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Abstract: In this work, the time-fractional Navier–Stokes equation is discussed using a calcula-
tional method, which is called the Sumudu-generalized Laplace transform decomposition method
(DGLTDM). The fractional derivatives are defined in the Caputo sense. The (DGLTDM) is a hybrid
of the Sumudu-generalized Laplace transform and the decomposition method. Three examples of
the time-fractional Navier–Stokes equation are studied to check the validity and demonstrate the
effectiveness of the current method. The results show that the suggested method succeeds remarkably
well in terms of proficiency and can be utilized to study more problems in the field of nonlinear
fractional differential equations (FDEs).

Keywords: double Sumudu transform; double Sumudu-generalized Laplace transform; inverse double
Sumudu-generalized Laplace transform; fractional Navier–Stokes equation; decomposition methods
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1. Introduction

Fractional partial differential equations play an important role in applied mathe-
matics, as they have been suggested for and applied in several different areas of the
physical sciences and engineering such as in fluid dynamics, acoustics, electromagnetism,
visco-elasticity, electro-chemistry, etc. The authors in [1] discussed the multi-scale elastic
structures consisting of matrix medium and thin coatings or inclusions. There are some
approaches to solving the problem of the elastic deformation of thin-walled solids with a
complex shape that is analyzed based on linear and geometrically nonlinear models using
new classes of surfaces [2]. The researchers in [3] applied the variational method to solve
the time-fractal heat conduction problem in the playdate–block construction.

The Navier–Stokes equations are commonly utilized to explain the motion of fluids in
models related to weather, ocean currents, and water flow in a pipe. Also, Navier–Stokes
equations are vector equations. Newly, several researchers have generalized the classical
Navier–Stokes equation into a fractional formula depending on replacing the first-time
derivative with a fractional derivative of order 0 < β ≤ 1, as in [4–8].

Recently, several analytical and approximate techniques for solving time-fractional
Navier–Stokes equations have been developed, for example, the Adomian decomposi-
tion method [9], the q-homotopy analysis transform scheme [10], the modified Laplace
decomposition method [7], the Natural Homotopy Perturbation Method [11], a reliable
algorithm based on the new homotopy perturbation transform method [6], and a modified
reduced differential transform method [12]. In the paper [13], the authors discussed the
convergence properties of double Sumudu transformation and applied it to obtain the exact
solution of the Volterra integro-partial differential equation. The double Sumudu transform
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is connected with the Adomian decomposition method to obtain the analytical solution of
nonlinear fractional partial differential equations [14].

The double Sumudu-generalized Laplace decomposition method is a strong method
that has been used to develop the double Sumudu transform and generalized Laplace
transform [15,16].

This work aims to study the time-fractional Navier–Stokes equation in one and two di-
mensions using the double Sumudu-generalized Laplace transform decomposition method
and to determine the accuracy, efficiency, and simplicity of the suggested method.

lNotations:
In this paper, we employ the following symbols:
(1) (SGLT) instead of “Sumudu-generalized Laplace transform”;
(2) (DST) instead of “double Sumudu transform”;
(3) (DSGLT) instead of “double Sumudu-generalized Laplace transform”;
(4) (DM) instead of “decomposition method”;
(5) (DSGLTDM) instead of “double Sumudu-generalized Laplace transform decompo-

sition method”.
This article is organized as follows. In Section 2, some definitions regarding fractional

calculus and (SGLT) are given. In Section 3, the two main theorems are proved, which are
useful to study the time-fractional Navier-Stokes equation constructed using the (SGLT).
In Section 3.1, the (SGLTDM) is used to solve the one-dimensional time-fractional Navier–
Stokes model. In Section 3.2, the (SGLTDM) is applied to solve the two-dimensional coupled
time-fractional Navier–Stokes model. In Section 4 some numerical example are given. In
Section 5, conclusions are given.

2. Basic Definitions of Fractional Derivatives and Sumudu-Generalized
Laplace Transforms

In this part, some basic definitions of fractional calculus and (SGLT) are given, which
are helpful for this paper.

Definition 1 ([10]). A real function f (t), t > 0 is is called in the space Cµ, µ ∈ R if ∃p is a real
number p(> µ), so that f (t) = tp f1(t), where f1(t) ∈ C[0, ∞), and it is reportedly in the space
Cm

µ if and only if f (m) ∈ Cµ , m ∈ N.

Definition 2 ([17–19]). The Caputo time-fractional derivative operator of order τ > 0 is given by

Dτ
t u(x, t) = {

1
Γ(m−τ)

∫ t
0 (t−σ)m−τ−1 ∂mu(x,σ)

∂σm dσ,
∂mu(x,t)

∂tm , for m=τ∈N
m − 1 < τ < m. (1)

Definition 3 ([20]). Let f be a function of two variables x and t , where x, t > 0. The Sumudu-
generalized Laplace transform of f is defined by

SxGt( f (x, t)) = F(u1, s) =
sα

u1

∫ ∞

0

∫ ∞

0
e−
(

x
u1

+ t
s

)
f (x, t)dtdx, (2)

where the symbol SxGt denoted the (SGLT), and the symbols u1 and s denoted transforms
of the variables x and t in (SGLT), respectively. Double Sumudu-generalized Laplace
transform, which is defined by

SxSyGt( f (x, y, t)) =
sα

u1u2

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−
(

x
u1

+
y

u2
+ t

s

)
f (x, y, t)dtdydx. (3)

Similarly, the (SGLT) for the second partial derivative with respect to x and t is defined
as follows

LxGt[ψxx] =
Ψα(u1, s)

u2
1

− Ψα(0, s)
u2

1
− ∂Ψα(0, s)

∂x
.
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SxGt[ψt] =
Ψα(u1, s)

s
− sαΨ(u1, 0),

SxGt[ψtt] =
Ψα(u1, s)

s2 − sα−1Ψ(u1, 0)− sαΨt(u1, 0).

