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Abstract: We construct a bound set that does not admit a Riesz spectrum containing a nonempty
periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we
obtain a bounded set V with an arbitrarily small Lebesgue measure such that for any positive integer
N, the set of exponentials with frequencies in any union of cosets of NZ cannot be a frame for the
space of square integrable functions over V. These results are based on the proof technique of Olevskii
and Ulanovskii from 2008.
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1. Introduction and Main Results

One of the fundamental research topics in Fourier analysis is the theory of exponential
bases and frames. The elementary fact that {e2πin·x}n∈Zd forms an orthogonal basis for
L2[− 1

2 , 1
2 ]

d has far-reaching implications in many areas of mathematics and engineering. For
instance, the celebrated Whittaker–Shannon–Kotel’nikov sampling theorem is an important
consequence of this fact (see e.g., [1]).

As a natural generalization of the functions {e2πin·x}n∈Zd in L2[− 1
2 , 1

2 ]
d, one considers

the set of exponentials E(Λ):= {e2πiλ·x : λ ∈ Λ}, where Λ ⊂ Rd is a discrete set consisting
of the pure frequency components of exponentials (thus called the frequency set or spectrum),
in the Hilbert space L2(S) for a finite positive measure set S ⊂ Rd. That is, for each
λ ∈ Λ, the map x 7→ e2πiλ·x restricted to the set S is considered as a function in L2(S).
Characterizing the properties of E(Λ) in the space L2(S), such as whether E(Λ) forms
an orthogonal/Riesz basis or a frame, has been an important problem in nonharmonic
Fourier analysis. The problem has a close connection to the theory of entire functions of the
exponential type in complex analysis through the celebrated work of Paley and Wiener [2].
For more details on this connection and for some historical background, we refer the reader
to the excellent book by Young [3]. Below, we give a short overview of some known results
on exponential bases and frames.

1.1. An Overview of Existing Work on Exponential Bases and Frames

Exponential orthogonal bases: For the case of orthogonal bases, Fuglede [4] posed a
famous conjecture (also called the spectral set conjecture) that states that if S ⊂ Rd is a finite
positive measure set, then there is an exponential orthogonal basis E(Λ) (with Λ ⊂ Rd)
for L2(S) if and only if the set S tiles Rd by translations along a discrete set Γ ⊂ Rd in the
sense that

∑
γ∈Γ

χS(x + γ) = 1 for a.e. x ∈ Rd, (1)

where χS(x) = 1 for x ∈ S and is 0 otherwise. The conjecture turned out to be false for
d ≥ 3 but is still open for d = 1, 2. Nevertheless, there are many special cases for which
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the conjecture is known to be true. For instance, the conjecture is true when Γ is a lattice of
Rd—in which case the set Λ ⊂ Rd can be chosen to be the dual lattice of Γ [4]—and also
when S ⊂ Rd is a convex set of finite positive measure for all d ∈ N [5]. In particular, it was
shown in [6] that there is no exponential orthogonal basis for L2(S) when S is the unit ball
of Rd for d ≥ 2, in contrast to the case d = 1, where the unit ball is simply S = [−1, 1], and
E( 1

2Z) is an orthogonal basis for L2[−1, 1]. For more details on Fuglede’s conjecture and its
recent progress, we refer the reader to [5] and the references therein.

Exponential Riesz bases: The relaxed case of Riesz bases is yet more challenging.
Certainly, relaxing the condition of orthogonal bases to Riesz bases allows for potentially
much more feasible sets S ⊂ Rd. However, there are only several classes of sets S ⊂ Rd

that are known to admit a Riesz spectrum, meaning that there exists an exponential Riesz
basis for L2(S). For instance, the class of convex symmetric polygons in R2 [7], the class
of sets that are finite unions of intervals in Rd [8,9], and the class of certain symmetric
convex polytopes in Rd for all d ≥ 1 [10]. Moreover, the existence of exponential Riesz
bases for disjoint intervals with hierarchical structure was proved in [11], and exponential
Riesz bases with restricted supports were treated in [12]. Recently, Kozma, Nitzan, and
Olevskii [13] constructed a bounded measurable set S ⊂ R such that no set of exponentials
can be a Riesz basis for L2(S).

In search of an analogue to Fuglede’s conjecture for Riesz bases, Grepstad and Lev [14]
considered the sets S ⊂ Rd that satisfy for some discrete set Γ ⊂ Rd and some k ∈ N

∑
γ∈Γ

χS(x + γ) = k for a.e. x ∈ Rd.

Such a set S ⊂ Rd is called a k-tile with respect to Γ; in particular, the set S satisfying (1) is
a 1-tile with respect to Γ. It was shown in [14] that if S ⊂ Rd is a bounded k-tile set with
respect to a lattice Γ ⊂ Rd and has measure zero boundary, then the set S admits a Riesz
spectrum Λ ⊂ Rd, which is obtained using quasicrystals [15,16]. Later, Kolountzakis [17]
removed the measure zero boundary condition of S and showed that Λ can be chosen
to be a union of k translations of Γ∗ (referred to as a (k, Γ∗)-structured spectrum), where
Γ∗:= (A−1)T Zd is the dual lattice of Γ = AZd with A ∈ GL(d,R). The converse of this
statement was proved by Agora et al. [18], thus establishing the equivalence: given a
lattice Γ ⊂ Rd, a bounded set S ⊂ Rd is a k-tile with respect to Γ if and only if it admits a
(k, Γ∗)-structured Riesz spectrum. They also showed that the boundedness of S is essential by
constructing an unbounded 2-tile set S ⊂ R with respect to Z that does not admit a (2,Z)-
structured Riesz spectrum. Nevertheless, for unbounded multi-tiles S ⊂ Rd with respect
to a lattice Γ, Cabrelli and Carbajal [19] were able to provide a sufficient condition for S
to admit a structured Riesz spectrum. Recently, Cabrelli et al. [20] found a necessary and
sufficient condition for a multi-tile S ⊂ Rd of finite positive measure to admit a structured
Riesz spectrum, which is given in terms of the Bohr compactification of the tiling lattice Γ.

Exponential frames: Since frames allow for redundancy, it is relatively easier to obtain
exponential frames than exponential Riesz bases. For instance, the set of exponentials
{e2πin·x}n∈Zd is an orthonormal basis for L2[− 1

2 , 1
2 ]

d and is thus a frame for L2(S) with
frame bounds A = B = 1 whenever S is a measurable subset of [− 1

2 , 1
2 ]

d.
Nitzan et al. [21] proved that if S ⊂ Rd is a finite positive measure set, then there

exists an exponential frame E(Λ) (with Λ ⊂ Rd) for L2(S) with frame bounds c |S| and
C |S|, where 0 < c < C < ∞ are absolute constants. The proof is based on a lemma from
Marcus et al. [22] that resolved the famous Kadison–Singer problem in the affirmative.

Universality: In [23,24], Olevskii and Ulanovskii considered the interesting question
of universality. They discovered some frequency sets Λ ⊂ Rd that have universal proper-
ties: namely, the so-called universal uniqueness/sampling/interpolation sets Λ ⊂ Rd for
Paley–Wiener spaces PW(S) with all sets S ⊂ Rd in a certain class. In our notation, this
corresponds to the set of exponentials E(Λ) being a complete sequence/frame/Riesz se-
quence in L2(S) for all sets S ⊂ Rd in a certain class. For the convenience of the readers, we
include a short exposition on the relevant notions in Paley–Wiener spaces in Appendix A.
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It has been shown that universal complete sets of exponentials exist: for instance,
the system E(Λ) with Λ = {. . . ,−6,−4,−2, 1, 3, 5, . . .} is complete in L2(S) for every
measurable set S ⊂ [− 1

2 , 1
2 ] with |S| ≤ 1

2 . Furthermore, any set E(Λ) with Λ = {λn}n∈Z
satisfying 0 < |λn − n| ≤ 1/2|n| for all n ∈ Z is complete in L2(S) whenever S ⊂ R is a
bounded measurable set with |S| < 1.

