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Abstract: In this paper, we investigate a nonlinear coupled integro-differential system involving
generalized Hilfer fractional derivative operators ((k, )-Hilfer type) of different orders and equipped
with non-local multi-point ordinary and fractional integral boundary conditions. The uniqueness
results for the given problem are obtained by applying Banach’s contraction mapping principle
and the Boyd-Wong fixed point theorem for nonlinear contractions. Based on the Laray-Schauder
alternative and the well-known fixed-point theorem due to Krasnosel’skii, the existence of solutions
for the problem at hand is established under different criteria. Illustrative examples for the main
results are constructed.
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1. Introduction

The recent development of fractional calculus indicates that the fractional-order dif-
ferential operators serve as a valuable tool in the modeling of many physical phenomena
occurring in applied and social sciences. For theoretical and application details of fractional
differential equations, we refer the reader to the books [1,2], while an up-to-date account of
non-local and non-linear fractional boundary value problems can be found in the text [3].
Fractional derivative operators are usually defined in terms of fractional integral opera-
tors and there do exist a variety of such operators. Examples include Riemann-Liouville,
Caputo, Hadamard, Erdélyi-Kober, Hilfer fractional derivatives, etc—for details, see the
text [1]. In [4], the concept of the Riemann-Liouville fractional integral operator was
extended to the k—-Riemann-Liouville fractional integral operator with the help of the
generalized Euler’s k-gamma function, which was used to define the k—Riemann-Liouville
fractional derivative in [5]. For the explanation of the -Riemann-Liouville fractional inte-
gral and derivative operators, see [1], while the details about y-Hilfer fractional derivative
can be found in [6].

In a recent article [7], the authors discussed the concept of generalized and Caputo-
type generalized fractional derivatives and integrals of a function with respect to another
function. An initial value problem for generalized y-Hilfer type nonlinear implicit fractional
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differential equations was investigated in [8]. The authors in [9] discussed the attractivity
of solutions for a problem involving the Hilfer fractional derivative operator.

Let us now dwell on the literature involving (k, 1)-Hilfer fractional type initial and
boundary value problems. The (k, {)-Riemann-Liouville fractional integral and derivative
operators were respectively introduced in [5,10]. An initial value problem involving (k, {)-
Hilfer fractional derivative operator was studied in [11]. In [12], the authors investigated
the existence of solutions for the following (k, ¢)-Hilfer multi-point nonlocal fractional
boundary value problem:

k’HDa"B;l’bT[(t) Hl(t 7'[( )), t e (Elo,b()]
w(ag) = 0, 7(bo) = 2%/ (&) r(s)ds + Y g I (z;),

j=1

where ag, by € R, ay < by, “HD*P¥ denotes the (k, p)-Hilfer type fractional derivative
operator of ordera, 1 < o < 2,0 < <1,k > 0,IT; € C([ag,bp] x R, R), k1%ii% is the
(k,p)-Riemann-Liouville fractional integral operator of order ¢; > 0, y;,{; € R, and
apg < i, Zj < bo,i = 1,2,...,7’1,j =1,2,...,m

There has also been shown a significant interest in studying the fractional-order
coupled systems, as such systems appear in the mathematical models associated with bio-
engineering [13], financial economics [14], fractional dynamics [15], etc. In [16], the authors
studied a coupled system of —Hilfer fractional differential equations. In [17], nonlinear
coupled hybrid systems involving generalized Hilfer fractional differential operators were
studied. In [18], the authors derived existence and uniqueness results for Hilfer-Hadamard
fractional differential equations supplemented with non-local coupled Hadamard fractional
integral boundary conditions. In [19], the authors investigated a non-local coupled system
of Hilfer-type generalized proportional fractional differential equations. A coupled system
of fractional differential equations involving (k, ¢)-Hilfer fractional derivative operators
complemented with multi-point non-local boundary conditions was discussed in [20]. For
some properties of (k, )-Hilfer fractional differential operators, we refer the reader to the
article [11]. However, it has been observed that the literature on systems of (k, ¢)-Hilfer
fractional differential equations is scarce and needs to be developed further.