In general,

SxGα

[
∂m f (x, t)

∂tm

]
=

Fα(u1, s)
sm

−sα
n

∑
k=1

1
sm−k Sx

[
∂k−1 f (x, 0)

∂tk−1

]
. (4)

where u1, s are complex values. The inverse (SGLT) S−1
u1

G−1
s [SxGt( f (x, t))] = f (x, t) is

defined as in [20] by the complex double integral formula

f (x, t) =
1

(2πi)2

∫ τ−i∞

τ−i∞

∫ y−i

y−i∞
e

1
u1

x+ 1
s tSxGt[ f (x, t)]ds du1.

3. Main Results

In the following theorem, we present the (SGLT) of the partial fractional Caputo derivatives

Theorem 1. The (SGLT) of the fractional partial derivatives Dβ
t ψ is denoted by

SxGt

[
Dβ

t ψ
]
=

Ψα(u1, s)
sβ

− sα
∞

∑
k=1

1
sβ−k Sx

[
∂k−1

∂tk−1 ψ(x, 0)

]

Proof. By utilizing the definition of (SGLT), we have

SxGt

[
Dβ

t ψ
]
=

sα

u1

∫ ∞

0

∫ ∞

0
e−
(

x
u1

+ t
s

)
Dβ

t ψdtdx,

and with the help of Equation (1), we obtain

SxGt

[
Dβ

t ψ
]

=
sα

u1

∫ ∞

0

∫ ∞

0
e−
(

x
u1

+ t
s

)
1

Γ(m − β)

∫ t

0
(t − ζ)m−β−1 ∂mψ(x, ζ)

∂ζm dζ dtdx

=
1
u1

∫ ∞

0
e−

x
u1

(
1

Γ(m − β)
sα
∫ ∞

0

∫ ∞

ζ

e−
t
s

(t − ζ)β−m+1
∂mψ(x, ζ)

∂ζm dtdζ

)
dx.

Let v = t − ζ.

SxGt

[
Dβ

t ψ
]

=
1
u1

∫ ∞

0
e−

x
u1

(
sα

Γ(m − β)

∫ ∞

0

∂mψ(x, ζ)

∂ζm dζ
∫ ∞

0
vm−β−1e−

(v+ζ)
s dv

)
dx

=
1
u1

∫ ∞

0
e−

x
u1

(
sα

Γ(m − β)

∫ ∞

0
e−

ζ
s

∂mψ(x, ζ)

∂ζm dζ
∫ ∞

0
vm−β−1e−

v
s dv
)

dx

=
1
u1

∫ ∞

0
e−

x
u1

(
sα

Γ(m − β)

∫ ∞

0
e−

ζ
s

∂mψ(x, ζ)

∂ζm dζ
Γ(m − β)

sβ−m

)
dx

=
1
u1

∫ ∞

0
e−

x
u1

(
sα
∫ ∞

0
e−

ζ
s

∂mψ(x, ζ)

∂ζm dζ

)
1

sβ−m dx,
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where
Γ(m − β)

sβ−m =
∫ ∞

0
vm−β−1e−

v
s dv.

SxGt

[
Dβ

t ψ
]

=
1
u1

∫ ∞

0
e−

x
u1

(
Gt

[
∂mψ(x, ζ)

∂ζm

])
1

sβ−m dx;

by implementing Equation (4), we can obtain

SxGt

[
Dβ

t ψ
]
=

1
sβ−m

[
Ψα(u1, s)

sm − sα
n

∑
k=1

1
sm−k Sx

[
∂k−1ψ(x, 0)

∂tk−1

]]
;

by rewriting the equation above, we obtain

SxGt

[
Dβ

t ψ
]
=

Ψα(u1, s)
sβ

− sα
n

∑
k=1

1
sβ−k Sx

[
∂k−1ψ(x, 0)

∂tk−1

]
.

In the next theorem, we utilize the (SGLT) for fractional partial derivatives xDβ
t ψ.

Theorem 2. The (SGLT) of the fractional partial derivatives xDβ
t ψ is achieved by

SxGt

[
xDβ

t ψ
]

=
u1

sβ

d
du1

(u1Ψα(u1, s))

−u1sα−β+1 d
du1

(u1Ψ(u1, 0)). (5)

Proof. By utilizing the derivatives with respect to u1 for Equation (2), one can obtain

d
du1

(
SxGt

[
Dβ

t ψ
])

=
d

du1

∫ ∞

0

∫ ∞

0

sα

u1
e−
(

1
u1

x+ 1
s t
)

Dβ
t ψdxdt,

=
∫ ∞

0
sαe−

1
s t
(∫ ∞

0

d
du1

1
u1

e−
1

u1
xDβ

t ψdx
)

dt; (6)

the derivative between the brackets can be calculated as follows:∫ ∞

0

d
du1

1
u1

e−
1

u1
xDβ

t ψdx =
∫ ∞

0

(
1
u3

1
x − 1

u2
1

)
e−

1
u1

xDβ
t ψdx

=
∫ ∞

0

1
u3

1
xe−

1
u1

xDβ
t ψdx (7)

