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Abstract: This paper performed an investigation into the s-embedding of the Lie superalgebra (⃗S1|1), a
representation of smooth vector fields on a (1,1)-dimensional super-circle. Our primary objective was
to establish a precise definition of the s-embedding, effectively dissecting the Lie superalgebra into
the superalgebra of super-pseudodifferential operators (SψD⊙) residing on the super-circle S1|1. We
also introduce and rigorously define the central charge within the framework of (⃗S1|1), leveraging the
canonical central extension of SψD⊙. Moreover, we expanded the scope of our inquiry to encompass
the domain of fuzzy Lie algebras, seeking to elucidate potential connections and parallels between
these ostensibly distinct mathematical constructs. Our exploration spanned various facets, including
non-commutative structures, representation theory, central extensions, and central charges, as we
aimed to bridge the gap between Lie superalgebras and fuzzy Lie algebras. To summarize, this
paper is a pioneering work with two pivotal contributions. Initially, a meticulous definition of the
s-embedding of the Lie superalgebra (⃗S1|1) is provided, emphasizing the representationof smooth
vector fields on the (1,1)-dimensional super-circle, thereby enriching a fundamental comprehension
of the topic. Moreover, an investigation of the realm of fuzzy Lie algebras was undertaken, probing
associations with conventional Lie superalgebras. Capitalizing on these discoveries, we expound
upon the nexus between central extensions and provide a novel deformed representation of the
central charge.

Keywords: Lie superalgebra; s-embedding; central charge; fuzzy Lie algebras; canonical
central extension

MSC: 17B66; 17B68; 16S32; 81R10; 46L87; 81T60

1. Introduction

The study of multi-parameter deformations (MLDs) within the framework of the
standard embedding (s-embedding) of the Lie algebra (LA) (⃗S1) has long been a subject
of profound mathematical interest. This embedding represents the vector fields on the
circle S1 and finds applications in various mathematical and physical contexts. The ex-
ploration of the MLD involves examining how this standard embedding evolves when
subjected to multi-parameter deformations, thus unveiling intricate structures and reveal-
ing hidden symmetries.

In recent decades, the intersection of Lie algebras and multi-parameter deformations
has been the subject of considerable exploration and debate. The work of Pogudin et al. [1]
laid the groundwork, introducing the foundational concepts of the standard embedding
of Lie algebras. Their focus on the vector fields on the circle was later expanded upon by
Bahturin [2], who found wide-ranging applications in both mathematical and physical
realms. However, it was the breakthrough research by Kanel-Belov et al. [3] that began
delving into the intricacies of pseudodifferential operators, emphasizing their invaluable
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role in mathematical physics. However, amid this flourishing area of study, the critical re-
view in [4–6] cautioned the academic community to ensure rigorous proofs and validations.
As the field continues to grow, the convergence of these diverse perspectives promises
richer understandings and breakthroughs. In the realm of pseudodifferential operators,
particularly within the algebra of pseudodifferential operators denoted as ψD⊙ on S1,
the s-embedding has been a topic of extensive research. The pseudodifferential operator
algebra is an invaluable tool in mathematical physics and provides insights into a wide
array of phenomena. References [7,8] have laid a solid foundation for understanding the
s-embedding within this context.

One of the central objectives of this study was to delve into the cohomology space
H1 (⃗(S1|1),SψD⊙). This cohomology space plays a pivotal role in understanding the defor-
mations of the s-embedding. Remarkably, our analysis revealed that this cohomology space
is four-dimensional. Furthermore, we provide explicit formulations for four generating
one-cocycles. These cocycles serve as key elements in the classification and characterization
of tiny deformations (def) of the standard embedding (SE) of the Lie superalgebra (⃗S1|1).
This Lie superalgebra represents vector fields on the super-circle S1|1 and resides within
the larger Lie superalgebra SψD⊙, which comprises super-pseudodifferential operators
defined on S1|1.

Some works appear to operate within the framework of Lie superalgebras, central
extensions, vertex superalgebras, and superalgebras (cf. [9–11]). These are common mathe-
matical structures in both cases. But, in our work, we had distinct research objectives and a
mathematical focus. We emphasize the s-embedding of (⃗S1|1) and its connections to various
mathematical domains, while the cited work concentrated on minimal generating sets, root
systems, and commutant vertex algebras within the context of a different Lie superalgebra.

In the course of our investigation into these deformations and cohomology spaces,
we uncovered intriguing connections with fuzzy Lie algebras. Fuzzy Lie algebras are a
unique and emerging area of research that introduces non-commutative structures into the
realm of Lie algebras. For more detail about these structures, see [12–14]. By examining the
deformations and cohomology spaces in parallel with the concepts from fuzzy Lie algebras,
we aimed to establish a deeper connection between these two mathematical domains. This
interdisciplinary exploration sought to bridge the gap between traditional Lie theory and
non-commutative algebra, offering new insights and perspectives on both.

The second phase of our study focused on the integrability relations of the defined
quantity. This analysis revealed the existence of four distinct families of non-trivial def-
initions, each parameterized by an even parameter. Our objective was to derive explicit
formulas that meticulously describe these families. It was through a careful contraction pro-
cedure applied to these definitions that we obtained four one-parameter definitions of the
superembedding of (⃗S1|1) into the Poisson–Lie superalgebra Sϱ of super-pseudodifferential
operators defined on S1|1. Each parameter within these definitions corresponds to a fas-
cinating algebraic curve within the parameter space, creating a rich interplay between
deformation theory and the fuzzy Lie algebra framework.

The well-established non-trivial central extension of SψD⊙ significantly influences
the central extension of the superalgebra (⃗S1|1), as detailed in [15]. In particular, the two-
cocycle that generates this extension plays a critical role in defining the central extension
of (⃗S1|1). Leveraging our findings, we not only elucidated this intricate relationship, but
also derived a “deformed” representation of the central charge. This central charge arises
from the deformations of the superembedding we constructed, further emphasizing the
connections between central extensions and fuzzy Lie algebra structures.

In summary, the novelty in this paper is represented by two key contributions. Firstly,
we provide a precise definition for the s-embedding of the Lie superalgebra (⃗S1|1), focusing
on its representation of smooth vector fields on a (1, 1)-dimensional super-circle, enhancing
the foundational understanding. Secondly, we explored the domain of fuzzy Lie algebras,
seeking connections with traditional Lie superalgebras. Leveraging these findings, we
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elucidated the relationship between central extensions and derived a novel “deformed”
representation of the central charge.