Motivated by the work presented in [20], in this paper, we study a (k, ¢)-Hilfer—
type coupled system of nonlinear fractional differential equations equipped with nonlocal
ordinary and fractional integral boundary conditions given by

t

KHDSBY () = T1y ( ¢, (8), | ¢'(s)@(s)ds |, t € (ap, byl
ag
t

KHDPaY o (1) =TT ( t,@(t), | ¢'(s)7(s)ds ), t € (ap, bol,

ag

m(ag) =0, 7t(by) = Zyl/ ds—l—zg k%% o (2 i) M

]

@(m) =0, @(bo) =Y n /m PO+ T 0 (G,
Ja u—1

where #H D4, KHDPa¥ denote the (k, ¢)-Hilfer fractional derivative operator of orders
a,p, 1 < a,p < 2 and parameters 5,49, 0 < B,9 < 1, respectively, 11,11,
[a9, by] x R? — R are continuous functions, XI?/¥,[€«¥ are the (k, ¢)-Riemann-Liouville
fractional integrals of order P, €u > 0, respectively, y;, ¢ is 7,6y € R,and ag < irZjs Y1, Cu < by,
i=12...,nj=12....ml=12...,vyu=12,... A

Here, we emphasize that the objective for considering the problem (1) is to enrich
the literature on coupled systems of nonlinear (k, ¢)-Hilfer type fractional differential
equations. In [12], the authors discussed the existence of solutions for a (k, )-Hilfer-type
fractional differential equation supplemented with non-local integro-multi-point fractional
boundary conditions. In the present work, we go a step further to address the investigation
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of a coupled system of (k, p)-Hilfer type nonlinear fractional differential equations com-
plemented with coupled non-local ordinary and fractional integral boundary conditions.
Moreover, the problem at hand is a generalized form of the fully coupled nonlinear non-
local multi-point boundary value problem of (k, »)-Hilfer fractional differential equations
discussed in [20]. Thus, the work established in this article fills the gap in the literature
on (k, p)-Hilfer type non-linear fractional differential systems with coupled boundary
conditions.

It is imperative to mention that the (k, )-Hilfer fractional derivative is the most
generalized version of the Hilfer derivative, and it specializes to (k, )-Riemann-Liouville,
(k, p)-Caputo, k—Hilfer-Katugampola, and k-Hilfer-Hadamard-type fractional derivative
operators—for details, see [11,12]. An example of a physical system modeled by means
of the Hilfer fractional derivative is described in [21], while the Hilfer fractional advec-
tion—diffusion equation with the power-law initial condition is studied in [22]. In [23,24],
the Hilfer—Prabhakar and Hilfer fractional derivatives are used to model filtration pro-
cesses. In a recent work [25], the authors discussed the attractivity for Hilfer fractional
stochastic evolution equations. One can find the application of Hilfer fractional derivative
operator in the cobweb economics model in [26]. The concept of the (k, ¢)-Hilfer fractional
derivative operator is quite a recent one, and it is expected that the models based on the
Hilfer fractional derivative operators will be considered with the (k, iy)—Hilfer fractional
derivatives to find more insight into these models. For the application of (k, )-Hilfer
fractional derivatives in variational problems, see [27].

We make use of Banach’s contraction mapping principle and the Boyd-Wong fixed
point theorem for nonlinear contractions to prove the uniqueness results for the problem (1)
under different criteria, while the existence results for the given problem are established via
alternative of Leray-Schauder and a fixed-point theorem due to Krasnosel’skii. Examples
have been constructed for illustrating the main results. It is worthwhile to mention that our
results are novel in the given setting and produce several new results as special cases, for
details, see the Section 5.

The remaining part of the paper is organized as follows. In Section 2, some known
results are recalled. Also, an auxiliary result concerning the linear variant of the system (1)
is proven, which facilitates transforming the nonlinear boundary value problem (1) into an
equivalent fixed point problem. Section 3 contains the existence and uniqueness results for
the problem (1), while Section 4 is devoted to the examples demonstrating the application
of the results obtained in Section 3. In the last section, we discuss some interesting special
cases of the problem under investigation.