−
∫ ∞

0

1
u2

1
e−

1
u1

xDβ
t ψdx;

by putting Equation (7) into Equation (6), we obtain

d
dµ1

(
SxGt

[
Dβ

t ψ
])

=
∫ ∞

0
sαe−

1
s t
∫ ∞

0

1
u3

1
xe−

1
u1

xDβ
t ψdxdt

−
∫ ∞

0
sαe−

1
s t
∫ ∞

0

1
u2

1
e−

1
u1

xDβ
t ψdxdtl (8)
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consequently Equation (8) becomes

d
dµ1

(
SxGt

[
Dβ

t ψ
])

=
1
u2

1

(
sα

u1

∫ ∞

0

∫ ∞

0
e−
(

1
u1

x+ 1
s t
)

xDβ
t ψdxdt

)
− 1

u1

(
sα

u1

∫ ∞

0

∫ ∞

0
e−
(

1
u1

x+ 1
s t
)

Dβ
t ψdxdt

)
. (9)

Hence,

d
dµ1

(
SxGt

[
Dβ

t ψ
])

=
1
u2

1
SxGt

[
xDβ

t ψ
]
− 1

u1
SxGt

[
Dβ

t ψ
]
; (10)

by managing the above equation, we will obtain the proof of Equation (5) as follows

SxGt

[
xDβ

t ψ
]

=
u1

sβ

d
du1

(u1Ψα(u1, s))

−u1sα−β+1 d
du1

(u1Ψα(u1, 0)).

The proof is complete.

The double Sumudu-generalized Laplace transform of the partial derivatives Dβ
t ψ(x, y, t)

is given by

SxGt

[
∂βψ(x, y, t)

∂tβ

]
=

Ψα(u1, u2, s)
sβ

− sα−β+1SxSy[Ψ(x, y, 0)], (11)

where β represents the order of the derivative.

3.1. Analysis of the Sumudu-Generalized Laplace Decomposition Method

This subsection gives the main concept of the (SGLTDM) for the fractional partial
differential equation, to demonstrate the essential strategy of the Sumudu-generalized
Laplace Adomian decomposition method. The Navier–Stokes equation with time-fractional
is denoted by

Dβ
t ψ(x, t) = D2

xu(x, t) +
1
x

Dxu(x, t) + f (x, t), x, t > 0,

m − 1 < α < m, (12)

with the initial condition
ψ(x, 0) = f1(x),

where Dβ
t = ∂β

∂tβ is the fractional Caputo derivative, D2
x = ∂2

∂x2 , Dx = ∂
∂x , and the right-

hand-side function f (x, t) is the source term. With a view to applying the (SGLTDM),
the following steps are needed.

Step 1: We multiply first Equation (12) by x, and we obtain

xDα
t ψ = xD2

xψ + Dxψ + x f (x, t), x, t > 0. (13)

Step 2: Applying the (SGLT) on both sides of Equation (13), we have

SxGt[xDα
t ψ] = SxGt

[
xD2

xψ + Dxψ + x f (x, t)
]
, x, t > 0. (14)



Axioms 2024, 13, 44 6 of 21

Using Theorem 2, we obtain

u1

sβ

d
du1

(u1Ψα(u1, s))− u1sα−β+1 d
du1

(u1Ψα(u1, 0))

= SxGt

[
xD2

xψ + Dxψ + x f (x, t)
]
;

after an algebraic handling, we obtain

d
du1

(u1Ψα(u1, s)) = sα+1 d
du1

(u1F1(u1, 0))

+
sβ

u1
SxGt

[
xD2

xψ + Dxψ + x f (x, t)
]
. (15)

Step 3: By employing the integral for both sides of Equation (15) from 0 to u1 with
respect to u1, one can obtain

Ψα(u1, s) = sα+1F1(u1, 0) +
1
u1

∫ u1

0

(
sβ

u1
SxGt[x f (x, t)]

)
du1

+
1
u1

∫ u1

0

(
sβ

u1
SxGt

[
xD2

xψ + Dxψ
])

du1. (16)

Step 4: By utilizing the inverse (SGLT) for Equation (16), we obtain

ψ(x, t) = f1(x) + S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt

[
xD2

xψ + Dxψ
])

du1

]
+S−1

u1
G−1

s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt[x f (x, t)]

)
du1

]
, (17)

where the symbol S−1
u1

G−1
s indicates the inverse (SGLT). The method (SGLTD M) designates

the solution as an infinite series, as

ψ(x, t) =
∞

∑
m=0

ψm(x, t); (18)

by placing Equation (18) into Equation (16), we obtain

∞

∑
m=0

ψm(x, t) = f1(x) + S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt[x f (x, t)]

)
du1

]

+S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt

[
∞

∑
m=0

(
xD2

xψm + Dxψm

)])
du1

]
. (19)

By using (SGLTDM), we present the iteration relations as:

ψ0(x, t) = f1(x) + S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt[x f (x, t)]

)
du1

]
, (20)

and the remaining terms can be acquired from the next formula

ψm+1(x, t) = S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt

[(
xD2

xψm + Dxψm

)])
du1

]
. m ≥ 1 (21)

We consider that the inverse exists for all terms on the right-hand side of Equations (20)
and (21), respectively, where SxGt is the (SGLT) with respect to x, t, and the inverse (SGLT)
is given by S−1

u1
G−1

s with respect to u1, s.
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3.2. Analysis of the Double Sumudu-Generalized Laplace Transforms Decomposition Method

In this part of the paper, we present the fundamental concept of the (DSGLTDM) for the
time-fractional partial differential equation. To show the elementary plan of (DSGLTDM),
we consider in the following a general coupled system two-dimensional time-fractional
Navier–Stokes equations.