MLD = multi-parameter deformation.
LA = Lie algebra.
LSA = Lie superalgebra.
(⃗S1) = Lie algebra of vector fields on the circle (S1).
(⃗S1|1) = Lie superalgebra of vector fields on the super-circle (S1|1).
ψD⊙ = algebra of pseudodifferential operators on S1.
SψD⊙ = superalgebra of pseudodifferential operators on S1|1.
(SE) = standard embedding.

2. Background

2.1. The Lie Superalgebra of (Contact) Vector Fields on S1|1

The super-circle S1|1 is defined by C∞(S1|1). Let us explicate the elements of C∞(S1|1).
An element C∞(S1|1) must be written as

⊺(a, ϑ) = f0(a) + ϑ f1(a),

where f0(a) and f1(a) are in C∞(S1) and a and ϑ are even and odd variables, respectively.
Let us remark that we have ϑ2 = 0. In fact, the even elements in C∞(S1|1) are the functions
⊺(a, 0) = f0(a), and the functions ⊺(a, ϑ)− ⊺(a, 0) = ϑ f1(a) are odd elements. The parity
of a homogeneous function ⊺ is denoted by p(⊺).

Assume that (⃗S1|1) is the super-space of vector fields on S1|1:

(⃗S1|1) = {⊺(a, ϑ)∂a + ⊺̃(a, ϑ)∂ϑ},

where ∂ϑ and ∂a stand, respectively, for ∂
∂ϑ and ∂

∂a . The even vector fields are linear combi-
nation of the fields f (a)∂a and ϑ f (a)∂ϑ, while the odd ones are a combination of the fields
ϑ f (a)∂a and f (a)∂ϑ. The bilinear operation of the superbracket between two vector fields
is defined for two homogeneous vector fields as follows:

[χ, ℵ] = χ ◦ ℵ − (−1)p(χ)p(ℵ)ℵ ◦ χ,

where p(χ) and p(ℵ) are the parities of χ and ℵ, respectively.
The structure of the contact on S1|1 can be given by the one-form:

α = da + ϑdϑ.

Denoting K(1) as the Lie-sub-superalgebra of (⃗S1|1), where the Lie action on α corresponds
to a function multiplication, it can be observed that any element in K(1) follows the form
described in [15].

v⊺ = ⊺∂a +
(−1)p(⊺)+1

2
γ(⊺)γ,

where ⊺ ∈ C∞(S1|1), p(⊺) is the parity of ⊺ and γ = ∂ϑ − ϑ∂a. The bracket is given by

[v⊺, vH ] = v{⊺,H},

where

{⊺, H} = ⊺H′ − ⊺′H +
(−1)p(⊺)+1

2
γ(⊺)γ(H); H′ := ∂a(H). (1)

Equation (1) is taken directly from [16].
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The LSA K(1) is called the LSA of contact vector fields. The vector field γ = ∂θ − ϑ∂a

on S1|1 maps ⊺ = f (a) + ϑg(a) to γ(⊺) = g(a) − f ′(a)ϑ, so that γ2 =
1
2
[γ, γ] = −∂a.

The usual rule of Leibniz:
∂

∂a
◦ g = g′(a) + g(a)

∂

∂a
on C∞(S1), is replaced on C∞(S1|1) by:

γ ◦ ⊺ = γ(⊺) + (−1)p(⊺) ⊺ γ.

2.2. Detailed Overview of the Super-Space SψDO
This subsection elaborates on the intricate concepts and mathematical formulations

derived from the seminal work referenced as ABO. Central to this discussion is the series
defined as follows:

SP =
{

X =
∞

∑
k=−M

∑
ϵ

xk,ϵ(a, ϑ)y−kϑ̄ϵ
∣∣∣ xk,ϵ ∈ C∞(S1|1), ϵ ∈ {0, 1}, M ∈ N

}
, (2)

where the series X represents an aggregation of terms indexed by k and ϵ, with xk,ϵ as
complex-valued smooth functions on the super-circle S1|1. In this formulation, y is analo-
gous to the derivative with respect to the coordinate a, and ϑ̄ corresponds to the derivative
with respect to the Grassmannian variable ϑ, bearing a parity of one.

This framework gives rise to the super-space, which forms the foundational struc-
ture for the super-commutative algebra of super-pseudodifferential symbols on S1|1. This
algebra is characterized by conventional multiplication operations. The space SP is en-
dowed with a Poisson LSA (Lie superalgebra) structure, which is articulated by the brackets
defined as:

{X, Y} =
∂X
∂y

∂Y
∂a

− ∂X
∂a

∂Y
∂y

− (−1)p(X)

(
∂X
∂ϑ

∂Y
∂ϑ̄

+
∂X
∂ϑ̄

∂Y
∂ϑ

)
. (3)

Here, the Poisson brackets incorporate both the even and odd derivatives, reflecting the
supergeometry underlying the algebra.

Furthermore, the associative superalgebra of super-pseudodifferential operators,
SψDO, is constructed on the same super-circle S1|1. Although it shares a similar vector
space structure with SP , the multiplication in SψDO adheres to a distinct rule, expanding
the algebraic interactions:

X ◦ Y = ∑
α≥0,ν=0,1

(−1)p(X)+1

α!
(∂α

y∂ν
ϑ̄

X)(∂α
a ∂ν

ϑY). (4)

This rule of composition is pivotal as it induces a super-commutator, a fundamental element
in the study of superalgebras, defined by:

[X, Y] = X ◦ Y − (−1)p(X)p(Y)Y ◦ X.

The super-commutator, thus, encapsulates the non-commutative nature of the algebra, offering
a nuanced view of the interactions between different elements in this superalgebraic structure.

The format of the LSA can be constructed as SψD⊙ to the Poisson algebra Sϱ. Consider
the super-commutative SA Λ generated by (ϑ; ϑ̄). Then, Sϱ = ϱ ⊗ Λ, where ϱ is the
space of symbols of ordinary pseudodifferential operators ψD⊙(S1). Let us define the
linear isomorphisms:

Φh : ϱ −→ ϱ (5)

as
Φh(x(a)yl) = a(x)hlyl , where 0 < h ≤ 1.

Now, the multiplication on ϱ is given by

X ◦h Y = Φ−1
h (Φh(X) ◦ Φh(Y)).
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The rule of Leibniz in the odd variables can take a form by letting:

ϑ̄ ◦h ϑ = h − ϑϑ̄.