On the other hand, the existence of universal exponential frames and universal expo-
nential Riesz sequences depends on the topological properties of S. As a positive result,
it has been shown that there is a perturbation Λ of Z such that E(Λ) is a frame for L2(S)
whenever S ⊂ R is a compact set with |S| < 1; a different construction of such a set Λ ⊂ R
was given by Matei and Meyer [15,16] based on the theory of quasicrystals. Similarly, there
is a perturbation Λ of Z such that E(Λ) is a Riesz sequence in L2(S) whenever S ⊂ R is
an open set with |S| > 1. However, on the negative side, it has been shown that given any
0 < ϵ < 2 and a separated set Λ ⊂ R with D−(Λ) < 2, there is a measurable set S ⊂ [0, 2]
with |S| < ϵ such that E(Λ) is not a frame for L2(S), indicating that the compactness of S in
the aforementioned result cannot be dropped. Similarly, it has been shown that given any
0 < ϵ < 2 and a separated set Λ ⊂ R with D+(Λ) > 0, there is a measurable set S ⊂ [0, 2]
with |S| > 2 − ϵ such that E(Λ) is not a Riesz sequence in L2(S), similarly indicating that
the restriction to open sets cannot be dropped.

For more details on the universality results, we refer the reader to Lectures 6 and 7 in
the excellent lecture book by Olevskii and Ulanovskii [25].

1.2. Contribution of the Paper

This paper is motivated by the following problem.

Problem 1. Is there a bounded/unbounded set S ⊂ Rd that does not admit a Riesz spectrum,
meaning that for every Λ ⊂ Rd, the set of exponentials {e2πiλ·x : λ ∈ Λ} is not a Riesz basis for
L2(S)?

This problem was recently solved by Kozma, Nitzan, and Olevskii [13]. They con-
structed a bounded measurable set S ⊂ R such that no set of exponentials can be a Riesz
basis for L2(S).

In this paper, we take a different approach to construct a bounded subset of R that does
not admit a certain general type of Riesz spectrum. Through this, we offer diverse methods
for constructing sets that do not admit Riesz spectra. In particular, our approach enables
the design of specific spectra that we aim to exclude. To achieve this, we adapt the proof
technique of Olevskii and Ulanovskii [24], which also works in higher dimensions (see
Section 1 in [24]); thus, our results also extend to higher dimensions. However, for simplicity
of presentation, we will only consider the dimension-one case (d = 1).

Before presenting our results, note that for any bounded set S ⊂ R, there exist some
parameters σ > 0 and a ∈ R such that 1

σ S + a ⊂ [− 1
2 , 1

2 ]. It is therefore enough to restrict
our attention to sets S ⊂ [− 1

2 , 1
2 ] (see Lemma 1 below). Also, recall that a set S ⊂ R is said

to admit a Riesz spectrum Λ ⊂ R if the system E(Λ) is a Riesz basis for L2(S).
Our first main result is as follows.

Theorem 1. Let 0 < α ≤ 1 and 0 < ϵ < 1. There exists a measurable set S ⊂ [− 1
2 , 1

2 ] with
|S| > 1 − ϵ satisfying the following property: if Λ ⊂ R contains arbitrarily long arithmetic
progressions with a fixed common difference belonging in αN, then E(Λ) is not a Riesz sequence in
L2(S). Moreover, such a set can be constructed explicitly as

S = [− 1
2 , 1

2 ]\V with V = [− 1
2 , 1

2 ] ∩
(
∪∞
ℓ=1 ∪m∈Z

m
ℓα +

(
− ϵ

ℓ·2ℓ+3 , ϵ
ℓ·2ℓ+3

))
. (2)

It should be noted that the set V ⊂ [− 1
2 , 1

2 ] is an open set containing 1
αQ ∩ [− 1

2 , 1
2 ].

This set has a small Lebesgue measure |V| < ϵ due to the exponentially decreasing length
of the intervals. It is worth comparing the set V with a fat Cantor set that is a closed,
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nowhere dense subset of [− 1
2 , 1

2 ] with positive measure (see e.g., [26,27]), where a set is
called nowhere dense if its closure has an empty interior. In contrast to the fat Cantor sets,
the set V has a nonempty interior and is dense in [− 1

2 , 1
2 ] because it contains 1

αQ∩ [− 1
2 , 1

2 ].
To illustrate the dense set V ⊂ [− 1

2 , 1
2 ], we truncate the infinite union ∪∞

ℓ=1 in its
expression to the finite union over ℓ = 1, . . . , 10. The corresponding sets for α = 1 and
ϵ = 1

10 , 1
2 , 9

10 are shown in Figure 1.

Figure 1. The characteristic function of the corresponding truncated set for α = 1 and ϵ = 1
10 , 1

2 , 9
10

(from left to right).

To help the understanding of the readers, we provide two sets Λ ⊂ R: one which
meets and the other which does not meet the condition stated in Theorem 1.

Example 1.

(a) Let M1 < M2 < · · · be an increasing sequence in N, and let P ∈ N. Define the sequence
d1 < d2 < · · · by d1 = 0 and dk = 2 ∑k−1

n=1 MnP for k ≥ 2. Clearly, we have dk+1 − dk =
2MkP for all k ∈ N. Consider the set

Λ = ±
∞⋃

k=1

{
dk+P, dk+2P, . . . , dk+MkP

}
⊂ Z

where ±Λ0 := Λ0 ∪ (−Λ0) for any set Λ0 ⊂ R. This set contains arbitrarily long arithmetic
progressions with common difference P and has lower and upper Beurling densities given by
D−(Λ) = 1

2P and D+(Λ) = 1
P , respectively (see Section 2.3 for the definition of the Beurling

density).
(b) Let N ∈ N and let {σk}∞

k=1 ⊂ (0, 1) be a sequence of distinct irrational numbers between 0 and
1. Consider the set

Λ = ±
∞⋃

k=1

(
σk+Nk +

{
0 · 100k, 1 · 100k, . . . , (k−1) · 100k}) ⊂ R

that has a uniform Beurling density D(Λ) = 1
N . For each k ∈ N, the set Λ contains exactly one

arithmetic progression with a common difference 100k in the positive domain (0, ∞): namely, the
arithmetic progression σk+Nk, σk+Nk+100k, . . . , σk+Nk+(k−1)·100k of length k. Due to
the ± mirror symmetry, the set Λ has another such arithmetic progression in the negative domain
(−∞, 0). Note that all of these arithmetic progressions have integer-valued common differences
and are distanced by some distinct irrational numbers, so none of them can be connected with
another to form a longer arithmetic progression. Hence, there is no number P ∈ N for which the
set Λ contains arbitrarily long arithmetic progressions with common difference P. Such a set
Λ ⊂ R is not covered by the class of frequency sets considered in Theorem 1.

Our second main result is the following.
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Theorem 2. Let 0 < ϵ < 1, and let Λ1, Λ2, . . . ⊂ R be a family of separated sets with D+(Λℓ) > 0
for all ℓ ∈ N. One can construct a measurable set S = S(ϵ, {Λℓ}∞

ℓ=1) ⊂ [− 1
2 , 1

2 ] with |S| > 1 − ϵ
such that E(Λℓ) is not a Riesz sequence in L2(S) for all ℓ ∈ N.

Let us present some interesting implications of our main results.
By convention, a discrete set Λ = {λn}n∈Z ⊂ R with λn < λn+1 is called periodic with

period t > 0 (or t-periodic) if there is a number N ∈ N such that λn+N − λn = t for all n ∈ Z.
Note that if Λ ⊂ R is a nonempty periodic set with period α · P

Q ∈ αQ, where P, Q ∈ N are
coprime numbers, then it must contain a translated copy of αPZ: that is, αPZ+d ⊂ Λ for
some d ∈ R. As a result, we have the following corollary of Theorem 1.

Corollary 1. For any 0 < α ≤ 1 and 0 < ϵ < 1, let S ⊂ [− 1
2 , 1

2 ] be the set given by (2). Then for
any nonempty periodic set Λ ⊂ R with its period belonging in αQ+ = αQ ∩ (0, ∞), the system
E(Λ) is not a Riesz sequence in L2(S). Consequently, the set S does not admit a Riesz spectrum
containing a nonempty periodic set with its period belonging in αQ+.

It is worth noting that the class of nonempty periodic sets with a rational period is
uncountable because of the flexibility in the placement of elements in each period; hence,
Corollary 1 cannot be deduced from Theorem 2.

As mentioned in Section 1.1, Agora et al. [18] constructed an unbounded 2-tile set
S ⊂ R with respect to Z that does not admit a Riesz spectrum of the form (Z+σ1)∪ (Z+σ2)
with σ1, σ2 ∈ R. By a dilation, one could easily generalize this example to an unbounded
2-tile set W ⊂ R with respect to 1

αZ for any fixed α > 0 that does not admit a Riesz spectrum
of the form (αZ+σ1) ∪ (αZ+σ2) with σ1, σ2 ∈ R. Note that such a form of Riesz spectrum
is α-periodic and thus not admitted by our set S given by (2) for any 0 < ϵ < 1. In fact, our
set S has a much stronger property than W: namely, that S does not admit a periodic Riesz
spectrum with its period belonging in αQ+, and moreover, the set S is bounded.

