)]dξ. (15)

Here M(r, ξ) is the Green function, defined by

M(r, ξ) =

{
eτ(c+ξ−r)

eτc−1 , 0 ≤ ξ < r ≤ c
eτ(ξ−r)

eτc−1 , 0 ≤ r < ξ ≤ c.

Denote P := C[0, c]. Consider the function G : P→ P defined by

(Gv)(r) =
∫ c

0
M(r, ξ)[Ψ(ξ, v(ξ)) + τv(ξ)]dξ, for all r ∈ [0, c]. (16)

Define a relation S on P by

S = {(u, v) ∈ P× P : u(r) ≤ v(r), for all r ∈ [0, c]}. (17)

In lieu of one of the hypothesis, let ṽ ∈ C ′[0, c] be a lower solution of (13). Now, we
shall show that (ṽ,G ṽ) ∈ S . We have

ṽ′(r) + τṽ(r) ≤ Ψ(r, ṽ(r)) + τṽ(r), for all r ∈ [0, c].

By multiplying to both of the sides with eτr, we obtain

(ṽ(r)eτr)′ ≤ [Ψ(r, ṽ(r)) + τṽ(r)]eτr, for all r ∈ [0, c],

thereby yielding

ṽ(r)eτr ≤ ṽ(0) +
∫ r

0
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]eτξ dξ, for all r ∈ [0, c]. (18)

Using the fact ṽ(0) ≤ ṽ(c), we find

ṽ(0)eτc ≤ ṽ(c)eτc ≤ ṽ(0) +
∫ c

0
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]eτξ dξ

so that

ṽ(0) ≤
∫ c

0

eτξ

eτc − 1
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ. (19)

Employing (18) and (19), we find

ṽ(r)eτr ≤
∫ c

0

eτξ

eτc − 1
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ +

∫ r

0
eτξ [Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ

=
∫ r

0

eτ(c+ξ)

eτc − 1
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ +

∫ c

r

eτξ

eτc − 1
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ,
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implying thereby

ṽ(r) ≤
∫ r

0

eτ(c+ξ−r)

eτc − 1
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ +

∫ c

r

eτ(ξ−r)

eτc − 1
[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ

=
∫ c

0
M(r, ξ)[Ψ(ξ, ṽ(ξ)) + τṽ(ξ)]dξ

= (G ṽ)(r), for all r ∈ [0, c],

so that (ṽ,G ṽ) ∈ S .
Next, we shall verify that S is G-closed. Choose u, v ∈ P such that (u, v) ∈ S . Making

use of (14), we find

Ψ(r, u(r)) + τu(r) ≤ Ψ(r, v(r)) + τv(r), for all r ∈ [0, c]. (20)

By (16), (20) and M(r, ξ) > 0, for all r, ξ ∈ [0, c], we obtain

(Gu)(r) =
∫ c

0
M(r, ξ)[Ψ(ξ, u(ξ)) + τu(ξ)]dξ

≤
∫ c

0
M(r, ξ)[Ψ(ξ, v(ξ)) + τv(ξ)]dξ

= (Gv)(r), for all r ∈ [0, c],

which in view of (17) yields that (Gu,Gv) ∈ S and hence the conclusion is immediate.
Now, equip a metric ρ on P as

ρ(u, v) = sup
r∈[0,c]

|u(r)− v(r)|, ∀ u, v ∈ P. (21)

Clearly, the metric space (P, ρ) is S-complete. To verify the contraction condition, take
u, v ∈ P such that (u, v) ∈ S . Making use of (14), (16) and (21), we find

ρ(Gu,Gv) = sup
r∈[0,c]

|(Gu)(r)− (Gv)(r)| = sup
r∈[0,c]

(
(Gv)(r)− (Gu)(r)

)
≤ sup

r∈[0,c]

∫ c

0
M(r, ξ)[Ψ(ξ, v(ξ)) + τv(ξ)−Ψ(ξ, u(ξ))− τu(ξ)]dξ

≤ sup
r∈[0,c]

∫ c

0
M(r, ξ)τθ(v(ξ)− u(ξ))dξ. (22)

Since, we have 0 ≤ v(ξ)− u(ξ) ≤ ρ(u, v), therefore monotonicity of θ provides that

θ(v(ξ)− u(ξ)) ≤ θ(ρ(u, v)).

Using above inequality, (22) reduces to

ρ(Gu,Gv) ≤ τθ(ρ(u, v)) sup
r∈[0,c]

∫ c

0
M(r, ξ)dξ

= τθ(ρ(u, v)) sup
r∈[0,c]

1
eτc − 1

[
1
τ

eτ(c+ξ−r)
∣∣∣r
0
+

1
τ

eτ(ξ−r)
∣∣∣c
r

]
= τθ(ρ(u, v))

1
τ(eτc − 1)

(eτc − 1)

= θ(ρ(u, v))
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implying thereby

ρ(Gu,Gv) ≤ θ(ρ(u, v)) + L min{ρ(u,Gu), ρ(v,Gv), ρ(u,Gv), ρ(v,Gu)},
for all u, v ∈ P satisfying (u, v) ∈ S

where L ≥ 0 is arbitrary.
Let {vn} ⊂ P be an S-preserving sequence that converges to v ∈ P implying thereby

vn(r) ≤ v(r), for all n ∈ N and for all r ∈ [0, c]. By (17), we have (vn, v) ∈ S , for all n ∈ N.
Thus, S is ρ-self-closed. Therefore, the assumptions (i)-(v) of Theorem 4 holds and so G
admits a fixed point.

Take arbitrary u, v ∈ P so that G(u),G(u) ∈ G(P). Set w := max{Gu,Gv} implying
thereby (Gu, ω) ∈ S and (Gv, ω) ∈ S . This shows that the set G(P) is S-directed. Con-
sequently, using Theorem 5, G possesses a unique fixed point, which leads to the desired
unique solution of (13).

6. Conclusions

In this manuscript, we have investigated the fixed point results via a locally G-
transitive relation under a strict almost ϕ-contraction in the sense of Boyd and Wong [5]. We
also deduced a corresponding result in abstract metric space, which generalizes the main
results of Boyd and Wong [5] (i.e., Theorem 1) and Babu et al. [8] (i.e., Theorem 3). On the
other hand, for a partial order relation, Theorems 4 and 5 reduce to the enriched versions
of several existing results. This substantiates the utility of our results in comparison to
other known findings in the literature. To demonstrate our findings, we constructed three
examples. Examples 1 and 2 illustrate Theorem 5 which respectively verifies two distinct
alternating assumptions (firstly, P is S-continuous; secondly, S is ρ-self-closed). On the
other hand, Example 3 satisfies the hypotheses of only existence result (i.e., Theorem 4) and
fails to be uniqueness.

As a future work, one can prove the analogues of Theorems 4 and 5 for locally finitely G-
transitive relation under strict almost ϕ-contraction following the results of Alam et al. [17].
On applying of our findings, we established the existence and uniqueness theorem for BVP
when a lower solution exists. Analogously, one can prove similar result in the presence of
an upper solution.
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