2. Preliminaries

Let us begin this section with some definitions related to our study.

Definition 1 ([10]). Assume that i : [ag, by] — R is a function with ' (t) # 0 forall t € [ag, by]
and increasing on [ag, by]. Then, the (k, ¢ )-fractional integral of Riemann—Liouville type of order
a >0 (a € R)ofa function w € L([ag, bo], R) is defined by

krkl(lx) /ut @' () (p(t) — p(u)Ew(u)du, k >0,

() =

sk
where Ty (t) = [5° s le * ds.

Definition 2 ([11]). Assume that € C"([ag, bo], R), ¢'(t) # 0,t € [ap, by], w € C"([aog, bo], R),
and o,k € RT = (0,00), B € [0,1]. Then, the (k, )-fractional derivative of the Hilfer type of the
function w of order a and type B is given as

& B: nk—a); k d\n —B)(nk—u); 18
L Db (1) — FEl )¢<¢/(t)$> HOZP Oy, = 4],
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o) = *mwy(r+ W —v@) T

Now, an auxiliary result is proven for a linear variant of the (k, ¢)-Hilfer integro-multi-
point nonlocal fractional system (1).

Lemma 1. Let ag < by, k > 0,1 < a,p < 2,B8,9 € [0,1], x = a+ B(2k — a),
wy = p+q(2k — p) and 7, € AC?([ag, bo], R) and hy, hy € AC([ag, bo], R). If

A= A1AL— A2A3 #£0, )
then the unique solution of (k, )—Hilfer integro-multi-point nonlocal fractional system:

k,HDDC,/g;l/’T((t) = ]/ll(t);
KHDPAY o (1) = hy (¢

v : A
®(a) =0, @(b) =Y 7 / () (s)ds + Y 8y KIS (2,

I=1 - u=1

is given by

kIa;t,bhl (t) + (p(t) grlfgf;)))k

A4 ( Yo [y P has)ds
i=1 o

m ) ) v v .
-+ Z g] k1¢/+p’lph2(2j) — kla’lplﬁ (bo)) + Ap < Z g / l lpl(s)kllxrlphl (S)ds
4 I=1

j=1 ap

+ / (4)

A
ou kleuﬂ;q}hl(gu) - klp;¢h2(b0)>

u=1

and

AT (wy)

Y 6 KLy (2,) — klp"lphz(bo)> + 45 ( Y [ I (s)as

u=1 i=1 0]
+i§jk1‘/’1+p””’h2(z]~) —kl”‘;l/’hl(bo)) , (5)
j=1
where
a (o) = pla) E
! T () ’
w W t9;
S () — ) () —lag) F
AZ = k; ]’ll rk<wk+k) +];€] F(Wk+4)]> ’
S ) —pa)t & (@) — la) T
A = kl:17'l 1-‘k(tk'f'k) +u§15u r(tk+€u) ’
(b)) — p(ag)) ¥
A = Ty (wy) ’ ©)
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Proof. Let (71, @) be a solution of the system (3). Applying fractional integral operators
k1%% and K1P?¥, respectively, on both sides of the first and second equations in (3), we get

— (ag)) E1 —wla)) E2
() =19 1) + o LT HOE o (O o
and N .
@(t) = 1Py (1) + do ((t) — ¢(ap)) * " +dy (p(t) — p(ag)) ¥ 2 ®)

Ty (wy) I'e(wi — k) !

where ¢, c1,dp and d; are unknown arbitrary constants.

By the conditions n(ap) = 0 and @(ap) = 0 in (7) and (8), we get c; = 0 and
dy = 0, since f —2 < 0,% —2 < 0. Inserting (7) and (8) with ¢; = 0 and d; = 0 in
the boundary conditions:

Z‘uz/ s)ds + ZC]kI‘PJ lpa)(z])

=

and

14 Y1 A
= Yon [T W EmEds + Y 8 e (@),
=1 -

u=1

together with the notation (6), we obtain

n m
A1C0 —Azdo = Zy,/ IPlth )dS+ Zg] k1¢f+p;¢h2(2j) —kla;lphl(bo),
i=1 j=1
A
—Aszco+ Agdy = Zi’l/ le lPh1 )dS + Z Sy k16“+a;lph1 ((;‘,’u) — klp;lphz(b()). 9)
u=1