Since the set S is contained in [− 1
2 , 1

2 ], it is particularly interesting to consider the
frequency sets consisting of integers Ω ⊂ Z. Noting that a periodic subset of Z is necessarily
N-periodic for some N ∈ N, we immediately deduce the following result from Corollary 1.

Corollary 2. Let S ⊂ [− 1
2 , 1

2 ] be the set given by (2) with α = 1 and any 0 < ϵ < 1. Then for any
nonempty periodic set Ω ⊂ Z, the system E(Ω) is not a Riesz sequence in L2(S).

Alternatively, one could construct such a set S ⊂ [− 1
2 , 1

2 ] from Theorem 2 by observing
that the family of all nonempty periodic integer sets is countable; indeed, the one and only
nonempty 1-periodic integer set is Z, the nonempty 2-periodic integer sets are 2Z, 2Z+1, Z,
and so on.

Further, it is easy to deduce the following result from Corollary 2 and Proposition 2
below by setting V := [− 1

2 , 1
2 ]\S and Ω′ := Z\Ω.

Corollary 3. Let S ⊂ [− 1
2 , 1

2 ] be the set given by (2) with α = 1 and any 0 < ϵ < 1, and let
V := [− 1

2 , 1
2 ]\S. Then for any proper periodic subset Ω′ ⊊ Z, the system E(Ω′) is not a frame for

L2(V).

The significance of Corollary 3 is in the fact that for any N ∈ N and any proper subset
I ⊊ {0, . . . , N − 1}, the set of exponentials E

(
∪n∈I (NZ+n)

)
is not a frame for L2(V) even

though the set V has a very small Lebesgue measure |V| < ϵ. Note that E(Z) is a frame for
L2(V) with frame bounds A = B = 1 since it is an orthonormal basis for L2[0, 1].

2. Preliminaries
2.1. Sequences in Separable Hilbert Spaces

Definition 1. A sequence { fn}n∈Z in a separable Hilbert space H is called
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• a Bessel sequence in H (with a Bessel bound B) if there is a constant B > 0 such that

∑
n∈Z

∣∣⟨ f , fn⟩
∣∣2 ≤ B ∥ f ∥2 for all f ∈ H;

• a frame for H (with frame bounds A and B) if there are constants 0 < A ≤ B < ∞ such that

A ∥ f ∥2 ≤ ∑
n∈Z

|⟨ f , fn⟩|2 ≤ B ∥ f ∥2 for all f ∈ H;

• a Riesz sequence in H (with Riesz bounds A and B) if there are constants 0 < A ≤ B < ∞
such that

A ∥c∥2
ℓ2

≤
∥∥∥ ∑

n∈Z
cn fn

∥∥∥2
≤ B ∥c∥2

ℓ2
for all c = {cn}n∈Z ∈ ℓ2(Z);

• a Riesz basis for H (with Riesz bounds A and B) if it is a complete Riesz sequence in H (with
Riesz bounds A and B);

• an orthogonal basis for H if it is a complete sequence of nonzero elements in H such that
⟨ fm, fn⟩ = 0 whenever m ̸= n;

• an orthonormal basis for H if it is complete and ⟨ fm, fn⟩ = δm,n whenever m ̸= n.

The associated bounds A and B are said to be optimal if they are the tightest constants satisfying
the respective inequality.

In general, an orthonormal basis is a Riesz basis with Riesz bounds A = B = 1, but an
orthogonal basis is not necessarily norm-bounded below and thus is generally not a Riesz
basis (for instance, consider the sequence { en

n }∞
n=1, where {en}∞

n=1 is an orthonormal basis
for H). Nevertheless, exponential functions have a constant norm in L2(S) for any finite
measure set S ⊂ Rd: namely, ∥e2πiλ·(·)∥L2(S) = |S|1/2 for all λ ∈ Rd. Thus, an exponential
orthogonal basis is simply an exponential orthonormal basis scaled by a constant.

Proposition 1. Let H be a separable Hilbert space.

(a) Corollary 3.7.2 in [28]: Every subfamily of a Riesz basis is a Riesz sequence with the same
bounds (the optimal bounds may be tighter).

(b) Corollary 8.24 in [29]: If { fn}n∈Z is a Bessel sequence in H with Bessel bound B, then ∥ fi∥2 ≤ B
for all i ∈ I. If { fn}n∈Z is a Riesz sequence in H with bounds 0 < A ≤ B < ∞, then
A ≤ ∥ fi∥2 ≤ B for all i ∈ I.

(c) Lemma 3.6.9, Theorems 3.6.6, 5.4.1 and 7.1.1 in [28] (or see Theorems 7.13, 8.27 and 8.32
in [29]): Let {en}n∈Z be an orthonormal basis for H and let { fn}n∈Z ⊂ H. The following
are equivalent.

• { fn}n∈Z is a Riesz basis for H;
• { fn}n∈Z is an exact frame (i.e., a frame that ceases to be a frame whenever a single element

is removed) for H;
• { fn}n∈Z is an unconditional basis of H with 0 < infn∈Z ∥ fn∥ ≤ supn∈Z ∥ fn∥ < ∞;
• There is a bijective bounded operator T : H → H such that Ten = fn for all n ∈ Z.

Moreover, in this case, the optimal frame bounds coincide with the optimal Riesz bounds.

Proposition 2 (Proposition 5.4 in [30]). Let {en}n∈I be an orthonormal basis of a separable
Hilbert space H, where I is a countable index set. Let P : H → M be the orthogonal projection
from H onto a closed subspace M. Let J ⊂ I and 0 < α ≤ 1. The following are equivalent.

(i) {Pen}n∈J ⊂ M is a frame for M with lower bound α;
(ii) {Pen}n∈I\J ⊂ M is a Bessel sequence with bound 1 − α;
(iii) {(Id − P)en}n∈I\J ⊂ M⊥ is a Riesz sequence with lower bound α.
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2.2. Exponential Systems

As already introduced in Section 1, we define the exponential system E(Λ) = {e2πiλ·(·):
λ ∈ Λ} for a discrete set Λ ⊂ Rd (called a frequency set or a spectrum).

Lemma 1. Assume that E(Λ) is a Riesz basis for L2(S) with bounds 0 < A ≤ B < ∞, where
Λ ⊂ Rd is a discrete set and S ⊂ Rd is a measurable set.

(a) For any a ∈ Rd, the system E(Λ) is a Riesz basis for L2(S + a) with bounds A and B.
(b) For any b ∈ Rd, the system E(Λ + b) is a Riesz basis for L2(S) with bounds A and B.
(c) For any σ > 0, the system

√
σ E(σΛ) is a Riesz basis for L2( 1

σ S) with bounds A and B;
equivalently, E(σΛ) is a Riesz basis for L2( 1

σ S) with bounds A
σ and B

σ .

A proof of Lemma 1 is given in Appendix B.

Remark 1. Lemma 1 remains valid if the term “Riesz basis” is replaced with one of the following:
“Riesz sequence”, “frame”, or “frame sequence” (and also “Bessel sequence”, in which case the lower
bound is simply neglected).

Theorem 3 (The Paley–Wiener stability theorem [2]). Let V ⊂ R be a bounded set of positive
measure and Λ = {λn}n∈Z ⊂ R be a sequence of real numbers such that E(Λ) is a Riesz basis
for L2(V) (respectively, a frame for L2(V), a Riesz sequence in L2(V)). There exists a constant
θ = θ(Λ, V) > 0 such that whenever Λ′ = {λ′

n}n∈Z ⊂ R satisfies

|λ′
n − λn| ≤ θ, n ∈ Z,

the set of exponentials E(Λ′) is a Riesz basis for L2(V) (respectively, a frame for L2(V), a Riesz
sequence in L2(V)).

For a proof of Theorem 3, we refer the reader to p. 160 in [3] for the case where V is a
single interval and Section 2.3 in [8] for the general case. It is worth noting that the constant
θ = θ(Λ, V) depends on the Riesz bounds of the Riesz basis E(Λ) for L2(V), which are
determined once Λ and V are given. Also, it is pointed out in Section 2.3, Remark 2 in [8]
that the theorem also holds for frames and Riesz sequences.