Now, the composition on Sϱ affected by h is:

(X ⊗ α) ◦h (Y ⊗ β) = (X ◦h Y)α · β,

where X, Y ∈ ϱ and α, β ∈ Λ. We will denote by SψD⊙h the associative algebra Sϱ
endowed with the farmer composition ◦h. This compositioninduces the usual LSA structure
on SψD⊙h given by the super-commutator [X, Y]h = X ◦h Y − (−1)p(X)p(Y)Y ◦h X. One
has

[X, Y]h = {X, Y}+ O(h)

and therefore, limh→0[X, Y]h = {X, Y}. This is mean that the LSA SψD⊙ belongs to the
Poisson superalgebra Sϱ.

Moreover, SψD⊙ injects the similarity of the Adler trace expressed on the LA ψD⊙ of
pseudodifferential operators on S1 (cf. [15,17]). The right super-residue of the
super-pseudodifferential operator X = ∑∞

k=−M ∑ϵ=0,1 ak, ϵ(a, ϑ)y−kϑ̄ϵ (see (2)) is given by

Sres(X) = a−1, 1(a, ϑ)

and the functional Str(X) known from the Gelfand–Adler trace will be defined on SψD⊙
by

Str(X) =
∫

S1|1
Sres(X)Ber(a, ϑ).

while the Berezin integral is of the form∫
S1|1

(g0(a) + ϑg1(a))Ber(a, ϑ) =
∫

S1
g1da

2.3. Fuzzy Lie Algebras

Given the detailed mathematical context of the super-space SψDO and its underlying
principles, we now explore the concept of fuzzy subsets within the realm of vector spaces.
This exploration extends the notion of traditional vector spaces into the domain of fuzzy
logic, providing a unique perspective on how subsets can be characterized in a less binary
and more-gradual manner.

In the world of linear algebra, vector spaces over a field F are fundamental constructs.
These spaces are typically defined with crisp, clear boundaries. However, when we intro-
duce the concept of fuzzy subsets, these boundaries become more nuanced. A fuzzy subset
µ of a vector space V can be thought of as a “soft” or “blurred” version of a traditional
subset. Unlike conventional subsets, where an element either belongs or does not belong
to a set, a fuzzy subset assigns a degree of membership to each element, ranging from 0
(completely outside the set) to 1 (completely inside the set).

Let V be a vector space over a field F. A fuzzy subset µ of V is considered a fuzzy
subspace of V if it satisfies the following conditions:

µ(x + y) ≥ min{µ(x), µ(y)} for all x, y ∈ V,

µ(αx) ≥ µ(x) for all x ∈ V, α ∈ F.

Note: Condition (2) implies that µ(−x) ≥ µ(x) and µ(0) ≥ µ(x) for all x in V.
If µ is a fuzzy subspace of a vector space V, then the following properties hold:

µ(x) = µ(−x),

µ(x − y) = µ(0) implies µ(x) = µ(y),

µ(x) < µ(y) implies µ(x − y) = µ(x) = µ(y − x),
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for all x, y ∈ V.
For a fuzzy subset µ of a vector space V, the following statements are equivalent:

1. µ is a fuzzy subspace of V;
2. Each nonempty U(µ, t) = {x ∈ L|µ(x) ≥ t} is a subspace of V.

Note: This theorem establishes the equivalence between fuzzy subspaces and conventional
subspaces within the context of fuzzy sets.

A fuzzy set µ, defined as a map µ : L → [0, 1], is termed a fuzzy Lie subalgebra of L
over a field F if it is a fuzzy subspace of L and satisfies the additional condition:

µ([x, y]) ≥ min{µ(x), µ(y)},

for all x, y ∈ L and α ∈ F.

Example 1. Consider the real vector space R3 with the Lie bracket operation [x, y] = x × y, where
x, y ∈ R3. Define a fuzzy set µ on R3 such that:

µ(x) =


0.9, if x = (0, 0, 0),
0.6, if x = (c, 0, 0), c = 0,
0.2, otherwise.

By direct calculations, it is observed that µ satisfies the conditions of a fuzzy Lie subalgebra, making
it a fuzzy Lie algebra (cf. [18–20]).

A fuzzy set µ : L → [0, 1] is considered a fuzzy Lie ideal of a Lie algebra L if it satisfies
the following conditions:

µ(x + y) ≥ min{µ(x), µ(y)},

µ(αx) ≥ µ(x) for all x ∈ L and α ∈ F,

µ([x, y]) ≥ µ(x) for all x, y ∈ L and α ∈ F.

A fuzzy set µ : L → [0, 1] is considered a fuzzy Lie ideal of a Lie algebra L if it satisfies
the following conditions:

µ(x + y) ≥ min{µ(x), µ(y)} for all x, y ∈ L,

µ(αx) ≥ µ(x) for all x ∈ L and α ∈ F,

µ([x, y]) ≥ min{µ(x), µ(y)} for all x, y ∈ L.

The definition of a fuzzy Lie ideal is equivalent to the condition that, for each nonempty
set, U(µ, t) = {x ∈ L|µ(x) ≥ t}, U(µ, t) is a Lie ideal of L.

2.4. The Structure of Sϱ as a (⃗S1|1)-Module

In this section, we will follow the same method used in [8,16]. We define the usual
embedding of (⃗S1|1) into Sϱ as follows:

π(⊺∂a + H∂ϑ) = ⊺y + Hϑ̄, (6)

which induces a (⃗S1|1)-module structure on Sϱ.
We assign the following Z-grading to the PSA Sϱ:

Sϱ =
⊕̃

n∈ZSϱn, (7)
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where
⊕̃

n∈Z = (
⊕

n<0)
⊕

∏n≥0, and

Sϱn =
{(

⊺y−n + Hy−n−1ϑ̄
) ∣∣∣ ⊺, H ∈ C∞(S1|1)

}
is the homogeneous degree −n subspace.

Each element A of SψD⊙ can be defined as

A = ∑
k∈Z

(⊺k + Hky−1ϑ̄)y−n, ⊺k, Hk ∈ C∞(S1|)

The order of A is defined as

o(A) = sup{k | ⊺k ̸= 0 or Hk ̸= 0}.

This defines a non-decreasing filtration on SψD⊙ as follows:

⊺n = {A ∈ SψD⊙, o(A) ≤ −n},

where n is an integer. Consequently, we have the filtration:

. . . ⊂ ⊺n+1 ⊂ ⊺n ⊂ . . . (8)

This filtration is compatible with the multiplication and the Poisson bracket. Specifically,
for X ∈ ⊺n and Y ∈ ⊺m, we have X ◦ Y ∈ ⊺n+m and {X, Y} ∈ ⊺n+m−1. This filtration
endows SψD⊙ with an associative filtered superalgebra structure.