Dβ
t ψ + ψψx + φψy = ρ0

(
ψxx + ψyy

)
− 1

ρ

∂p
∂x

, x, y, t > 0,

Dβ
t φ + ψφx + φφy = ρ0

(
φxx + φyy

)
− 1

ρ

∂p
∂y

, x, y, t > 0,

n − 1 < β < n, (22)

subject to the conditions

ψ(x, y, 0) = f1(x, y), φ(x, y, 0) = g1(x, y), (23)

where Dα
t = ∂α

∂tα is the fractional Caputo derivative, p is pressure; in addition, if p is known,

then q1 = 1
ρ

∂p
∂x , and q2 = − 1

ρ
∂p
∂y . The approach requires applying the (DSGLT) for both sides

of Equation (22), and we obtain

Ψ(u1, u2, s)
sβ

− sα−β+1Ψ(u1, u2, 0) = −SxSyGt
(
ψψx + φψy

)
+SxSyGt

(
ρ0
(
ψxx + ψyy

))
− SxSyGt(q1),

Φ(u1, u2, s)
sβ

− sα−β+1Φ(u1, u2, 0) = −SxSyGt
(
ψφx + φφy

)
+SxSyGt

(
ρ0
(

φxx + φyy
))

+ SxSyGt(q2). (24)

Now, using the differentiation property of the (DST), we have

Ψ(u1, u2, s) = sα−β+1F1(u1, u2)− sβSxSyGt
(
ψψx + φψy

)
+sβSxSyGt

(
ρ0
(
ψxx + ψyy

))
− sβSxSyGt(q1),

Φ(u1, u2, s) = sα−β+1G1(u1, u2)− sβSxSyGt
(
ψφx + φφy

)
+sβSxSyGt

(
ρ0
(

φxx + φyy
))

+ sβSxSyGt(q2). (25)

By involving the inverse (DSGLT) for Equation (25), we obtain

ψ(x, y, t) = S−1
u1

S−1
u2

G−1
s

(
sα−β+1F1(u1, u2)

)
− S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ψψx + φψy

))
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(
ψxx + ψyy

)))
− S−1

u1
S−1

u2
G−1

s

[
sβSxSyGt(q1)

]
,

φ(x, y, t) = S−1
u1

S−1
u2

G−1
s

(
sα−β+1G1(u1, u2)

)
− S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ψφx + φφy

))
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(

φxx + φyy
)))

+ S−1
u1

S−1
u2

G−1
s

[
sβSxSyGt(q2)

]
. (26)

The DM presumes that the functional solutions to ψ(x, y, t) and φ(x, y, t) are given by
the following infinite series

ψ(x, y, t) =
∞

∑
n=0

ψn(x, y, t), φ(x, y, t) =
∞

∑
n=0

φn(x, y, t). (27)

In addition, the nonlinear terms ψψx, φψy, ψφx, and φφy are specified by

ψψx =
∞

∑
n=0

An, φψy =
∞

∑
n=0

Bn, ψφx =
∞

∑
n=0

Cn, φφy =
∞

∑
n=0

Dn. (28)
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By placing Equation (27) into Equation (25), we obtain

∞

∑
m=0

ψn(x, y, t) = f1(x, y)− S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
∞

∑
n=0

(An + Bn)

))

+S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
ρ0

(
∞

∑
n=0

ψnxx +
∞

∑
n=0

ψnyy

)))
−S−1

u1
S−1

u2
G−1

s

[
sβSxSyGt(q1)

]
, (29)

and

∞

∑
m=0

φn(x, y, t) = g1(x, y)− S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
∞

∑
n=0

(Cn + Dn)

))

+S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
ρ0

(
∞

∑
n=0

φnxx +
∞

∑
n=0

φnyy

)))
+S−1

u1
S−1

u2
G−1

s

[
sβSxSyGt(q2)

]
. (30)

Using (DSGLTDM), we present the recursive relations as:

u0(x, y, t) = f1(x, y)− S−1
u1

S−1
u2

G−1
s

[
sβSxSyGt(q1)

]
v0(x, y, t) = g1(x, y) + S−1

u1
S−1

u2
G−1

s

[
sβSxSyGt(q2)

]
, (31)

and the remaining elements ψn+1 and φn+1, n ≥ 0 are denoted by

ψn+1(x, y, t) = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(An + Bn)

)
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(
ψnxx + ψnyy

)))
, (32)

and

φn+1(x, y, t) = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(Cn + Dn)

)
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(

φnxx + φnyy
)))

. (33)

The inverse (DSGLT) is denoted by S−1
u1

S−1
u2

G−1
s with respect to u1, u2, s. We presume

that the inverse (DSGLT), with respect to u1, u2 and s exist for Equations (31)–(33).

4. Numerical Examples

In this section, two problems on fractional homogeneous and non-homogeneous time-
fractional Navier–Stokes equations are solved to verify the ability and dependability of our
method (SGLTDM) and (DSGLTDM).