2.3. Density of Frequency Sets

The lower and upper (Beurling) densities of a discrete set Λ ⊂ Rd are defined respec-
tively by (see e.g., [31])

D−(Λ) = lim inf
r→∞

infx∈Rd |Λ ∩ (x + [0, r]d)|
rd and

D+(Λ) = lim sup
r→∞

supx∈Rd |Λ ∩ (x + [0, r]d)|
rd .

If D−(Λ) = D+(Λ), we say that Λ has a uniform (Beurling) density D(Λ) := D−(Λ) =
D+(Λ). A discrete set Λ ⊂ Rd is called separated (or uniformly discrete) if its separation
constant ∆(Λ) := inf{|λ − λ′| : λ ̸= λ′ ∈ Λ} is positive. For a separated set Λ ⊂ R, we
will always label its elements in increasing order: that is, Λ = {λn}n∈Z with λn < λn+1 for
all n ∈ Z.

The following proposition is considered folklore. The corresponding statements for
Gabor systems of L2(Rd) are well-known (see Theorem 1.1 in [32] and also Lemma 2.2
in [33]), and the following proposition can be proved similarly.

Proposition 3. Let Λ ⊂ Rd be a discrete set, and let S ⊂ Rd be a finite positive measure set that is
not necessarily bounded.

(i) If E(Λ) is a Bessel sequence in L2(S), then D+(Λ) < ∞.
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(ii) If E(Λ) is a Riesz sequence in L2(S), then Λ is separated, i.e., ∆(Λ) > 0.

A proof of Proposition 3 is given in Appendix B.

Theorem 4 ([34,35]). Let Λ ⊂ Rd be a discrete set, and let S ⊂ Rd be a finite positive measure set.

(i) If E(Λ) is a frame for L2(S), then |S| ≤ D−(Λ) ≤ D+(Λ) < ∞.
(ii) If E(Λ) is a Riesz sequence in L2(S), then Λ is separated and D+(Λ) ≤ |S|.

Corollary 4. Let Λ ⊂ Rd be a discrete set, and let S ⊂ Rd be a finite positive measure set. If E(Λ)
is a Riesz basis for L2(S), then Λ is separated and has a uniform Beurling density D(Λ) = |S|.

3. A Result of Olevskii and Ulanovskii

As our main results (Theorems 1 and 2) hinge on the proof technique of Olevskii and
Ulanovskii [24], we will briefly review the relevant result from [24].

Theorem 5 (Theorem 4 in [24]). Let 0 < ϵ < 1, and let Λ ⊂ R be a separated set with
D+(Λ) > 0. One can construct a measurable set S = S(ϵ, Λ) ⊂ [− 1

2 , 1
2 ] with |S| > 1 − ϵ such

that E(Λ) is not a Riesz sequence in L2(S).

The proof of Theorem 5 relies on a technical lemma (Lemma 2 below) that is based
on the celebrated Szemerédi’s theorem [36] asserting that any integer set Ω ⊂ Z with a
positive upper Beurling density D+(Ω) > 0 contains at least one arithmetic progression of
length M for all M ∈ N. Here, an arithmetic progression of length M means a sequence of
the form

d, d+P, d+2P, . . . , d+(M−1)P with d ∈ Z and P ∈ N.

As a side remark, we mention that the common difference P ∈ N of the arithmetic
progression resulting from Szemerédi’s theorem can be restricted to a fairly sparse subset
of positive integers C ⊂ N. For instance, one can ensure that P is a multiple of any
prescribed number L ∈ N by passing to a subset of Ω that is contained in LZ+u for
some u ∈ {0, 1, . . . , L − 1} and has a positive upper Beurling density. This allows us
to take C = LN, which clearly satisfies D+(C) = 1/L. Further, one can even choose
C = {1q, 2q, 3q, . . .} for any q ∈ N, which satisfies

D+(C) =
{

1 if q = 1,
0 if q > 1.

More generally, one may choose C = {p(n) : n ∈ N} for any polynomial p with rational
coefficients such that p(0) = 0 and p(n) ∈ Z for n ∈ Z\{0} (see [37] p. 733). On the other
hand, it was shown by (Theorem 7 in [38]) that C ⊂ N cannot be a lacunary sequence, i.e., a
sequence {an}∞

n=1 satisfying lim infn→∞ an+1/an > 1 (for instance, {2n : n = 0, 1, 2, . . .}).
Note that the aforementioned set C = {p(n) : n ∈ N} can be sparse but not lacunary since
limn→∞ p(n + 1)/p(n) = 1 for any polynomial p. We refer to Section 2 in [39] for a short
review of the possible choice of (deterministic) sets C ⊂ N and also for the situation for
which C is chosen randomly.

Lemma 2 (Lemma 5.1 in [24]). Let Λ ⊂ R be a separated set with D+(Λ) > 0. For any M ∈ N
and δ > 0, there exist constants c = c(M, δ, Λ) ∈ N, d = d(M, δ, Λ) ∈ R and an increasing
sequence s(−M) < s(−M+1) < . . . < s(M) in Λ such that∣∣s(j)− cj − d

∣∣ ≤ δ for j = −M, . . . , M. (3)

Moreover, the constant c = c(M, δ, Λ) ∈ N can be chosen to be a multiple of any prescribed number
L ∈ N.
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As Lemma 2 will be used in the proof of Theorem 2, we include a short proof of
Lemma 2 in Appendix B for self-contained nature of the paper.

4. Proof of Theorem 1

Before proving Theorem 1, we note that Theorem 2 is an extension of Theorem 5 from a
single set Λ ⊂ R to a countable family of sets Λ1, Λ2, . . . ⊂ R. We first consider a particular
choice of sets Λ1 = αZ, Λ2 = 2αZ, Λ3 = 3αZ, · · · for any fixed 0 < α ≤ 1, from which a
desired set for Theorem 1 will be acquired.

Proposition 4. Let 0 < α ≤ 1 and Λ1 = αZ, Λ2 = 2αZ, Λ3 = 3αZ, · · · ; that is, Λℓ = ℓαZ for
ℓ ∈ N. Given any 0 < ϵ < 1, one can construct a measurable set S ⊂ [− 1

2 , 1
2 ] with |S| > 1 − ϵ

such that E(Λℓ) is not a Riesz sequence in L2(S) for all ℓ ∈ N.

Proof. Fix any 0 < ϵ < 1 and choose an integer R > 1
1−ϵ so that 0 < ϵ < R−1

R . We claim that
for each 0 < η < R−1

R there exists a set Vη ⊂ [− 1
2 , 1

2 ] with |Vη | < η satisfying the following

property: for each ℓ ∈ N, there is a finitely supported sequence b(η,ℓ) = {b(η,ℓ)
j }j∈Z

satisfying ∫
[− 1

2 , 1
2 ]\Vη

∣∣∣ ∑
j∈Z

b(η,ℓ)
j e2πiℓαjx

∣∣∣2 dx ≤ R η

2ℓ ∑
j∈Z

∣∣b(η,ℓ)
j

∣∣2. (4)

If this claim is proved, one could take V := ∪∞
k=1Vϵ/2k and S := [− 1

2 , 1
2 ]\V. Indeed, we have

|V| ≤ ∑∞
k=1 |Vϵ/2k | < ∑∞

k=1
ϵ
2k = ϵ so that |S| > 1 − ϵ. Also, it holds for any k, ℓ ∈ N that

∫
S

∣∣∣ ∑
j∈Z

b(ϵ/2k ,ℓ)
j e2πiℓαjx

∣∣∣2 dx ≤
∫
[− 1

2 , 1
2 ]\V

ϵ/2k

∣∣∣ ∑
j∈Z

b(ϵ/2k ,ℓ)
j e2πiℓαjx

∣∣∣2 dx

(4)
≤ R ϵ

2k+ℓ ∑
j∈Z

∣∣b(ϵ/2k ,ℓ)
j

∣∣2.

By fixing any ℓ ∈ N and letting k → ∞, we conclude that E(ℓαZ) is not a Riesz sequence in
L2(S).