Let Hr(SψD⊙) =
⊕̃

n∈Z⊺n/⊺n+1 denote the associated graded space. The filtration (8)
is also compatible with the usual action of (⃗S1|1) on SψD⊙. In fact, if v ∈ (⃗S1|1) and
X ∈ ⊺n, then

v.X = [π(v), X] ∈ ⊺n.

The induced (⃗S1|1)-module structure on the quotient ⊺n/⊺n+1 is isomorphic to the (⃗S1|1)-
module Sϱn. Therefore, the (⃗S1|1)-module Hr(SψD⊙) is isomorphic to the graded (⃗S1|1)-
module Sϱ, i.e.,

Sϱ ≃
⊕̃

n∈Z⊺n/⊺n+1.

3. Computations of the Space H1(⃗(S1|1),SψD⊙))

In the current section, we will adopt the same policy as in [8,16,21] to establish the
first CHS of (⃗S1|1) with coefficients in SψD⊙.

Let an LSA h = h0 ⊕ h1 be acting on a super-space Υ = Υ0 ⊕Υ1. For p ≥ 1, let the space
Cp(h, Υ) of p-cochains be the Z2 graded space of skew symmetric P-linear functions on h

with the range in V, and let C0(h, Υ) = V. The Chevalley–Eilenberg operator δ (see [22])
transforms Cp(h, Υ) into Cp+1(h, V). In particular, δ converts a linear function c : h → Υ
(∈ C1(h, V)) into a bilinear function δc : h× h → Υ defined by

δc(a, b) = c([a, b])− (−1)p(a)p(c)a.c(b) + (−1)p(b)(p(a)+p(c))b.c(a), ∀ b, a ∈ h (9)

where p(a) ∈ Z2 represents the parity of a.
Set

Z1(h, Υ) = {c ∈ Hom(h, V)|δc = 0}
B1(h, Υ) = {c ∈ Hom(h, V)|∃v ∈ Υ and c(a) = a · v, ∀a ∈ h}
H1(h, Υ) = Z1(h, Υ)/B1(h, Υ).

(10)

The spaces Z1(h, Υ), B1(h, Υ) and H1(h, Υ) are the space of one-cocycles, the space of one
coboundaries, and the first CHS.
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The space Hom(h, Υ) is Z2-graded via

Hom(h, Υ)b = ⊕a∈Z2Hom(hx, Υx+y); y ∈ Z2. (11)

According to theZ2-grading (11), each c inZ1(h, Υ) is converted into (c′, c′′) ∈ Hom(h0, Υ)⊕
Hom(h1, Υ) with respect to the equations below:

(E1) c′([h1, h2]) + h2 × c′(h1)− h1 × c′(h2) = 0 for-each h1, h2 ∈ h0,

(E2) c′′([h, g]) + g × c′(g)− h × c′′(g) = 0 for-any h ∈ h0, h ∈ h1,

(E3) c′([g1, g2])− g1c′′(g2)− g2c′′(h1) = 0 for-each h1, h2 ∈ h1.

(12)

A differential operator on S1|1 is an operator on C∞(S1|1) of the following form:
An element c in Hom(⃗(S1|1), Sϱn) is called differential if it is written in the fol-

lowing form: c(⊺(a, ϑ)∂a + ⊺̃(a, ϑ)∂ϑ) =
(

A1(⊺(a, ϑ)) + A2(⊺̃(a, ϑ))
)

y−n +
(

A3(⊺(a, ϑ)) +

A4(⊺̃(a, ϑ))
)

y−n−1ϑ̄ where Ai; i = 1, 2, 3, 4, are differential operators on S1|1.
We define:

(1) The space:

Hom1
di f f (⃗(S

1|1), Sϱn) = {c ∈ Hom(⃗(S1|1), Sϱn)| c is differential.}

(2) The space of one-differential cocycles:

Z1
di f f (⃗(S

1|1), Sϱn) = {c ∈ Homdi f f (⃗(S1|1), Sϱn)|δc = 0}

(3) The space of one-coboundaries:

B1 (⃗(S1|1), Sϱn) = {c ∈ Hom(⃗(S1|1), Sϱn)|∃T ∈ Sϱn and c(v) = {π(v), T}, ∀v ∈ (⃗S1|1)}

(4) The first differential cohomology space:

H1
di f f (⃗(S

1|1), Sϱn) = Z1
di f f (⃗(S

1|1), Sϱn)/B1 (⃗(S1|1), Sϱn).

(13)

Lemma 1. Let an even differential one-cocycle C0 from (⃗S1|1) to Sϱn. Then, if the restriction of C0

to K(1) is a coboundary, then C0 is a coboundary over (⃗S1|1).

Proof. Let C0 be an even differential one-cocycle. If the restriction of C0 to K(1) is a
coboundary, then there exists x(a)y−n + b(a)y−n−1ϑϑ̄ ∈ Sϱ0

n such that

C0(⊺∂a + H∂ϑ) = {π(⊺∂a + H∂ϑ), x(a)y−n + b(a)y−n−1ϑϑ̄}

for all ⊺∂a + H∂ϑ ∈ K(1).
If we apply the equation (E1), (E2) and (E3) from (12), we will obtain that

C0(v) = {π(v), x(a)y−n + b(a)y−n−1ϑϑ̄}

for all v in (⃗S1|1). Then, C0 is a coboundary over (⃗S1|1).

The following lemma is an immediate deduction of the previous lemma and Theorem 5.5
from [16].
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Lemma 2. We have:

dim(H1
di f f (⃗(S

1|1), Sϱ)0) ≤ dim(H1
di f f (K(1), Sϱ)0) = 4

and
dim(H1

di f f (⃗(S
1|1), Sϱ)1) ≤ dim(H1

di f f (K(1), Sϱ)1) = 0

Lemma 3. The H1
di f f (⃗(S

1|1), Sϱ) space is totally even if it has the following structure:

H1
di f f (⃗(S

1|1), Sϱn)0 =


R3 with n = 0
R if n = 1
0 elsewhere.

When n is zero, the non-trivial one-cocycles are:

Ξ0(⊺∂a + H∂ϑ) = ⊺,

Ξ1(⊺∂a + H∂ϑ) = ⊺′ − ∂ϑ(H),

Ξ2(⊺∂a + H∂ϑ) = −∂ϑ(⊺′)ϑ + H′y−1ϑ̄,

(14)

If n is one, then the non-trivial one-cocycle is:

Ξ3(⊺∂a + H∂ϑ) = ⊺′′y−1 − H′′y−2ϑ̄ − 2∂ϑ(H′)y−1, (15)

Proof. The first thing we should know is that the CHS inherits the Z-grading of Sϱ. It
is important to calculate it in each homogeneous component Sϱn. Furthermore, the Z2-
grading of Sϱn is inherited by the CHS, and it is important to calculate the even cohomology
and the odd one independently. But, this calculation is directly followed by the above
two results.