Solving system (9) for ¢y and d, we find that

m
A4 (Z Ui /ﬂ IP ‘th (s)ds + Z Cj kI¢j+P;l/)h2(Zj) _ kI""'lPh1(bo)>

cp =
j=1
A
A
° (2” / $)“ 1k (s)ds + Zéukleuwwhl(gu)_klp;lphz(%))
u=1

L 1i . m . )
+A3 <Z Vz’/ @' (s) 1PV hy(s)ds + Y ¢ K197 PV iy (27) — kl“’lphl(bo))] .
i=1 a0

j=1

Substituting the values of ¢y, ¢; and dy, d; in (7) and (8), respectively, we obtain the
solution (4) and (5). By direct computation, we can easily show the converse. [

3. Existence and Uniqueness Results

Let the Banach space of all continuous functions 7, @ from [ag, by] to R endowed with
the norm ||7t|| = max{|7(t)|,t € [ap, bo]} and ||@| = max{|@(t)|,t € [ap, bo]} be denoted
by X = C([ao, bo],R). Then, the product space (X x X, ||(7,@)||) is a Banach space with
norm [|(7, @) = ||| + [|@]-
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In view of Lemma 1, we define an operator W : X x X — X x X associated with

system (1) by
W(rm,@)(t) = ( &iﬁﬁgigg > "

where

+

W, (7, 0)() = kzwnl(m /¢ ds>
(Zyll kll“/’Hz(s,cO / ¥ (x dx>

+ 3 i (500, [ v 6)n(s)s)

j=1

kT, (bo, (by), /{1:0 1/)’(5)(0(5)515))

<Zrl/a kI“"’l'Il(s (s / P (x)o(x )dx)d

+ Z 8, Kreutevry, (a,, (&), /aou ¢’(s)w(s)ds>

u=1

—kPYTL, (bo,co(bo), /ﬂ:o 1p'(s)7r(s)ds> ) ] , (11)

and

t B %
Wa(m,@)(t) = kI”””Hz(t,cD(t),/ 1p’(s)7r(s)ds> + (lp(t)AFlf((Z)i)))

(Zr, /ﬂ s) k1% ”’Hl( s),/az ¢’(x)w(x)dx> ds

+ Z 8, ket (cu, 7(Gu), /H f ¢’(s)w(s)d5>

u=1

ap

< 2 " /H kIP Y11, (S @(s / P’ (x (x)dx) ds

+ Z g] k1¢j+p;lpH2 (Z]',(D(Z]‘), /Zj 1[]’(5)7‘[(5)[15)

j=1

kg, (bo, 7(by), /Q:O 1p’(s)co(s)ds> )1 . (12)

For the sake of computational convenience, we use the notation:

Qo = 9(bo) —¥(ao),
%1

I of
O T La+n AL l'“'rkwk)

ki, (bo,w(bo), / " lp’(s)n(s)ds,‘))
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Y _ + Eulj»uc
+A2<kz;fn|("’”§1(aﬁ(§zi) +ZI5| gue —I—z(x—l—)l)c) >]

,_1 P
Qy Q5
= A
@ = AN l' SVPENy

Pjtp

n A P+l e
G e e |

D1

& = ['Aﬂrk(ﬁk)

+44] (erl f;i? L Z 18ul gl‘e fiﬁ;{);ﬂ
Q= n(gi ot |A(~|)192<:k> ['Al'rk& b

i S g )]
Q= Ql—rk(fék) Qi =0~ k(fik). 13

3.1. Uniqueness Results

Firstly, we prove the uniqueness of solutions for nonlocal (k,y)-Hilfer fractional
system (1) by applying Banach’s contraction mapping principle [28].