Example 1. Consider the following homogeneous one-dimensional motion of a dense fluid in a tube
with the condition provided by

Dβ
t ψ = − ∂p

ρ∂z
+

v
x

∂

∂x
(xDxψ), x, t > 0 (34)

and the initial condition
ψ(x, 0) = 1 − x2. (35)
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The fractional derivative model is used to illustrate the time derivative term, and
Equation (34) can be written in the following form

Dβ
t ψ = K +

v
x

∂

∂x
(xDxψ), x, t > 0, (36)

where K = − ∂p
ρ∂z ; multiplying the above equation by x, we have

xDβ
t ψ = Kx + v

∂

∂x
(xDxψ), x, t > 0. (37)

By taking the (SGLT) for both sides of Equation (37), we arrive at

SxGt[xDα
t ψ] = SxGt[Kx] + SxGt

[
v

∂

∂x
(xDxψ)

]
; (38)

on using the differentiation property of the Sumudu transform and Theorem 2, we can obtain

d
du1

(u1Ψα(u1, s)) = sα+1 d
du1

(u1F1(u1, 0))

+Ksα+1+β +
sβ

u1
SxGt

[
v

∂

∂x
(xDxψ)

]
. (39)

Utilizing the Sumudu transform for the initial condition and substituting it into Equation (39),
we have

d
du1

(u1Ψα(u1, s)) =
(

1 − 6u2
1

)
sα+1 + Ksα+1+β

+
sβ

u1
SxGt

[
v

∂

∂x
(xDxψ)

]
; (40)

by taking the integral for both sides of Equation (40) from 0 to u1 with respect to u1 and
dividing the results by u1, we obtain

Ψα(u1, s) =
(

1 − 2u2
1

)
sα+1 + Ksα+1+β

+
1
u1

∫ u1

0

sβ

u1
SxGt

[
v

∂

∂x
(xDxψ)

]
du1. (41)

Now, the inverse (SGLT) of Equation (41) is given by

ψ(x, t) = 1 − x2 +
Ktβ

Γ(β + 1)

+S−1
u1

G−1
s

[
1
u1

∫ u1

0

sβ

u1
SxGt

[
v

∂

∂x
(xDxψ)

]
du1

]
, (42)

and we assume an infinite series solution of the unknown function ψ(x, t) is denoted by
Equation (18). By substituting Equation (18) into Equation (42), we obtain:

∞

∑
m=0

ψm(x, t) = 1 − x2 +
Ktβ

Γ(β + 1)

+S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt

[
∞

∑
m=0

v
∂

∂x
(xDxψm)

])
du1

]
. (43)
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The zeroth component ψ0 is recommended by the Adomian method, which always
includes the initial condition and the source term, both of which are considered to be
known. Therefore, we place

ψ0 = 1 − x2 +
Ktβ

Γ(β + 1)
.

The remaining components ψm+1, m ≥ 0 are given by using the relation

ψm+1(x, t) = S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt

[
v

∂

∂x
(xDxψm)

])
du1

]
; (44)

by substituting m = 0, into Equation (44), we obtain

ψ1(x, t) = S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt

[
v

∂

∂x
(xDxψ0)

])
du1

]
= −S−1

u1
G−1

s

[
1
u1

∫ u1

0

[
4vsα+β+1

]
dp
]
= −S−1

u1
G−1

s

[
4vsα+β+1

]
.

ψ1(x, t) = − 4vtβ

Γ(β + 1)
.

In the same way, at m = 1,

ψ2(x, t) = S−1
u1

G−1
s

[
1
u1

∫ u1

0

(
sβ

u1
SxGt

[
v

∂

∂x
(xDxψ1)

])
du1

]
= S−1

u1
G−1

s

[
1
u1

∫ u1

0

sβ

u1
SxGt[0]du1

]
= 0;

similarly, at m = 2, we obtain
ψ3(x, t) = 0.

Thus, the solution of Equation (34) can be expressed as

ψ(x, t) = 1 − x2 +
(K − 4v)tβ

Γ(β + 1)
.

The error between the exact and approximation solution of example 1 is given in Table 1 below.

Table 1. Comparison between the exact and approximation solutions.

Exact The Method Error The Method Error
β = 1 β = 0.95 β = 0.99

−2.0000 −2.0616 0.0616 −2.0126 0.0126
−2.0100 −2.0716 0.0616 −2.0226 0.0126
−2.0400 −2.1016 0.0616 −2.0526 0.0126
−2.0900 −2.1516 0.0616 −2.1026 0.0126
−2.1600 −2.2216 0.0616 −2.1726 0.0126
−2.2500 −2.3116 0.0616 −2.2626 0.0126
−2.3600 −2.4216 0.0616 −2.3726 0.0126
−2.4900 −2.5516 0.0616 −2.5026 0.0126
−2.6400 −2.7016 0.0616 −2.6526 0.0126
−2.8100 −2.8716 0.0616 −2.8226 0.0126
−3.0000 −3.0616 0.0616 −3.0126 0.0126

Figure 1 presents a comparison between the exact solution and the obtained numerical
solution of Equation (34); at t = 1 and β = 1, we obtain the exact solution, and by taking
different values of β such as (β = 0.95, β = 0.99), we obtain the approximate solutions.
Figure 2 shows the plot of function ψ(x, t) in three dimensions.
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Figure 2. The surface of the function ψ(x, t).

Example 2. The non-homogenous time-fractional Navier–Stokes equation with the initial condi-
tion is

Dβ
t ψ = D2

xψ +
1
x

Dxψ + x2et − 4et, x, t > 0, (45)

ψ(x, 0) = x2. (46)

Applying the (SGLT) on both sides of Equation (45) and the Sumudu transform to the
initial condition, Equation (46), we obtain

Ψα(u1, s) = 2u2
1sα+1 + 2u2

1
sα+1+β

1 − s
− 4sα+1+β

1 − s

+
1
u1

∫ u1

0

sβ

u1
SxGt

[
v

∂

∂x
(xDxψ)

]
du1. (47)
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From the formula for the geometric series, the terms sα+1+β

1−s and 4sα+1+β

1−s can be written
in the form of

2u2
1sα+1+β 1

1 − s
= 2u2

1

[
sα+1+β + sα+2+β + sα+3+β + . . .