Theorem 1. The space H1 (⃗(S1|1),SψD⊙) is totally even. It is generated by the families of the
following insignificant one-cocycles:

Γ0(⊺∂a + H∂ϑ) = ⊺,

Γ1(⊺∂a + H∂ϑ) = ⊺′ − ∂ϑ(H),

Γ2(⊺∂a + H∂ϑ) =
∞

∑
ℓ=1

(−1)ℓ−1

ℓ
⊺(ℓ) y−ℓ+1 +

∞

∑
ℓ=1

(−1)ℓ−1

ℓ
H(ℓ)y−ℓϑ̄

Γ3(⊺∂a + H∂ϑ) =
∞

∑
ℓ=1

(−1)(ℓ+1) 2
ℓ+ 1

⊺(ℓ+1) y−ℓ +
∞

∑
ℓ=1

(−1)(ℓ+1) 2ℓ
ℓ+ 1

H(ℓ+1)y−ℓ−1ϑ̄

+
∞

∑
ℓ=1

2(−1)n∂ϑ(H(ℓ))y−ℓ.

Proof. First of all, we refer the readers to [23], for comprehensive studies of the homological
algebra used to structure the spectral sequences. We only mention the filtered module M

alone with nonincreasing filtration {Mn}n∈Z over an LSA h so that Mn+1 ⊂ Mn, ∪n∈Z
Mn = M and hMn ⊂ Mn.

Now, denote the induced usual filtration on the space of co-chains by providing the
following context:

⊺n(C∗(h,M)) = C∗(h,Mn),
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lead us to

d ⊺n (C∗(h,M)) ⊂ ⊺n(C∗(h,M)) (that is, d preserves the filtration);

⊺n+1(C∗(h,M)) ⊂ ⊺n(C∗(h,M)) (that is, the filtrationis nonincreasing).

Then there is a spectral sequence (E∗,∗
r , dr) for r ∈ N with dr of degree (r, 1 − r) and

E
ρ,σ
0 = ⊺p(Cρ+σ(h,M)) ⊺ρ+1 (Cρ+σ(h,M)) and E

ρ,σ
1 = Hρ+σ(h, Grρ(M)).

To simplify the notations, we have to replace ⊺n(C∗(h,M)) with ⊺nC∗. We define

Zρ,σ
r = ⊺ρCρ+σ

⋂
d−1(⊺ρ+rCρ+σ+1),

Yρ,σ
r = ⊺ρCρ+σ

⋂
d(⊺ρ−rCρ+σ−1),

E
ρ,σ
r = Zρ,σ

r (Zρ+1,σ−1
r−1 + Yρ,σ

r−1).

The differential d maps Zρ,σ
r into Zρ+r,σ−r+1

r and hence, includes a homomorphism:

dr : Eρ,σ
r −→ E

ρ+r,σ−r+1
r

The spectral sequence converges to H∗(C, d), that is

E
ρ,σ
∞ ≃ ⊺ρHρ+σ(C, d)/ ⊺ρ+1 Hρ+σ(C, d),

where ⊺ρ H∗(C, d) is the image of the map H∗(⊺ρC, d) → H∗(C, d) induced by the
inclusion ⊺ρC → C.

Now, let us come back to our general case, in which we are able to test the behavior of
the cocycles Ξ0, . . . , Ξ3 with the help of consecutive differentials of the spectral sequence.
The one-cocycles Ξ0, Ξ1, and Ξ2 are in E0,1

1 and Ξ3 belong to E1,0
1 . Imagine a one-cocycle

∈ Sϱ, but let us find its differentialas if its values belong to SψD⊙ and keep the rest of the
symbolic piece of the theorem. This implies that there is a new cocycle of a degree similar to
the degree of the previous one plus one, and its image under d1 is shown by its class. The dif-
ferentials dr of highers order are calculated by an iterative process of this procedure. Now,
the space E

ρ+r,σ−r+1
r contains the subspace coming from Gρ+σ+1 (⃗(S1|1); Hrρ+1(SψD⊙)).

It is not a difficult task to see that the cocycles Ξ0 and Ξ1 survive in a similar form.
Finding supplementary higher-order terms for the cocycles Ξ2 and Ξ3 leads us to the
following result:

Using the isomorphism Φh (5), we obtain the following corollary:

Corollary 1. The space H1 (⃗(S1|1),SψD⊙h) is totally even. It is generated by the family of the
following insignificant one-cocycles:

Γ0(⊺∂a + H∂ϑ) = ⊺,

Γ1(⊺∂a + H∂ϑ) = ⊺′ − ∂ϑ(H),

Γ2h(⊺∂a + H∂ϑ) =
∞

∑
ℓ=1

(−h)ℓ−1

ℓ
⊺(ℓ) y−ℓ+1 +

∞

∑
ℓ=1

(−h)ℓ−1

ℓ
H(ℓ)y−ℓϑ̄

Γ3h(⊺∂a + H∂ϑ) =
∞

∑
ℓ=1

(−1)(ℓ+1) 2hℓ−1

ℓ+ 1
⊺(ℓ+1) y−ℓ +

∞

∑
ℓ=1

(−1)(ℓ+1) 2ℓhℓ−1

ℓ+ 1
H(ℓ+1)y−ℓϑ̄

+
∞

∑
ℓ=1

2(−1)ℓhℓ−1∂ϑ(H(ℓ))y−ℓ

where h ∈ [0, 1].

Remark 1. If h → 0, we obtain the first CHS H1 (⃗(S1|1),Sϱ).
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4. Deformations, Cohomology, and Integrability of Infinitesimal Deformations
4.1. Deformations

Let η : (⃗S1|1) → SψD⊙(S1|1) be an embedding of Lie superalgebras:

η̃τ = η +
∞

∑
k=1

τkηk : Vect(S1|1) → SψD⊙(S1|1), satisfying η̃τ([A, B]) = [η̃τ(A), η̃τ(B)], (16)

Here, ηk : Vect(S1|1) → SψD⊙ are linear even functions, a formal deformation of η.
The right-hand bracket in (16) is a obvious extension of the LB in SψD⊙ to SψD⊙[[τ]].