Theorem 1. Let ITy,T1; : [ag, bg] x R? — R satisfy the following condition:
(Hy) there exist constants m;, n;,i = 1,2, such that, for all t € [ag, bo| and x;,y; € R,i =1,2,
[Ty (t, %1, x2) = TT1(t, y1,y2)| < mylxg —ya| +ma|x2 — ya|,
and
[TIx(t, x1,x2) — I (t, y1,y2)| < milxq — ya| + nalxo — yol.

Then, the nonlocal (k,)—Hilfer fractional system (1) has a unique solution on [ag, bo],
provided that
Qol(Qu + Q) (m1 +ma) + (Q2 + Qa) (1 +n2)] <1, (14)

where Q;,1 =0,1,2,3,4, are given in (13).

Proof. Let us first show that WB, C B,, where the operator W is defined in (10) and
B ={(m,@) e XxX: ||(r,®)] <r}, with

. s (Q1+Q3)N + (Q2+ Q)N
T 1 [(Q1+ Q3)(mq + Qoma) + (Q2 + Q4) (11 + Qonz)]”

SUP ¢ (a4 bo] I11(£,0,0) = N < oo, SUP ¢ {20, bo] IT,(+,0,0) = N1 < oo. Then, we have

(500, [ ¥ e

IN

’Hl (t,n(t),/ﬂ: tp’(s)w(s)ds) _ Hl(t,0,0)‘ + |TT,(£,0,0)]

/: () (s)ds

IN

mq || 7t|| + mo +N
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< my||m]| + maQol|@]| + N,
and similarly
t
Hz(t,w(t),/u 1p’(s)7r(s)ds> < m||@]| +n2Qo || 7t|| + Nj.
Next, for (77, @) € By, we obtain
Wi (7, @) (8)]
t k-1
o , () — $(a0)) *
< 4 (1,00, [ g opelsyas) |+ L)
|A4|(Z|ul|/ ) 417411 (5,@(5), [/ () () ) s
3161410 (300, [ o/ (s)(s)as)
j=1 %
+k1a;¢ Hl (bo, TT(bo), /bo lp’(S)(@(S)dS) )
+|Az|<2|n|/ Jore n1<s (s /w >dx) ds
+ L b 41 (e, [ 0 o)
u=1 a0
412 1 (s, @(to), [ 9/ (o)(s)s ﬂ
< O il maulel + N
= T+ k)t 20
,_1 4
Qg () - P(ag)) k!
+|A|F 0 |A4|< [n1]|@]| +n2Qol| 7 || + N Z|% Te(p -+ 2K)
(9(z)) — plap)) 5
+[mll@] +mQoll 7l + Nij ]Zlm e +p°+k)
O el + maQoll@l + N
Te(a+ k)0 20
_ 1
2] (k[mmn #maQulol +N] L | PO HE
+[my || 7t]| + mpQol|@|| + N Z |Ou v (Cu()e;fiﬁi)k
il + ol + N2
Tr(p+k)
1 @
Qg Q Qs
< {rkmk) " AT ['A“r <zx+k>
v () — plao)E T —p(a0)) "%
+|A2|(klzzllfyl| Fk(uc+2k) + Z |§ | eu—|—a+k) )]}
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x [m || 7t]| + m2Qol|@]| + N]

ol Qs (1) — lag)) !
+{|A|rk<tk> ['AZ' A0 >+'A4'<"2'”' Te(p+26)

Pjtp
—9(ao)) ¥
- 2 |€] gb +p+k) >

}[”1”@” + n2Qol| 7| + Np]

Q1 [my||7t|| + Qomaz||@|| + N] + Qz[n1||@|| + Qonal| 7|l + Ni]
(Qumy 4+ QoQana) ||| + (Qan1 + QoQuimy)||@]| + Q1N + Qo Ny
(Qimy + QoQanz + Qony + QoQimy)r + Q1N + Qo Nj.