To prove claim (4), fix any 0 < η < R−1
R . For each ℓ ∈ N, let ã(ηα/2ℓ) = {ã(ηα/2ℓ)

j }j∈Z ∈
ℓ2(Z) be the sequence given by

ã(ηα/2ℓ)
j :=


√

ηα

2ℓ+1 if j = 0,√
2ℓ+1

ηα
1

π j sin
(π jηα

2ℓ+1

)
if j ̸= 0,

(5)

which is the Fourier coefficient of the 1-periodic function

p̃ηα/2ℓ(x) :=


√

2ℓ+1

ηα for x ∈
[
− ηα

4·2ℓ , ηα

4·2ℓ
]
,

0 for x ∈
[
− 1

2 , 1
2
)∖[

− ηα

4·2ℓ , ηα

4·2ℓ
]
;

(6)

that is, p̃ηα/2ℓ(x) = ∑j∈Z ã(ηα/2ℓ)
j e2πijx for almost every x ∈ [− 1

2 , 1
2 ]. Note that ∥ã(ηα/2ℓ)∥ℓ2

= ∥ p̃ηα/2ℓ(x)∥L2[− 1
2 , 1

2 ]
= 1. Choose a number M̃ = M̃(ηα/2ℓ) ∈ N satisfying

∑
|j|>M̃

∣∣ã(ηα/2ℓ)
j

∣∣2 < 1
α ·

( ηα

2ℓ
)
= η

2ℓ

so that
M̃

∑
j=−M̃

∣∣ã(ηα/2ℓ)
j

∣∣2 > 1 − η

2ℓ
≥ 1 − η > 1

R . (7)
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Now, the set Λℓ comes into play. We write Λℓ = ℓαZ = {sℓ(j) : j ∈ Z} with

sℓ(j) := ℓαj for all j ∈ Z.

For x ∈ [− 1
2 , 1

2 ], we define

f̃ηα/2ℓ,Λℓ
(x) :=

M̃

∑
j=−M̃

ã(ηα/2ℓ)
j e2πisℓ(j)x (8)

and observe that

f̃ηα/2ℓ,Λℓ
(x)− p̃ηα/2ℓ(ℓαx) = − ∑

|j|>M̃

ã(ηα/2ℓ)
j e2πiℓαjx. (9)

Setting V(ℓ)
η := [− 1

2 , 1
2 ] ∩ supp p̃ηα/2ℓ(ℓαx) for ℓ ∈ N, we obtain∫

[− 1
2 , 1

2 ]\V(ℓ)
η

∣∣ f̃ηα/2ℓ,Λℓ
(x)

∣∣2 dx

≤
∫ 1/2

−1/2

∣∣∣ ∑
|j|>M̃

ã(ηα/2ℓ)
j e2πiℓαjx

∣∣∣2 dx = ∑
|j|>M̃

∣∣ã(ηα/2ℓ)
j

∣∣2
< η

2ℓ
(7)
< R η

2ℓ

M̃

∑
j=−M̃

∣∣ã(ηα/2ℓ)
j

∣∣2.

Note from (6) that supp p̃ηα/2ℓ(ℓαx) = 1
ℓα ∪m∈Z

(
m+[− ηα

4·2ℓ , ηα

4·2ℓ ]
)
= ∪m∈Z

( m
ℓα +[− η

4ℓ·2ℓ , η

4ℓ·2ℓ ]
)
,

which implies |V(ℓ)
η | < η

2ℓ
. Indeed, the set [− 1

2 , 1
2 ] ∩ ∪m∈Z

(
m + [− η

4·2ℓ , η

4·2ℓ ]
)
= [− η

4·2ℓ , η

4·2ℓ ]

is of length η

2ℓ+1 , and the dilated set 1
ℓ ∪m∈Z

(
m + [− η

4·2ℓ , η

4·2ℓ ]
)
= ∪m∈Z

(m
ℓ + [− η

4ℓ·2ℓ , η

4ℓ·2ℓ ]
)

restricted to [− 1
2 , 1

2 ] has a Lebesgue measure η

2ℓ+1 as well, so the set V(ℓ)
η = [− 1

2 , 1
2 ] ∩

∪m∈Z
( m
ℓα + [− η

4ℓ·2ℓ , η

4ℓ·2ℓ ]
)

with 0 < α ≤ 1 has a Lebesgue measure of at most η

2ℓ+1 ,

which is strictly less than η

2ℓ
. Finally, define Vη := ∪∞

ℓ=1V(ℓ)
η , which clearly satisfies

|Vη | ≤ ∑∞
ℓ=1 |V

(ℓ)
η | < ∑∞

ℓ=1
η

2ℓ
= η. Then for each ℓ ∈ N,

∫
[− 1

2 , 1
2 ]\Vη

∣∣∣ M̃

∑
j=−M̃

ã(ηα/2ℓ)
j e2πisℓ(j)x

∣∣∣2 dx =
∫
[− 1

2 , 1
2 ]\Vη

∣∣ f̃ηα/2ℓ,Λℓ
(x)

∣∣2 dx

≤
∫
[− 1

2 , 1
2 ]\V(ℓ)

η

∣∣ f̃ηα/2ℓ,Λℓ
(x)

∣∣2 dx < R η

2ℓ

M̃

∑
j=−M̃

∣∣ã(ηα/2ℓ)
j

∣∣2
which establishes claim (4). This completes the proof.

Remark 2 (The construction of S for Λ1 = αZ, Λ2 = 2αZ, Λ3 = 3αZ, · · · ). In the proof above,
the set S is constructed as follows. Given any 0 < ϵ < 1, choose an integer R > 1

1−ϵ so that
0 < ϵ < R−1

R . The set S ⊂ [− 1
2 , 1

2 ] is then given by S := [− 1
2 , 1

2 ]\V with V := ∪∞
k=1Vϵ/2k , where
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Vη := ∪∞
ℓ=1V(ℓ)

η and

V(ℓ)
η := [− 1

2 , 1
2 ] ∩ supp p̃ηα/2ℓ(ℓαx)

= [− 1
2 , 1

2 ] ∩
1
ℓα

(
∪m∈Z

(
m +

[
− ηα

4·2ℓ , ηα

4·2ℓ
]))

= [− 1
2 , 1

2 ] ∩
(
∪m∈Z

( m
ℓα +

[
− η

4ℓ·2ℓ , η

4ℓ·2ℓ
]))

for any 0 < η < R−1
R and ℓ ∈ N.

(10)

In short,

S := [− 1
2 , 1

2 ]\V with

V := ∪∞
k=1 Vϵ/2k = ∪∞

k=1 ∪
∞
ℓ=1 V(ℓ)

ϵ/2k

= [− 1
2 , 1

2 ] ∩
(
∪∞

k=1 ∪
∞
ℓ=1 ∪m∈Z

( m
ℓα +

[
− ϵ

4ℓ·2k+ℓ , ϵ
4ℓ·2k+ℓ

]))
= [− 1

2 , 1
2 ] ∩

(
∪∞
ℓ=1 ∪m∈Z

( m
ℓα +

[
− ϵ

4ℓ·2ℓ+1 , ϵ
4ℓ·2ℓ+1

]))
,

(11)

where the set V satisfies |V| < ϵ, and thus |S| > 1 − ϵ. Note that the two sets S given in (2) and
(11) are identical up to a countable set. Since a measure zero set is negligible in integration, these
sets can be used interchangeably.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let Λ ⊂ R be a set containing arbitrarily long arithmetic progressions
with a fixed common difference Pα for some P ∈ N. To prove that E(Λ) is not a Riesz
sequence in L2(S), it suffices to show that the set Vη ⊂ [− 1

2 , 1
2 ] given by (10) for 0 < η < R−1

R
and ℓ ∈ N (with a fixed integer R > 1

1−ϵ ) satisfies the following property: there is a finitely

supported sequence b(η,Λ) = {b(η,Λ)
λ }λ∈Λ with

∫
[− 1

2 , 1
2 ]\Vη

∣∣∣ ∑
λ∈Λ

b(η,Λ)
λ e2πiλx

∣∣∣2 dx ≤ R η

2P ∑
λ∈Λ

∣∣b(η,Λ)
λ

∣∣2. (12)

Indeed, since S := [− 1
2 , 1

2 ]\ ∪∞
k=1 Vϵ/2k (see Remark 2), it then holds for any k ∈ N that

∫
S

∣∣∣ ∑
λ∈Λ

b(ϵ/2k ,Λ)
λ e2πiλx

∣∣∣2 dx ≤
∫
[− 1

2 , 1
2 ]\V

ϵ/2k

∣∣∣ ∑
λ∈Λ

b(ϵ/2k ,Λ)
λ e2πiλx

∣∣∣2 dx

(12)
≤ R ϵ

2k+P ∑
λ∈Λ

∣∣b(ϵ/2k ,Λ)
λ

∣∣2
which implies that E(Λ) is not a Riesz sequence in L2(S).