Two formal deformations η̃τ and η̃′
τ are equivalent if there is an inner automorphism ȷτ :

SψD⊙[[τ]] → SψD⊙[[τ]]

ȷτ = exp(τ ad ⊺1 +τ2 ad ⊺2 + · · · ), (17)

where ⊺i ∈ SψD⊙ such that p(⊺i) = p(τi), satisfying

η̃′
τ = ȷτ ◦ η̃τ . (18)

Now, we explore a polynomial deformation (poly deformation) that is not a special
case of the formal definition. Specifically, we define the Π̃ deformation of a homomorphism
Π : (⃗S1) → ψD⊙ as polynomial if it takes the form:

Π̃(z) = Π + ∑
k∈Z

Π̃k(z) yk, where z ∈ Rn

For sufficiently large k and Π̃k(0) = 0, each linear function Π̃k(z) : (⃗S1) → C∞(S1) is a
polynomial in z and satisfies the conditions Π̃k ≡ 0.

Additionally, we considered an LSA homomorphism η̃(z) : (⃗S1|1) → SψD⊙ in the
following form:

η̃(c) = η + ∑
k∈Z

η̃k(c), (19)

where η̃k(c) : (⃗S1|1) → Sϱk are even linear mappings that are polynomial in the deformation
parameters z ∈ Rn. When k is sufficiently large and η̃k(0) = 0, these maps satisfy the
conditions η̃k ≡ 0.

To denote equivalence in terms of poly deformations, we replaced the formal auto-
morphism ȷt in (17) with an automorphism:

ȷ(z) : SψD⊙ −→ SψD⊙, (20)

which depends on z ∈ Rℓ. The automorphism ȷ(z) is defined as follows:

ȷ(z) = exp

(
ℓ

∑
i=1

zi ad ⊺i +
ℓ

∑
i,j=1

zizj ad ⊺i,j + · · ·
)

, (21)

where ⊺i,⊺i,j, · · · ,⊺i1···ik are the even elements of SψD⊙.

Remark 2. The theory of poly deformations looks to be important as compared to formal
ones. In the poly deformations, the equivalence problem has more attractive aspects related
to the parameter transformations.

Next, we explore the relationship between the polynomial and formal deformations of
LSA homologyand cohomology, cf. Nijenhuis and Richardson [24]. If η : h → y is an LSA
homology, then y is usually a h-module. A function

η + tη1 : h → y, (22)
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where η1 ∈ Z1(h, y) is an LSA homologyup to second-order terms in τ; and it is known as
infinitesimal deformation (inf deformation).

Now, it is a matter of finding higher-order prolongations of these inf deformations. Fix
ζτ = η̃τ − η, then (16) can be rewritten in the following way:

[ζτ(A), η(B)] + [η(A), ζτ(B)]− ζτ([A, B]) + ∑
i,j>0

[ηi(A), ηj(B)]τi+j = 0 . (23)

The initial few terms are (δζτ)(A, B), where δ is known as the coboundary. For linear
function ζ, ζ ′ : h −→ y, define:

[[ζ, ζ ′]] : h⊗ h −→ y

[[ζ, ζ ′]](A, B) = [ζ(A), ζ ′(B)] + [ζ ′(A), ζ(B)].
(24)

The relation (23) becomes now equivalent to:

δζτ +
1
2
[[ζτ , ζτ ]] = 0. (25)

Exploring (25) in series in τ, we obtain the equation for ηk:

δηk +
1
2 ∑

i+j=k
[[ηi, ηj]] = 0. (26)

The initial insignificant relation is δη2 +
1
2 [[η1, η1]] = 0, which gives us the initial obstruction

to the integration of an inf deformation. Indeed, it is not difficult to test that, for any couple
of 1-cocycles Υ1 and Υ2 ∈ Z1(h, y), the bi-linear function [[Υ1, Υ2]] is a 2-cocycle. This is
the first non-trivial relationship (26), which is clearly the condition for this cocycle to be a
coboundary. Furthermore, if one of the cocycles Υ1 or Υ2 is a coboundary, then [[Υ1, Υ2]] is
a two-coboundary. This means that the operation (24) defines a bi-linear function:

H1(h, y)⊗ H1(h, y) −→ H2(h, y), (27)

known to be a cup product.
All the obstructions can be found in H2(h, y), and under the cup product, they can be

in the image of H1(h, y).

4.2. Integrability of Infinitesimal Deformation

The first objective of this section is to learn the deformation of canonical embedding
η : (⃗S1|1) → SψD⊙ defined by

η(⊺∂a + H∂ϑ) = ⊺y + Hϑ̄, (28)

to a one-parameter family of LSA homomorphisms.
The space H1(⃗(S1|1),SψD⊙) categorizes the infinitesimal deformation of the s-embedding

(⃗S1|1) −→ SψD⊙ expressed in (28). Here, we will attempt to determine the integrability
conditions of the inf deformation into polynomial ones. Any non-trivial infinitesimal
deformation can be expressed as follows:

η1 = η + ∑
0≤i≤3

τi Γi , where τ0, τ1, τ2, τ3 ∈ R. (29)

The integrability condition (below) implies that either τ0 = 0 or τ2 = τ3 = 0.
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As operators with zero ordercommute in SψD⊙, this is clear evidence that the cup
products [[Γ0, Γ0]], [[Γ0, Γ1]], and [[Γ1, Γ1]] terminate identically, and that is why the map:

ην,λ : (⃗S1|1) → SψD⊙, v 7→ ην,λ (v) = η (v) + ν Γ0(v) + λ Γ1(v) (30)

is infected, a non-trivial definitionof the s-embedding; since it is of order one, it is a poly
deformation.

Lemma 4. Any non-trivial deformation of the embedding (28) resulting from Γ0 and Γ1 is equiva-
lent to a deformation of order one, which is expressed in (22).

Proof. Using Γ0 and Γ1 to generate the embedding (28), the embedding is deformed as
follows:

η̃τ = η + τ0 Γ0 + τ1 Γ1 + ∑
m≥2

∑
i+j=m

τi
0 τ

j
1 η

(m)
ij , (31)

where η
(m)
ij represents the even linear functions with the largest order terms. It is known

from previous works [25,26] that different choices of solutions for η
(2)
ij , which arise from (26),

lead to equivalent deformations. Therefore, it is possible to neglect η
(2)
ij . Moreover, by re-

currence, it can be shown that the largest-order terms satisfy δη
(m)
ij = 0, and they can also

be neglected.

Before giving the main theorem of this section, let us recall the following result
of [16,27].