IA

Similarly, one can find that
(Wa (7, @) (t)] < (Qami + QoQanz + Qany + QoQama)r + Q3N + QuNi.
In view of the foregoing inequalities, we obtain

W (7, @) W1 (7, @) + [[W2 (7, @)

< [(Q1+Q3z)(my + Qomyz) + (Q2 + Q4) (11 + Qonz)]r
+(Q1+Q3)N+(Q2+Q4)N; <7,

which implies that WB, C B,.
Now, we show that the operator W given in (10) is a contraction. For (71, @3),
(7'[1, (Dl) eXxX,andt € [ﬂo, bo], we get

|W1 (712, @2)(t) — Wy (7t1, @1)()]

(1m0, [ ' Gesslds) (1), [ ¥ o)

(p(t) — 1)”(”0))1zc | Ad| ( Y W1|/ s) k1P |11, (s @, (s / P’ (x) o (x )dx)

< kIDé;llJ

+

| ATk (t)

1t (s,@1(5), [/ (51 ()

I M1 1 (5, @), [ ) )

j=1

—II, (z]-, @1(z)), /Q:] t,b'(s)m(s)ds)

(b, ma(to), | b ¥ s)@a(s)ds) 11 (b, k), | b Vo))
+A2<2|Vz|/ 1] (5, ma(e), [ 9/ (Wiea(x)

-1 (5, (o), [ ¢/ (vjo ()i

A Su
+ Yl e (e ma), [y ©@als)as)

u=1

ds

_|_k10(;1[l

)

ds

-1 (60 e, C ¥ s)ar(s)is

+kppiv

)

I, (bo,wz(bo), /a :0 1//(5)7'[2(5)015) —H2<b0,a>1(b0), /ﬂ :” tp’(s)nl(s)ds>
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Q Q! Q}
{rk@flk) My l"“'rk(zxik)
L () — Plag)) T cu — ¢(ag))
+A2<"l§'”| (o + 26) +Z|5” Ti(en + o+ ) )H

xQo(m1 |ty — 7ty || + m2||@2 —@1]])

o™ of bin) vt
+{|A|rk<t>l"“2' Ty + >+'A4'<"Z'”’ Te(p +28)

4’(00)) &5
+Z|€] <p+p+k) )

= Ql(m1||7fz — m|| + Qoma||@y — @1]) + Q2(n1]|@2 — @1]| + Qonazl|r2 — 1))
= (Qimi + QoQanz)||r2 — 11| + (Q2n1 + QoQimy)||@2 — @1]],

}Qo("1|@2 — @1 + nal|m — 111 |)

which yields

| W1 (2, @2) — Wi (7ry, @1)] < (Qumy + QoQana 4 Qony + QoQima) |12 — 11 || + ||@2 — @1 ] (15)

Similarly, one can find that

W2 (72, @2) — Wa(mry, @1)| < (Qamy + QoQana + Qany + QoQsma) (|12 — || + ||@2 — @1|]. (16)
From (15) and (16), we have
W (712, @2) — W (71, 01) ||
< Qol(Q1+ Q3)(my+mp) + (Q2 + Qa)(n1 + n2) (||t — m1|| + ||@2 — @1]]),

which, in view of the condition (14), shows that the operator W is a contraction. Thus,
by Banach’s contraction mapping principle, the operator W has a unique fixed point. In
consequence, there exists a unique solution to the (k, ¢»)-Hilfer fractional system (1). O

Next, we give our second uniqueness result for (k, »)-Hilfer fractional system (1),
which is based on a fixed point theorem for nonlinear contractions due to Boyd and
Wong [29].

Definition 3. Let E be a Banach space. Then, the mapping B : E — E is called a nonlinear
contraction if there exists a continuous and non-decreasing function Q0 : RT™ — R™ such that
Q(0) = 0and Q(t) < t for all t > 0 with the property:

IBx = Byl <Q(llx—yll),  Vxy€eE

Lemma 2 (Boyd and Wong [29]). Assume that A : E — E is a nonlinear contraction in the
Banach space E. Then, there exists a unique fixed point of A in E.