]
sα+1+β 1

1 − s
=

[
sα+1+β + sα+2+β + sα+3+β + . . .

]
.

Operating with the (SGLT) inverse on both sides of Equation (47) gives

ψ(x, t) = x2 + x2
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
−4
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
+S−1

u1
G−1

s

[
1
u1

∫ u1

0

sβ

u1
SxGt

[
∂

∂x
(xDxψ)

]
du1

]
. (48)

By using the above-mentioned method, if we assume an infinite series solution of the
form in Equation (18), we have

∞

∑
m=0

ψm(x, t) = x2 + x2
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
−4
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
+S−1

u1
G−1

s

[
1
u1

∫ u1

0

sβ

u1
SxGt

[
∂

∂x

(
x

∞

∑
m=0

ψmx(x, t)

)]
du1

]
; (49)

the first few terms of the (SGLTDM) are given by

ψ0 = x2 + x2
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
−4
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
,

and

ψm+1(x, t) = S−1
u1

G−1
s

[
1
u1

∫ u1

0

sβ

u1
SxGt

[
∂

∂x
(xψmx(x, t))

]
du1

]
Hence, at m = 0, we obtain

ψ1 = S−1
u1

G−1
s

[
1
u1

∫ u1

0

sβ

u1
SxGt

[
∂

∂x
(xψ0x(x, t))

]
du1

]

= S−1
u1

G−1
s

 1
u1

∫ u1

0

sβ

u1
SxGt

4x + 4x

 tβ

Γ(β+1) +
tβ+1

Γ(β+2)

+ tβ+2

Γ(β+3) + . . .

du1


= S−1

u1
G−1

s

[
4sα+β+1 + 4

[
sα+1+2β + sα+2+2β + sα+3+2β + . . .

]]
ψ1 =

4tβ

Γ(α + 1)
+ 4
[

t2β

Γ(2β + 1)
+

t2β+1

Γ(2β + 2)
+

t2β+2

Γ(2β + 3)
+ . . .

]
.
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In the same manner,

ψ2 = S−1
u1

G−1
s

[
1
u1

∫ u1

0

sβ

u1
SxGt

[
∂

∂x
(xψ1x(x, t))

]
du1

]
= S−1

u1
G−1

s

[
1
u1

∫ u1

0

sβ

u1
SxGt[0]du1

]
ψ2 = 0,

and
ψ3 = 0, ψ4 = 0, . . . .

So, our required solutions are given below

ψ(x, t) = ψ0 + ψ1 + ψ2 + . . . .

ψ(x, t) = x2 + x2
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
−4
[

tβ

Γ(β + 1)
+

tβ+1

Γ(β + 2)
+

tβ+2

Γ(β + 3)
+ . . .

]
+

4tβ

Γ(β + 1)
+ 4
[

t2β

Γ(2β + 1)
+

t2β+1

Γ(2β + 2)
+

t2β+2

Γ(2β + 3)
+ . . .

]
.

When we set β = 1 in Equation (45), we obtain the exact solution of the non-time-
fractional Navier–Stokes equation as follows

ψ(x, t) = x2et.

The error between the exact and approximation solutions to example two is given in
Table 2 below.

Table 2. Comparison between the exact and approximation solutions.

Exact The Method Error The Method Error
β = 1 β = 0.95 β = 0.99

2.3333 2.5599 0.2266 2.4077 0.0744
2.3600 2.5869 0.2269 2.4345 0.0745
2.4400 2.6679 0.2279 2.5148 0.0748
2.5733 2.8029 0.2295 2.6487 0.0754
2.7600 2.9918 0.2318 2.8361 0.0761
3.0000 3.2348 0.2348 3.0771 0.0771
3.2933 3.5317 0.2384 3.3716 0.0783
3.6400 3.8827 0.2427 3.7197 0.0797
4.0400 4.2876 0.2476 4.1214 0.0814
4.4933 4.7465 0.2532 4.5766 0.0832
5.0000 5.2594 0.2594 5.0853 0.0853

Figure 3 presents a comparison between the exact and numerical solutions of Equation (45).
The exact solution is obtained when t = 1 and β = 1, and we obtain the numerical solutions
by taking different values of β such as (β = 0.95, β = 0.99). Figure 4 shows the surface of
function ψ(x, t) in three dimensions.
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Figure 4. The surface of the function ψ(x, t).

Example 3. Consider a time-fractional order two-dimensional Navier–Stokes equation with [21,22]

Dα
t ψ + ψψx + φψy = ρ0

(
ψxx + ψyy

)
+ q, x, y, t > 0,

Dα
t φ + ψφx + φφy = ρ0

(
φxx + φyy

)
− q, x, y, t > 0,

n − 1 < α < n, (50)

subject to the condition

ψ(x, y, 0) = − sin(x + y), φ(x, y, 0) = sin(x + y);

by using the (DSGLT) on both sides of Equation (50), we obtain

SxSyGt
[
Dα

t ψ + ψψx + φψy = ρ0
(
ψxx + ψyy

)
+ q
]

SxSyGt
[
Dα

t φ + ψφx + φφy = ρ0
(

φxx + φyy
)
− q
]
,
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and using the differentiation property of the double Sumudu transform, we have