The space H1(K(1),SψD⊙) is truly even. It is generated by the family of the following
non-trivial one-cocycles:

Φ0(v⊺) = − ⊺+
1
2

ϑ'(⊺),

Φ1(v⊺) = ⊺′,

Φ2(v⊺) =
∞

∑
ℓ=1

(−1)ℓ
(
ℓ− 2
ℓ

(−1)p(⊺)(φ(⊺(ℓ))y−ℓφ − ℓ− 3
ℓ+ 1

⊺ℓ+1 y−ℓ

)
,

Φ3(v⊺) =
∞

∑
ℓ=2

(−1)ℓ
(
ℓ− 1
ℓ

(−1)p(⊺)(φ(⊺(ℓ)))y−ℓφ − ℓ− 1
ℓ+ 1

⊺ℓ+1 y−ℓ

)
,

(32)

Now, suppose the following inf deformation of the s-embedding of η′ : K(1) ↪→ SψD⊙
defined by the cocycle Φ1, Φ2, Φ3 and depending on the real parameters τ1, τ2, τ3 :

η̃′(τ)(v⊺) = η′(v⊺) + τ1Φ1(v⊺) + τ2Φ2(v⊺) + τ3Φ3(v⊺). (33)

The infinitesimal deformation (33) with respect to a polynomial deformation exist-
sif and only if the following conditions hold:{

3τ1τ3 − 2τ3
1 − 2τ2

1 τ3 + τ2
1 + 2τ2

3 = 0
τ1 = τ2

(34)

or {
τ3τ1 − 2τ3τ2

1 − 2τ2
3 = 0

τ2 = 0
(35)

Now, Let us suppose an infinitesimal deformation of the s-embedding of (⃗S1|1) into SψD⊙
defined with the help of cocycles Γ1, Γ2, Γ3 and depending on the real parameters τ1, τ2, τ3:

η̃(τ)(v) = η(v) + τ1Γ1(v) + τ2Γ2(v) + τ3Γ3(v). (36)

where τ = (τ1, τ2, τ3).
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Theorem 2. The infinitesimal deformation (36) corresponds to a polynomial deformation if and
only if the following relations are satisfied:{

4τ2
3 + 2τ2

1 τ3 + 2τ1τ3 + τ3
1 = 0

τ1 = −τ2
(37)

or {
2τ2

3 + τ1τ3 − τ2
1 τ3 = 0

τ2 = 0
(38)

We can modify the relations to obtain a deformation in SψD⊙h by considering the
weight of the scalar h with separate powers in the respective terms of Formulas (37) and (38).
This leads us to the following conditions:{

4τ2
3 + 2τ2

1 τ3 + h(2τ1τ3 + τ3
1 ) = 0

τ1 = −τ2
or

{
2τ2

3 + hτ1τ3 − τ2
1 τ3 = 0

τ2 = 0
(39)

These conditions are crucial for the integrability of the inf deformation (36) in SψD⊙h.
The following lemma gives a rational parameterization of the curves (39):

Lemma 5. (i) ∀ω ∈ R, the constants:
τ1 = 2ω
τ2 = −2ω
τ3 = −hω

or


τ1 = 2ω
τ2 = −2ω
τ3 = −2ω2

(40)

satisfy the first of the relations (39).

(ii) For all ω ∈ R, the constants:

{
τ1 = −2ω
τ2 = τ3 = 0

or


τ1 = −2ω
τ2 = 0
τ3 = 2ω2 + hω

(41)

satisfy the second of the relations (39).

(iii) Any triple τ1, τ2, τ3 ∈ R satisfying (39) is of the form (40) or (41) for the same ω.

Remark 3. Geometrically, the curves (40) and (41) are simply lines and parabolas, respectively.

Now, we are ready to give the main theorem of this section.

Proof. Since the contact LSA K(1) is a subalgebra of (⃗S1|1, then the obstructions to the
integrability of the embedding of (⃗S1|1 in SψD⊙ will be a part of the obstructions to the
integrability of the embedding of K(1) in SψD⊙. To prove the necessary condition of
Theorem 2, we need the two following theorems from [16,27].

Now, the restriction can be mentioned as follows: K(1) of the deformation η̃(τ) given
by (36) is not separate from the deformation η̃′(τ) below in Equations (34) and (35) found
by N. Ben Fraj and S. Omri in [27]. The restriction of the tiny deformation (36) to K(1) is
found by

η̃(τ)(v⊺) = η(v⊺) + τ1Φ1(v⊺) + τ2Φ2(v⊺) + τ3Φ3(v⊺)

where τ1 := 1
2 τ1 + τ2, τ2 := 1

2 τ2, and τ3 := − 1
2 τ3 − 1

4 τ2. If we interchange these values of
τ1, τ2, τ3 in Equations (34) and (35), we will obtain the required conditions (37) and (38) of
Theorem 2.

To prove the converse of Theorem 2, we constructed a poly deformation that satisfies
the necessary relations (39) with respect to the infinitesimal deformation (33). These rela-
tions play a crucial role in ensuring the integrability of the infinitesimal deformation (33).
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Within the space H1
0(SψD⊙,SψD⊙), which consists of even outer superderivations

of the LSA SψD⊙, there exists a linear operator denoted as ad log ξ on SψD⊙ (refer
to [15]). This outer superderivation can be integrated into a one-parameter family of outer
automorphisms, represented by Ψν, and defined as follows:

Ψν(⊺) = yν ◦ ⊺ ◦ y−ν, (42)

where η = ∂ϑ − ϑ∂x should be considered as a Laurent series.
By applying the automorphism (42) to the elementary deformation η0,2ω (22), we obtain:

η̃ω
1 (⊺∂x + H∂ϑ) = Ψ−2ω

h
(η(⊺∂x + H∂ϑ) + 2ωΩ1(⊺∂x + H∂ϑ))

= η(⊺∂x + H∂ϑ)− 2ω(H′ϑ̄y−1 + ∂ϑ(H))

−2ω2(⊺′′y−1 − H′′y−2ϑ̄ − 2∂ϑ(H′)y−1) + · · · (43)

Since Ψ−2ω
h

is an automorphism, it is, in fact, a poly deformation of the embedding (6)
for any ω ∈ R, corresponding to any inf deformation (33) satisfying the second condition
in (40).

The function defined by

η̃λ
2 : ⊺∂a + G∂ϑ → η(⊺∂a + H∂ϑ) + ω; Γ̃h(⊺∂a + G∂θ), (44)

represents a polynomial and formal deformation of the embedding (6). This holds true for
any value of ω ∈ R corresponding to an infinitesimal deformation (33) that satisfies the
first condition stated in (40). Here, Γ̃h = −hΓ3h − 2Γ2h + 2Γ1.