To prove claim (12), consider the sequence ã(ηα/2P) = {ã(ηα/2P)
j }j∈Z ∈ ℓ2(Z), the func-

tion p̃ηα/2P , and the number M̃ = M̃(ηα/2P) ∈ N taken, respectively, from (5)–(7) with
ℓ = P. By the assumption, the set Λ ⊂ R contains an arithmetic progression of length
2M̃+1 with common difference Pα, which can be expressed as

sΛ(j) := Pαj + d, j = −M̃, . . . , M̃

for some d ∈ Z. Similarly to (8) and (9), we define

f̃Λ(x) :=
M̃

∑
j=−M̃

ã(ηα/2P)
j e2πisΛ(j)x for x ∈ R

and observe that
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f̃Λ(x)− p̃ηα/2P(Pαx) e2πidx = − ∑
|j|>M̃

ã(ηα/2P)
j e2πi(Pαj+d)x for all x ∈ R.

Recalling that V(P)
η := [− 1

2 , 1
2 ] ∩ supp p̃ηα/2P(Pαx) (see Remark 2), we have∫

[− 1
2 , 1

2 ]\V(P)
η

∣∣ f̃Λ(x)
∣∣2 dx

≤
∫ 1/2

−1/2

∣∣∣ ∑
|j|>M̃

ã(ηα/2P)
j e2πi(Pαj+d)x

∣∣∣2 dx = ∑
|j|>M̃

∣∣ã(ηα/2P)
j

∣∣2
< η

2P < R η

2P

where the inequality (7) for ℓ = P is used in the last step. Since Vη := ∪∞
ℓ=1V(ℓ)

η , we have

∫
[− 1

2 , 1
2 ]\Vη

∣∣∣ M̃

∑
j=−M̃

ã(ηα/2P)
j e2πisΛ(j)x

∣∣∣2 dx =
∫
[− 1

2 , 1
2 ]\Vη

∣∣ f̃Λ(x)
∣∣2 dx

≤
∫
[− 1

2 , 1
2 ]\V(P)

η

∣∣ f̃Λ(x)
∣∣2 dx < R η

2P

which establishes claim (12).

5. Proof of Theorem 2

We will now prove Theorem 2, which generalizes Proposition 4 from Λ1 = αZ, Λ2 = 2αZ,
Λ3 = 3αZ, · · · to arbitrary separated sets Λ1, Λ2, . . . ⊂ R with positive upper Beurling densi-
ties. The proof is similar to the proof of Proposition 4, but since an arbitrary separated set is
in general non-periodic, we need the additional step of extracting an approximate arithmetic
progression from each set Λℓ with the help of Lemma 2.

Proof of Theorem 2. Fix any 0 < ϵ < 1 and choose an integer R > 1
1−ϵ so that 0 < ϵ < R−1

R .
We claim that for each 0 < η < R−1

R , there exists a set Vη ⊂ [− 1
2 , 1

2 ] with |Vη | < η
satisfying the following property: for each ℓ ∈ N, there is a finitely supported sequence
b(η,Λℓ) = {b(η,Λℓ)

λ }λ∈Λℓ
with

∫
[− 1

2 , 1
2 ]\Vη

∣∣∣ ∑
λ∈Λℓ

b(η,Λℓ)
λ e2πiλx

∣∣∣2 dx ≤ R η2 ∑
λ∈Λℓ

∣∣b(η,Λℓ)
λ

∣∣2. (13)

To prove claim (13), fix any 0 < η < R−1
R . For each ℓ ∈ N, let a(η/2ℓ) = {a(η/2ℓ)

j }j∈Z be

an ℓ1-sequence with unit ℓ2-norm ∥a(η/2ℓ)∥ℓ2 = 1 such that

pη/2ℓ(x) := ∑
j∈Z

a(η/2ℓ)
j e2πijx satisfies pη/2ℓ(x) = 0 for η

4·2ℓ ≤ |x| ≤ 1
2 . (14)

Since the sequence a(η/2ℓ) ∈ ℓ1(Z) is not finitely supported, there is a number

M = M(η/2ℓ) ∈ N with 0 < ∑|j|>M |a(η/2ℓ)
j | < η

2ℓ
. Note that since |a(η/2ℓ)

j | ≤ ∥a(η/2ℓ)∥ℓ2 = 1
for all j ∈ Z, we have

∑
|j|>M

∣∣a(η/2ℓ)
j

∣∣2 = ∑
|j|>M

∣∣a(η/2ℓ)
j

∣∣ < η

2ℓ

so that
M

∑
j=−M

∣∣a(η/2ℓ)
j

∣∣2 > 1 − η

2ℓ
≥ 1 − η > 1

R . (15)

We then choose a small parameter 0 < δ = δ(η/2ℓ) < 1 satisfying
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sin(πδ/2) <
η/2ℓ

2 ∑M
j=−M |a(η/2ℓ)

j |

so that ∑M
j=−M |a(η/2ℓ)

j | · |eiπδ − 1| = ∑M
j=−M |a(η/2ℓ)

j | · 2 sin(πδ/2) < η

2ℓ
. Note that all the

terms up to this point depend only on the parameters η and ℓ: in fact, only on the value
η/2ℓ.

Now, the set Λℓ comes into play. Applying Lemma 2 to the set Λℓ with the parameters
M and δ chosen above, we deduce that there exist constants c = c(η/2ℓ, Λℓ) ∈ N and
d = d(η/2ℓ, Λℓ) ∈ R and an increasing sequence sη/2ℓ,Λℓ

(−M) < sη/2ℓ,Λℓ
(−M + 1) <

. . . < sη/2ℓ,Λℓ
(M) in Λℓ satisfying∣∣sη/2ℓ,Λℓ

(j)− cj − d
∣∣ ≤ δ for j = −M, . . . , M.

For x ∈ [− 1
2 , 1

2 ], we define

fη/2ℓ,Λℓ
(x) :=

M

∑
j=−M

a(η/2ℓ)
j exp

(
2πisη/2ℓ,Λℓ

(j)x
)

and observe that∣∣ fη/2ℓ,Λℓ
(x)− pη/2ℓ(cx) e2πidx∣∣

≤
∣∣∣ M

∑
j=−M

a(η/2ℓ)
j

(
exp

(
2πisη/2ℓ,Λℓ

(j)x
)
− e2πi(cj+d)x

)∣∣∣+ ∣∣∣ ∑
|j|>M

a(η/2ℓ)
j e2πi(cj+d)x

∣∣∣
≤

M

∑
j=−M

∣∣a(η/2ℓ)
j

∣∣ · ∣∣∣ exp
(

2πi
(
sη/2ℓ,Λℓ

(j)− cj − d
)
x
)
− 1

∣∣∣+ ∑
|j|>M

∣∣a(η/2ℓ)
j

∣∣
< η

2ℓ
+ η

2ℓ
= η

2ℓ−1 ≤ η.

Setting V(ℓ)
η := [− 1

2 , 1
2 ] ∩ supp pη/2ℓ

(
c(η/2ℓ, Λℓ)x

)
, we have

∫
[− 1

2 , 1
2 ]\V(ℓ)

η

∣∣ fη/2ℓ,Λℓ
(x)

∣∣2 dx ≤ η2 (15)
< R η2

M

∑
j=−M

∣∣a(η/2ℓ)
j

∣∣2.

Similarly to the proof of Proposition 4, we have |V(ℓ)
η | < η

2ℓ
, and therefore, the set Vη :=

∪∞
ℓ=1V(ℓ)

η satisfies |Vη | < η. It then holds for each ℓ ∈ N that

∫
[− 1

2 , 1
2 ]\Vη

∣∣∣ M

∑
j=−M

a(η/2ℓ)
j exp

(
2πisη/2ℓ,Λℓ

(j)x
)∣∣∣2 dx =

∫
[− 1

2 , 1
2 ]\Vη

∣∣ fη/2ℓ,Λℓ
(x)

∣∣2 dx

≤
∫
[− 1

2 , 1
2 ]\V(ℓ)

η

∣∣ fη/2ℓ,Λℓ
(x)

∣∣2 dx < R η2
M

∑
j=−M

∣∣a(η/2ℓ)
j

∣∣2
which proves claim (13).