Ψ(u1, u2, s)
sβ

− sα−β+1Ψ(u1, u2, 0) = −SxSyGt
(
ψψx + φψy

)
+SxSyGt

(
ρ0
(
ψxx + ψyy

))
+ SxSyGt(q),

Φ(u1, u2, s)
sβ

− sα−β+1Φ(u1, u2, 0) = −SxSyGt
(
ψφx + φφy

)
+SxSyGt

(
ρ0
(

φxx + φyy
))

+ SxSyGt(q). (51)

Replacing the initial condition and arranging Equation (51), we have

Ψ(u1, u2, s) = − (u1 + u2)sα+1(
u2

1 + 1
)(

u2
2 + 1

) − sβSxSyGt
(
ψψx + φψy

)
+sβSxSyGt

(
ρ0
(
ψxx + ψyy

))
− sβSxSyGt(q)

Φ(u1, u2, s) =
(u1 + u2)sα+1(
u2

1 + 1
)(

u2
2 + 1

) − sβSxSyGt
(
ψφx + φφy

)
+sβSxSyGt

(
ρ0
(

φxx + φyy
))

− sβSxSyGt(q). (52)

Now, applying the inverse (DSGLT) for both sides of Equation (52), we obtain

ψ(x, y, t) = − sin(x + y)− S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
ψψx + φψy

))
+S−1

u1
S−1

u2
G−1

s

((
sβSxSyGt

(
ρ0
(
ψxx + ψyy

))))
+

qtβ

Γ(β + 1)
,

φ(x, y, t) = sin(x + y)− S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
ψφx + φφy

))
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(

φxx + φyy
)))

− qtβ

Γ(β + 1)
. (53)

The zeroth components u0 and v0 are proposed by they Adomian method, and they
constantly include the initial condition and the source term, both of which are supposed to
be recognized. Consequently, we set

ψ0 = − sin(x + y) +
qtβ

Γ(β + 1)
, ψ0 = sin(x + y)− qtβ

Γ(β + 1)
.

The remaining elements un+1, un+1, n ≥ 0 are given as follows

ψn+1 = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(An + Bn)

)
+S−1

u1
S−1

u2
G−1

s

((
sβSxSyGt

(
ρ0
(
ψnxx + ψnyy

))))
, (54)

and

ψn+1 = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(Cn + Dn)

)
+sβSxSyGt

(
ρ0
(

φnxx + φnyy
))

. (55)
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The few components of the Adomian polynomials An, Bn, Cn, and Dn are given as follows

A0 = ψ0ψ0x, A1 = ψ0ψ1x + ψ1ψ0x,

A2 = ψ0ψ2x + ψ1ψ1x + ψ2ψ0x,

A3 = ψ0ψ3x + ψ1ψ2x + ψ2ψ1x + ψ3ψ0x, (56)

B0 = φ0ψ0y, B1 = φ0ψ1y + φ1ψ0y,

B2 = φ0ψ2y + φ1ψ1y + φ2ψ0y,

B3 = φ0ψ3y + φ1ψ2y + φ2ψ1y + φ3ψ0y, (57)

C0 = ψ0 φ0x, C1 = ψ0 φ1x + ψ1 φ0x,

C2 = ψ0 φ2x + ψ1 φ1x + ψ2 φ0x,

C3 = ψ0 φ3x + ψ1 φ2x + ψ2 φ1x + ψ3 φ0x. (58)

D0 = φ0 φ0y, D1 = φ0 φ1y + φ1 φ0y,

D2 = φ0 φ2y + φ1 φ1y + φ2 φ0y,

D3 = φ0 φ3y + φ1 φ2y + φ2 φ1y + φ3 φ0y. (59)

Setting n = 0 into Equations (54) and (55), we obtain

ψ1 = −ψn+1 = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(A0 + B0)

)
+S−1

u1
S−1

u2
G−1

s

((
sβSxSyGt

(
ρ0
(
ψ0xx + ψ0yy

))))
,

= S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(ρ0(2 sin(x + y)))0

)
= S−1

u1
S−1

u2
G−1

s

(
2ρ0

(u1 + u2)sα+β+1(
u2

1 + 1
)(

u2
2 + 1

))

= 2
ρ0tβ

Γ(β + 1)
sin(x + y)

and

φ1 = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(C0 + D0)

)
+sβSxSyGt

(
ρ0
(

φ0xx + φ0yy
))

= S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt(−ρ0(2 sin(x + y)))

)
= −2

ρ0tβ

Γ(β + 1)
sin(x + y);

similarly, at n = 1,

ψ2 = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

((
ψ0ψ1x + ψ1ψ0x + φ0ψ1y + φ1ψ0y

)))
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(
ψ1xx + ψ1yy

)))
,

= S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
−4ρ2

0 sin(x + y)tβ

Γ(β + 1)

))

= L−1
p L−1

q L−1
s

(
−4ρ2

0
(u1 + u2)sα+2β+1(

u2
1 + 1

)(
u2

2 + 1
))

= − (2ρ0)
2 sin(x + y)t2β

Γ(2β + 1)
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and

φ2 = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
ψ0 φ1x + ψ1 φ0x + φ0 φ1y + φ1 φ0y

))
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(

φ1xx + φ1yy
)))

= S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
4ρ2

0 sin(x + y)tβ

Γ(β + 1)

))

= S−1
u1

S−1
u2

G−1
s

(
4ρ2

0
(u1 + u2)sα+2β+1(

u2
1 + 1

)(
u2

2 + 1
))

=
(2ρ0)

2 sin(x + y)t2β

Γ(2β + 1).