In fact, Since Γ̃h is an even one-cocycle, the function η̃λ
2 is a poly deformation if the

supercommutator [Γ̃h, Γ̃h] vanishes. Notice that the one-cocycle Γ̃h(⊺∂a) = 0. Furthermore,
we have:

Γ̃h(⊺∂a + H∂ϑ) = Θ̃h(vH)

where Θ̃h : K(1) → SψD⊙ is the one-cocycle defined in [27], Section 6, Proposition 4.
Since the supercommutator [Θ̃h, Θ̃h] terminates, as proven by N. Ben Fraj and S. Omri

in [27], Section 6, it follows that [Γ̃h, Γ̃h] vanishes.

Finally, we structured a polynomial deformation with respect to any inf deforma-
tion (33) satisfying the condition (41). The automorphismcan be applied (42) to the polyno-
mial deformation (44):

η̃ω
3 (⊺∂x + G∂ϑ) = Ψ−2ω

h
◦ η̃ω

2 (⊺∂a + H∂ϑ)

= η(⊺∂a + H∂ϑ)− 2ω(⊺′ − ∂ϑ(H))

+ (2ω2 + hω)(⊺′′y−1 − H′′y−2ϑ̄ − 2∂ϑ(H′)y−1) + · · · , (45)

so we arrive at a polynomial deformation satisfying the second of the conditions (41) with
respect to any inf deformation (33).

4.2.1. Exploring Integrable Infinitesimal Deformations in Fuzzy Lie Algebras

Consider the defining relations for a fuzzy torus and a deformed (squashed) sphere.
These defining relations can be rewritten as a new algebra that incorporates q-deformed
commutators. Let A be this algebra, and let q be the quantum parameter with |q| = 1.
Furthermore, assume that A contains the parameter µ as a constant.

Lemma 6. For generic values of q such that qN ̸= 1 for any positive integer N, A admits a
representation that corresponds to the “string solution” of the algebra.
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Proof. Consider the defining relations for A with generic values of q, where qN ̸= 1
for any positive integer N. These defining relations lead to the “string solution” of the
algebra, which has a well-defined representation. The representation in this case is finite-
dimensional and corresponds to a fuzzy torus or a similar structure.

Theorem 3. If q is a root of unity, i.e., qN = 1 for some positive integer N, then A admits a
representation corresponding to the “loop solution” of the algebra. This representation contains
undetermined parameters. Moreover, in the case of the squashed sphere, where q = 1 and µ < 0,
the algebra A can be regarded as a new kind of quantum S2. The value of the invariant of the algebra,
which defines the constraint for the surfaces, is not restricted to be one. This lack of restriction allows
the parameter q to be treated as independent of N (the dimension of the representation) and µ.

Proof. When q is a root of unity, the defining relations of A lead to the “loop solution” of
the algebra. In this case, the representation contains undetermined parameters because
the algebraic relations are not uniquely fixed. This undeterminedness is a consequence of
the special properties of q as a root of unity, allowing multiple representations. Moreover,
when q = 1 and µ < 0, the defining relations of A take on a unique form that distinguishes
it from a fuzzy torus or other cases. This specific form corresponds to a different algebraic
structure, and its properties are reminiscent of those of a quantum S2, making it a new kind
of quantum S2. On the other hand, The invariant value in the algebra A is not fixed at one,
but can take various values depending on the specific algebraic relations and structure.
This flexibility in the invariant value allows the parameter q to be treated independently of
N and µ when considering different representations or scenarios.

Corollary 2. It is shown that, for generic values of q (where qN ̸= 1), the allowed range of the
value q + q−1 must be restricted for each fixed positive integer N to ensure consistency in the
representation of A.

Proof. The restrictions on q + q−1 arises from the need to maintain consistency in the
representation of A. For generic values of q where qN ̸= 1, certain values of q + q−1 may
lead to inconsistencies in the algebraic structure or representations. Therefore, to ensure
a consistent representation of A for each fixed positive integer N, the allowed range of
q + q−1 must be carefully restricted.

4.2.2. A Variation of the Central Charge

The non-trivial two-cocycle with scalar values, denoted as C̃1(X, Y), is defined by the
outer superderivation ad log y in H1

0(SψD⊙,SψD⊙). This is given by the formula [15]:

C̃1(X, Y) = Str([log y, X] ◦ Y). (46)

It is known that dim H2 (⃗(S1|1), C) = 1 [28,29], and H2 (⃗(S1|1), C) is generated by
the two-cocycle:

C(v1, v2) =
∫

S1|1
(2 ⊺′′1 G2 + 2(−1)p(⊺2) ⊺′′2 G1 + ⊺′2∂ϑ(G2)) vol(x, ϑ), (47)

where v1 = ⊺1∂a + ⊺2∂ϑ and v1 = G1∂a + G2∂ϑ, with ⊺1,⊺2, G1, G2 ∈ C∞(S1|1).

Remark 4. The restriction to the Lie superalgebra (⃗S1|1) of the 2-cocycle (46) is identical to the
2-cocycle (47).

Corollary 3. The restriction to (⃗S1|1) ↪→ SψD⊙h of the cocycle C̃1 with respect to the embedding
(43), (44), or (45) is given by:

η̃ω∗
(C̃1) = (−h − 4ω)C. (48)
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Proof. This is arrived at by straightforward calculations from the previous theorem.

5. Conclusions

In summary, our study focused on a mathematical relationship that intricately in-
tertwines several fundamental elements within the domain of Lie superalgebras (g). We
explored the multifaceted interplay of multi-parameter deformations, cohomology spaces,
integrability relations, and central extensions.

We delved into an examination of the s-embedding within the Lie superalgebra (⃗S1|1),
representing smooth vector fields on the ((1,1))-dimensional super-circle. Our principal
endeavor was to ascertain a precise delineation of the s-embedding, which entailed de-
constructing the Lie superalgebra to unveil the superalgebra of super-pseudodifferential
operators (SψD⊙) situated on the super-circle (S1|1). Additionally, we delineated and
rigorously defined the central charge within the framework of (⃗S1|1), capitalizing on the
canonical central extension of (SψD⊙). Our inquiry was further broadened to traverse the
realm of fuzzy Lie algebras, with the aim to unearth potential associations and analogies
between these seemingly disparate mathematical frameworks. Spanning a gamut of aspects
including non-commutative structures, representation theory, central extensions, and cen-
tral charges, our investigation fosters a foundational bridge between Lie superalgebras
and fuzzy Lie algebras, enriching the understanding of the interconnections within these
mathematical domains.
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published version of the manuscript.
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