Theorem 2. Suppose that I11,I1; : [ag, by] x R2 — R are continuous functions such that

(t) |x1_}/1‘+|x2_]/2|

H t,x , X _H t/ 7 SF 4
TTy (8, x1, x2) = T (8, y1, y2) | F* + %1 — 1] + %2 — 2]

and

0, lx1 —y1| + [x2 — 2|

I t,x ;X —1II t/ s S 4
T (£ x1, x2) = Tha(t, 1, y2) | G + 1 — | + %2 — 2]
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fort € [ag, by] and x1,x2,y1,y2 € R, where F,G : [ag, by] — R are continuous functions, and
the positive constants F* and G* are given by

1

. ~ Qii
F* = M1 (bo) + |A|1(1 4|<Z|V | / (s) KIP¥TIy(s)ds
m
+ Y g K19 (2)) + <1 lle(bo)) + | Az ( Y Il / (s)FI%9TT4 (s)ds
=1

A
+ Z |5u| kleu-‘rol;lﬁnl(g”) —I—kIp;l/}HQ(bo)) ,

u=1

F1
k
x  _  kipy Q0 / k ;P
G IP¥TI,(bo) + AT, (w ) ( 71| I"¥I1y (s)ds
A
+ ) 16l kle“ﬂ"lpnl(éu)+k1p¢H2(bo)> + |A3|<Z | il / s)KIPATI, (s)ds
u=1 i

m
+ Y15 FITPI (2) + kl“’wﬂl(bo)ﬂ/

j=1

and

VI (y) = kv (y,rc(y),/aoy gb'(s)(o(s)ds),
VI (y) = FIPYIL, (y,a)(y),/uj w’(s)rc(s)ds),

k1% denotes the Riemann—Liouville (k, y)-fractional integral operator of order x.
Then, the (k, ¢)—Hilfer fractional system (1) has a unique solution on [ag, by).

Proof. Let us introduce the continuous and non-decreasing functions (1, (), : R™ — R™
defined by

F*t G*t
— =, Q=0+,  Vt>0.
F* +t 2(1) 1

04 (t) =
1) G* +t

Observe that (0;(0) = 0and Q;(t) < t (i = 1,2) forallt > 0.Forany (7, @;), (711, @1) €
X x X and for each t € [ag, by], we have

|W1 (712, @2)(t) — Wy (7r1, @1)(t)]
- k]tx;llf‘nl (t, 0(b), / t ¢’(s)w2(s)ds) _1m (t, i (b), /: w’(s)wl(s)ds)‘

((t) — lag)) ¥ !
AT () |A4|<E”l|/ klwnz(s @a(s /4’ Jma(x )dx>

1, (s,col(s), / tp’(x)m(x)dx)

+ Z |gj| k10t pY Hz( / >

[

+

ds
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)

+k1!¥;l/}

m (bo, 712(170),[z :0 ¢’(s)wz(s)ds> _1m (bo, 71 (bo), / j° o (s)ds)

+A2< |rl|/ kl'“pfh(s (s /llﬂ X)@a(x )dx>
—ITy (s, nl(s),/ao P (x)col(x)dx>

A &
+ ) (6] 1ot (éu,ﬂz(éu),/ ¢’(s)wz(s)ds>
u=1 ag

ds

11 (gu, (&), / f ¥ (s) @ (s)ds>

+kppv

I, (bo,a)z(bo), / :° lp’(s)nz(s)ds) —Hz(bo,wl(bo), / j“ w’(s)nl(s)ds>

kya |712(t) — 711 (t)| 4+ Qo (t) — @1(t)]
= w[w)mm(t)—m O+ ol (1) - <t>|]

)

%1

AQG |A4|<2 l [ 9/ (s)

|@2(s) — @1(s)| + Qolma(s) — m1(s)]
" {G(%* e v e o
" - |@2(zj) — @1(zj)| + Qolm2(z)) — 11 (z))]
Lk | G, i j i j
+3. || T +r lG( i) G* + |@2(zj) — @1(z))| + Qol|72(2)) — nl(zj)|]

k a; |7t2(bo) — 711(bo) | + Qol@2(bo) — @1(bo)|
e [F(bO)F* + |2 (bo) — 11 (bo)| + Qol@2(bg) — @1(b0)|D