Finally, based on the established claim (13), we define V := ∪∞
k=1Vϵ/2k and S :=

[− 1
2 , 1

2 ]\V. Clearly, we have |V| ≤ ∑∞
k=1 |Vϵ/2k | < ∑∞

k=1
ϵ
2k = ϵ so that |S| > 1 − ϵ. Also, it

holds for any k, ℓ ∈ N that∫
S

∣∣∣ ∑
λ∈Λℓ

b(ϵ/2k ,Λℓ)
λ e2πiλx

∣∣∣2 dx ≤
∫
[− 1

2 , 1
2 ]\V

ϵ/2k

∣∣∣ ∑
λ∈Λℓ

b(ϵ/2k ,Λℓ)
λ e2πiλx

∣∣∣2 dx

(13)
≤ R

(
ϵ
2k

)2 ∑
λ∈Λℓ

∣∣b(ϵ/2k ,Λℓ)
λ

∣∣2.
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By fixing any ℓ ∈ N and letting k → ∞, we conclude that E(Λℓ) is not a Riesz sequence in
L2(S).

Remark 3 (The construction of S for arbitrary separated sets Λ1, Λ2, . . . ⊂ R). In the proof
above, the set S for arbitrary separated sets Λ1, Λ2, . . . ⊂ R is constructed as follows. Given any
0 < ϵ < 1, choose an integer R > 1

1−ϵ so that 0 < ϵ < R−1
R . The set S ⊂ [− 1

2 , 1
2 ] is then given by

S := [− 1
2 , 1

2 ]\V with V := ∪∞
k=1Vϵ/2k , where

Vη := ∪∞
ℓ=1V(ℓ)

η and

V(ℓ)
η := [− 1

2 , 1
2 ] ∩ supp pη/2ℓ

(
c(η/2ℓ, Λℓ)x

)
= [− 1

2 , 1
2 ] ∩

(
1

c(η/2ℓ,Λℓ)
supp pη/2ℓ

)
⊂ [− 1

2 , 1
2 ] ∩

(
∪m∈Z

( m
c(η/2ℓ,Λℓ)

+
[
− η

4·c(η/2ℓ,Λℓ)·2ℓ
, η

4·c(η/2ℓ,Λℓ)·2ℓ
]))

for any 0 < η < R−1
R and ℓ ∈ N.

Here, c(η/2ℓ, Λℓ) is a positive integer that depends on the value η/2ℓ and the set Λℓ. In short,

S := [− 1
2 , 1

2 ]\V with

V := ∪∞
k=1 Vϵ/2k = ∪∞

k=1 ∪
∞
ℓ=1 V(ℓ)

ϵ/2k

= [− 1
2 , 1

2 ] ∩
(
∪∞

k=1 ∪
∞
ℓ=1

1
c(ϵ/2k+ℓ,Λℓ)

supp pϵ/2k+ℓ

)
⊂ [− 1

2 , 1
2 ]∩(

∪∞
k=1 ∪

∞
ℓ=1 ∪m∈Z

( m
c(ϵ/2k+ℓ,Λℓ)

+
[
− ϵ

4·c(ϵ/2k+ℓ,Λℓ)·2k+ℓ , ϵ
4·c(ϵ/2k+ℓ,Λℓ)·2k+ℓ

]))
.

6. Conclusions

In this paper, we constructed a bounded subset of R that does not admit a certain
general type of Riesz spectrum. Specifically, we constructed a set S ⊂ [− 1

2 , 1
2 ] that does not

admit a Riesz spectrum containing a nonempty periodic set with its period belonging in
αQ+ for any fixed constant α > 0, where Q+ denotes the set of all positive rational numbers.
In particular, this led to a set V ⊂ [− 1

2 , 1
2 ] with an arbitrarily small Lebesgue measure such

that for any N ∈ N and any proper subset I of {0, . . . , N − 1}, the set of exponentials e2πikx

with k ∈ ∪n∈I(NZ+n) is not a frame for L2(V). The obtained results have immediate
consequences in sampling theory and frame theory and have potential applicability in
practical problems such as OFDM (orthogonal frequency division multiplexing) based
communications that involve the design of exponential bases.
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Appendix A. Related Notions in Paley–Wiener Spaces

The Fourier transform is defined densely on L2(Rd) by

F ( f ) := f̂ (ω) =
∫

f (x) e2πix·ω dx for f ∈ L1(Rd) ∩ L2(Rd).

This is a nonstandard but equivalent definition of the Fourier transform that has no negative
sign in the exponent; this definition is employed only to justify relation (A1). Alternatively,
as in [23,24] one could use the standard definition of the Fourier transform, which has
negative sign in the exponent, and define the Paley–Wiener space PW(S) to be the image of
L2(S) under the Fourier transform. It is easily seen that F : L2(Rd) → L2(Rd) is a unitary
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operator satisfying F 2 = I , where I : L2(Rd) → L2(Rd) is the reflection operator defined
by I f (x) = f (−x), and thus, F 4 = IdL2(Rd). The Paley–Wiener space over a measurable set
S ⊂ Rd is defined by

PW(S) := { f ∈ L2(Rd) : supp f̂ ⊂ S} = F−1[L2(S)
]

equipped with the norm ∥ f ∥PW(S) := ∥ f ∥L2(Rd) = ∥ f̂ ∥L2(S), where L2(S) is embedded
into L2(Rd) by the trivial extension. Denoting the Fourier transform of f ∈ PW(S) by
F ∈ L2(S), we see that for almost all x ∈ Rd,

f (x) =
(
F−1F

)
(x) =

∫
S

F(ω) e−2πix·ω dω =
〈

F, e2πix·(·)〉
L2(S). (A1)

Moreover, if the set S ⊂ Rd has a finite measure, then f is continuous, and thus, (A1) holds
for all x ∈ Rd.

Definition A1. Let S ⊂ Rd be a measurable set. A discrete set Λ ⊂ Rd is called

• a uniqueness set (a set of uniqueness) for PW(S) if the only function f ∈ PW(S) satisfying
f (λ) = 0 for all λ ∈ Λ is the trivial function f = 0;

• a sampling set (a set of sampling) for PW(S) if there are constants 0 < A ≤ B < ∞
such that

A ∥ f ∥2
PW(S) ≤ ∑

λ∈Λ

∣∣ f (λ)
∣∣2 ≤ B ∥ f ∥2

PW(S) for all f ∈ PW(S);

• an interpolating set (a set of interpolation) for PW(S) if for each {cλ}λ∈Λ ∈ ℓ2(Λ) there
exists a function f ∈ PW(S) satisfying f (λ) = cλ for all λ ∈ Λ.

It follows immediately from (A1) that

• Λ is a uniqueness set for PW(S) if and only if E(Λ) is complete in L2(S);
• Λ is a sampling set for PW(S) if and only if E(Λ) is a frame for L2(S).

Also, we have the following characterization of interpolation sets for PW(S) (see
p. 129, Theorem 3 in [3]):

• Λ is an interpolating set for PW(S) if and only if there is a constant A > 0 such that

A ∥c∥2
ℓ2

≤
∥∥∥ ∑

n∈Z
cλ e2πiλ·(·)

∥∥∥2

L2(S)
for all {cλ}λ∈Λ ∈ ℓ2(Λ),

meaning that the lower Riesz inequality of E(Λ) for L2(S) holds.

Combining with the Bessel inequality (which corresponds to the upper Riesz inequal-
ity), we obtain a more convenient statement:

• If E(Λ) is a Bessel sequence in L2(S), then Λ is an interpolating set for PW(S) if and
only if E(Λ) is a Riesz sequence in L2(S).

In fact, this statement can be proved by elementary functional analytic arguments.
Indeed, if E(Λ) is Bessel, i.e., if the synthesis operator T : ℓ2(Λ) → L2(S) defined by
T({cλ}λ∈Λ) = ∑λ∈Λ cλ e2πiλ·(·) is a bounded linear operator (equivalently, the analysis
operator T∗ : L2(S) → ℓ2(Λ) defined by T∗F = {⟨F, e2πiλ·(·)⟩L2(S)}λ∈Λ is a bounded linear
operator), then T is bounded below (that is, the lower Riesz inequality holds) if and only if
T is injective and has closed range, if and only if T∗ has dense and closed range, i.e., T∗ is
surjective, which means that E(Λ) is an interpolating set for PW(S) by (A1).

The statement above is often useful because E(Λ) is necessarily a Bessel sequence
in L2(S) whenever Λ ⊂ Rd is separated and S ⊂ Rd is bounded (p. 135, Theorem 4
in [3]). Note that Λ ⊂ Rd is necessarily separated if E(Λ) is a Riesz sequence in L2(S) (see
Proposition 3).
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Appendix B. Proof of Some Auxiliary Results

Proof of Lemma 1. To prove (a), note that for any a ∈ Rd,

T−a[E(Λ)] = {e2πiλ·(x+a) : λ ∈ Λ} = {e2πiλ·a e2πiλ·x : λ ∈ Λ}.