In a similar manner, at n = 2, we have

ψ3 = −S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

((
ψ0ψ2x + ψ1ψ1x + ψ2ψ0x + φ0ψ2y + φ1ψ1y + φ2ψ0y

)))
+S−1

u1
S−1

u2
G−1

s

(
sβSxSyGt

(
ρ0
(
ψ2xx + ψ2yy

)))
,

= S−1
u1

S−1
u2

G−1
s

(
sβSxSyGt

(
−8ρ3

0 sin(x + y)t2β

Γ(2β + 1)

))

= S−1
u1

S−1
u2

G−1
s

(
−8ρ3

0
(u1 + u2)sα+2β+1(

u2
1 + 1

)(
u2

2 + 1
))

=
−8ρ3

0 sin(x + y)t3β

Γ(3β + 1)
= − (2ρ0)

3 sin(x + y)t3α

Γ(3α + 1),

and by the same way,

φ3 = − (2ρ0)
3 sin(x + y)t3β

Γ(3β + 1)
.

In similar manner, we have

ψn = − (−2ρ0)
n sin(x + y)tnβ

Γ(nβ + 1)
, φn =

(−2ρ0)
n sin(x + y)tnβ

Γ(nβ + 1)
, ∀n ≥ 2.

So, our required solutions to Equation (50) are given below

ψ(x, y, t) = ψ0 + ψ1 + ψ2 + . . . . + ψn

φ(x, y, t) = φ0 + φ1 + φ2 + . . . . + φn

ψ(x, y, t) = − sin(x + y)
∞

∑
n=0

(−2ρ0)
ntnβ

Γ(nβ + 1)
+

qtβ

Γ(β + 1)

φ(x, y, t) = sin(x + y)
∞

∑
n=0

(−2ρ0)
ntnβ

Γ(nβ + 1)
+

qtβ

Γ(β + 1);

substituting β = 1 and q = 0 into the above equation, we obtain the exact solution to
the classical Navier–Stokes equation for the velocity as:

ψ(x, y, t) = − sin(x + y)e−2ρ0t

φ(x, y, t) = sin(x + y)e−2ρ0t.

The error between the exact and approximation solutions to example two is given in
Tables 3 and 4 below.
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Table 3. Comparison between the exact and approximation solutions for ψ(x, t).

Exact The Method Error The Method Error
β = 1 β = 0.95 β = 0.99

0 0 0 0 0
0.1000 0.1145 0.0145 0.1028 0.0028
0.2000 0.2212 0.0212 0.2041 0.0041
0.3000 0.3252 0.0252 0.3049 0.0049
0.4000 0.4274 0.0274 0.4054 0.0054
0.5000 0.5283 0.0283 0.5056 0.0056
0.6000 0.6282 0.0282 0.6056 0.0056
0.7000 0.7272 0.0272 0.7055 0.0055
0.8000 0.8256 0.0256 0.8052 0.0052
0.9000 0.9233 0.0233 0.9047 0.0047
1.0000 1.0205 0.0205 1.0042 0.0042

Table 4. Comparison between the exact and approximation solutions for ϕ(x, t).

Exact The Method Error The Method Error
β = 1 β = 0.95 β = 0.99

0 0 0 0 0
0.1000 0.1145 0.0145 0.1028 0.0028
0.2000 0.2212 0.0212 0.2041 0.0041
0.3000 0.3252 0.0252 0.3049 0.0049
0.4000 0.4274 0.0274 0.4054 0.0054
0.5000 0.5283 0.0283 0.5056 0.0056
0.6000 0.6282 0.0282 0.6056 0.0056
0.7000 0.7272 0.0272 0.7055 0.0055
0.8000 0.8256 0.0256 0.8052 0.0052
0.9000 0.9233 0.0233 0.9047 0.0047
1.0000 1.0205 0.0205 1.0042 0.0042

The comparison between the exact and numerical solutions for Equation (50) is
shown in Figures 5 and 6. We obtain exact solution at β = 1; and the different val-
ues of β such as (β = 0.95, β = 0.99) show the approximate solution. The surfaces in
Figures 7 and 8 show the exact solution of the functions ψ(x, y, t) = − sin(x + y)e−2ρ0t and
φ(x, y, t) = sin(x + y)e−2ρ0t at x = 0, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

1.2

t

exact (beta =1)

beta = 0.95

beta = 0.99

Figure 5. The comparison between the exact and numerical solutions for ψ(x, y, t).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

1.2

t

exact (beta =1)

beta = 0.95

beta = 0.99

Figure 6. The comparison between the exact and numerical solutions for φ(x, y, t).

Figure 7. The surface shows the function ψ(x, y, t) = − sin(x + y)e−2ρ0t.

Figure 8. The surface shows the function φ(x, y, t) = sin(x + y)e−2ρ0t.
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5. Conclusions

In this article, strong techniques, which are called (SGLTDM) and (DSGLTDM), are
implemented to obtain the solution time-fractional Navier–Stokes equations. The obtained
results are fascinating and agree with the exact solutions. The action and effectiveness
of the introduced method are examined by utilizing some numerical examples. Thus, it
can be concluded that the (SGLTDM) and (DSGLTDM) are very active in finding exact, as
well as numerical, solutions for fractional partial differential equations. Moreover, the pro-
posed method is very efficient in analyzing nonlinear systems without any categorization.
The outcome shows that the present method has higher accuracy compared to the existing
method in the literature. Numerical simulation was utilized to draw the exact and approx-
imate solutions. In the future, we will use our method to develop modeling horizons in
our domain.
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