Since the phase factor e2πiλ·a ∈ C for λ ∈ Λ does not affect the Riesz basis property and
the Riesz bounds, it follows that T−a[E(Λ)] is a Riesz basis for L2(S) with bounds A and B.
Consequently, E(Λ) is a Riesz basis for L2(S + a) with bounds A and B.

For (b) and (c), note that the modulation F(x) 7→ e2πib·xF(x) is a unitary operator
on L2(S) and that the dilation F(x) 7→

√
σF(σx) is also a unitary operator from L2(S)

onto L2( 1
σ S). It is easily seen from Proposition 1(c) that if U : H1 → H2 is a unitary

operator between two Hilbert spaces H1 and H2 and if { fn}n∈Z is a Riesz basis for H1,
then {U fn}n∈Z is a Riesz basis for H2. Parts (b) and (c) follow immediately from this
statement.

Proof of Proposition 3. For simplicity, we will only consider the case d = 1.

(i) Assume that D+(Λ) = ∞. This means that there is a real-valued sequence 1 ≤ r1 <
r2 < · · · → ∞ such that

supx∈R |Λ ∩ [x, x+rn]|
rn

> n for all n ∈ N.

Then for each n ∈ N, there exists some xn ∈ R satisfying

|Λ ∩ [xn, xn+rn]|
rn

≥ n.

For each k ∈ N, we partition the interval [xn, xn+rn] into k subintervals of equal length
rn
k : namely, the intervals

[
xn, xn+

rn
k
]
, . . . ,

[
xn+

(k−1)rn
k , xn+rn

]
. Then at least one of the

subintervals, which we denote by In,k, must satisfy

|Λ ∩ In,k|
|In,k|

≥ n, (A2)

where |In,k| = rn
k . Letting k → ∞, we see that

lim sup
r→0

supx∈R |Λ ∩ [x, x+r]|
r

= ∞.

Define the function g : R → C by g(x) = |S|−1/2 χS(x) for x ∈ R. Then ∥g∥L2(R) =

∥g∥L2(S) = 1 and ĝ(0) =
∫

S g(x) dx = |S|1/2. Since g ∈ L1(R), its Fourier transform ĝ is
continuous on R and therefore there exists 0 < δ < 1

2 such that |ĝ(ω)| ≥ 1
2 |S|1/2 for all

ω ∈ [− δ
2 , δ

2 ]. For each n ∈ N, we set kn := ⌈ rn
δ ⌉ ≥ 2 so that kn − 1 < rn

δ ≤ kn and thus
δ
2 < rn

2(kn−1) ≤
rn
kn

≤ δ. It then follows from (A2) that

|Λ ∩ In,kn | ≥ n · |In,kn | ≥ n · rn
kn

> n · δ
2 .

For each n ∈ N, we denote the center of the interval In,kn by cn ∈ R and let fn ∈ L2(S)
be defined by fn(x) := e2πicnx g(x) for x ∈ S. Then

∑
λ∈Λ

∣∣⟨ fn, e2πiλ(·)⟩L2(S)
∣∣2 ≥ ∑

λ∈Λ∩In,kn

∣∣⟨g, e2πi(λ−cn)(·)⟩L2(S)
∣∣2

= ∑
λ∈Λ∩In,kn

∣∣ĝ(cn − λ)
∣∣2 >

(
n · δ

2
)
· |S|

4 ,
(A3)
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where we used the fact that cn−λ ∈ [− δ
2 , δ

2 ] for all λ ∈ Λ ∩ In,kn since In,kn is an interval
of length rn

kn
≤ δ. While ∥ fn∥L2(S) = ∥g∥L2(S) = 1 for all n ∈ N, the right-hand side of

(A3) tends to infinity as n → ∞. Hence, we conclude that E(Λ) is not a Bessel sequence
in L2(S) if D+(Λ) = ∞.

(ii) Suppose to the contrary that E(Λ) is a Riesz sequence in L2(S) with Riesz bounds A
and B, but the set Λ ⊂ R is not separated. Then there are two sequences {λn}∞

n=1 and
{λ′

n}∞
n=1 in Λ such that |λn − λ′

n| → 0 as n → ∞. Note that S ⊂ R is a finite measure set,
and for each x ∈ S, we have |e2πiλnx − e2πiλ′

nx| ≤ 2 and e2πiλnx − e2πiλ′
nx → 0 as n → ∞.

Thus, we have limn→∞
∫

S

∣∣e2πiλnx − e2πiλ′
nx
∣∣2 dx = 0 by the dominated convergence

theorem. For λ ∈ Λ, let δλ ∈ ℓ2(Λ) be the Kronecker delta sequence supported at λ;
that is, δλ(λ

′) = 1 if λ′ = λ and is 0 otherwise. Then, since E(Λ) is a Riesz sequence in
L2(S), we have

2 = ∥δλn − δλ′
n
∥2
ℓ2(Λ)

≤ 1
A

∥∥e2πiλn(·) − e2πiλ′
n(·)

∥∥2
L2(S) =

1
A

∫
S

∣∣e2πiλnx − e2πiλ′
nx∣∣2 dx → 0,

yielding a contradiction.

Proof of Lemma 2. Let Λ = {λn}n∈Z with λn < λn+1 for all n, and fix any δ > 0.
Choose a sufficiently large number N ∈ N so that 1

N < τ := min{∆(Λ), 2δ}, where
∆(Λ) := inf{|λ − λ′| : λ ̸= λ′ ∈ Λ} is the separation constant of Λ (see Section 2.3).
Consider the perturbation Λ̃ ⊂ 1

NZ of Λ, obtained by rounding each element of Λ to
the nearest point in 1

NZ (if λ ∈ Λ is exactly the midpoint of k
N and k+1

N , then we choose
k
N ). Since ∆(Λ) > 1

N , all elements in Λ are rounded to distinct points in 1
NZ, i.e., the set

Λ̃ = {λ̃n}n∈Z ⊂ 1
NZ has no repeated elements. Clearly, there is a 1:1 correspondence

between λn and λ̃n, and we have |λn − λ̃n| ≤ 1
2N < τ

2 ≤ δ for all n ∈ Z.
We claim that for any M ∈ N, there exist constants c ∈ N, d ∈ 1

NZ and an increasing
sequence s̃(−M) < s̃(−M+1) < . . . < s̃(M) in Λ̃ ⊂ 1

NZ satisfying

s̃(j) = cj + d for j = −M, . . . , M.

Once this claim is proved, it follows that the sequence {s(j)}M
j=−M ⊂ Λ corresponding to

{s̃(j)}M
j=−M ⊂ Λ̃, satisfies the condition (3) as desired.

To prove the claim, consider the partition of NΛ̃ (⊂ Z) based on residue mod-
ulo N: that is, consider the sets NΛ̃ ∩ NZ, NΛ̃ ∩ (NZ+1), . . . , NΛ̃ ∩ (NZ+N−1). Since
D+(Λ̃) = D+(Λ) > 0, at least one of these N sets must have a positive upper density,
i.e., D+(NΛ̃ ∩ (NZ+u)) > 0 for some u ∈ {0, . . . , N − 1}. Then, Szemerédi’s theorem
implies that for any M ∈ N, the set NΛ̃ ∩ (NZ+u) contains an arithmetic progression of
length 2M+1: that is, {c0 j + d0 : j = −M, . . . , M} ⊂ NΛ̃ ∩ (NZ+u) for some c0 ∈ N and
d0 ∈ Z. This means that there is an increasing sequence s̃(−M) < s̃(−M+1) < . . . < s̃(M)
in Λ̃ satisfying

N s̃(j) = c0 j + d0 for j = −M, . . . , M.

Since the numbers c0 j + d0, j = −M, . . . , M are in NZ+u, it is clear that c0 ∈ NN and
d0 ∈ NZ+u. Thus, setting c := 1

N c0 ∈ N and d := 1
N d0 ∈ Z+ u

N ⊂ 1
NZ, we have

s̃(j) = cj + d for j = −M, . . . , M, as claimed.
Finally, one can easily force the constant c ∈ N to be a multiple of any prescribed

number L ∈ N. This is achieved by considering the partition of NΛ̃ (⊂ Z) based on residue
modulo LN instead of modulo N.
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