Sy |72(s) — 71 (s)| + Qol@a(s) — @1(s)|
+A2<2'”' [ ¥ RO e T Gt o)

k peura;p 712 (Gu) — 1 (Gu)| + Qol@2(Gu) — @1(Eu)|
+u§ ul 15 [F@”)P* T 1m2(En) — (@] + Qol02(En) —cm(@)d

kip; |@2(bo) — @1(bo)| + [7m2(bo) — 711(bo)|
i {G(bO) G* + |@2(bo) — @1(bo)| + Qo2 (bo) — 7T1(b0)|]>]

j=1

IN

QoF 1Y {F(t) |2 (t) — m(t)] + Qo|@a(t) — @1(t)] }

F* + |m(t) — i ()] + Qol@a(t) — @1 ()]

|2 (s) — ( )\+Qo|ﬂ2( ) — m1(s)]
* {G(S)G* T 02(5) — @1 (5)] + Qolm2(s) — m(sﬂds

" . |@2(z)) — @1(z))| + Qo|ma(z)) — m1(z))|
| kyei+p . ] ] ] ]
Fy el l“ ])G*+|(Dz(zj)wl(zj)|+Qo|7T2(Zf)7T1(Zj)|]

ko |7t2(bo) — 111(bo) | + Qo|@2(bo) — @1 (bo)|
e [F(bO)F* + |mm2(bo) — 71 (bo)| + Qol@2(bo) — wl(bo)|D

« |72(s) — 7t1(s)| + Qo|@a(s) — @1(s)]
+A2<Z|rl| / * lp[ ()F*+|7T2(S)—7T1(S)HQ0|(D2(S)—(01(S)}ds
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A
k reutazp 712 (8u) — 1 (Gu)| + Qol@2(Gu) — @1(8u)|
L el [F(C”)F“rlﬂz(@u)—ﬂl(éu)+Qo|@z(€u)—w1(§u)|}

e [G@ __|@a(bo) —@i(bo)]| + |7a(bo) — i (bo)| m

u=1

0/ G+ [@a(bo) — @1 (bo)| + Qol 2 (o) — 711 (bo))|

IN

O (72 = ml + |2 = @111) f iy
- I*Y[E (bo)]

-1

3
L2
TTAIT

|A4|<2|m [M v riaas

+Z|€|k1"’f“’"’[G( P+ (bo)]>

j=

+A2< il [ WIS + 3 o 19 (G

u=1
+k1p;¢[G(bo)]> }

= Oq([Jro — 1y || + [|@2 — @1]]).

Hence, we get
W1 (72, @2) = Wi (7, @1)[| < Oq([[2 — | + [|@2 — 1))
In a similar manner, one can find that
W2 (72, @2) = Wa(m, @) || < Qa([[72 — 7| + [|@2 — 1 []).
Then, it follows from the foregoing inequalities that
[W(72, @2) = W (1, @1) || < Q([[72 — 1] + [|@2 — @1]]),

which shows that W is a nonlinear contraction. Hence, by Lemma 2, the operator W has a
unique fixed point, which is a unique solution to the (k, »)-Hilfer fractional system (1). [

3.2. Existence Results

In this subsection, we provide the criteria ensuring the existence of solutions for the
(k,y)-Hilfer fractional system (1). Our first result relies on the Leray-Schauder alternative [30].

Theorem 3. Suppose that:
(Hy) Ty, T1y : [ag,bg] x R? — R are continuous functions and there exist real constants
ki, v >0,i=1,2,and ko,vo > 0, such that, Vw; € R, (i =1,2),
ITT; (8, wy, wa)| < ko + ky|wi| + kz|wy],

[Ty (t, wp, wy)| < vo + v|wa| + va|ws|;

(H3) (Q1 4+ Q3)k1 + Qo(Q2 + Qa)va < 1 and Qo(Q1 + Q3)ka + (Q2 + Qa)vy < 1, where
Q;,i=0,1,2,3,4, are given in (13).

Then, the (k, ¢)—Hilfer fractional system (1) has at least one solution on [ag, by].



Axioms 2024, 13, 51 14 of 23

Proof. Evidently, W is continuous by the continuity of I'ly and Il;. Nex, we show that the
operator W is completely continuous. For that, let O, = {(7,@) € X x X : ||(7,@)|| <
r} C X x X'be abounded set. Then, by (H;), we have

IIIi(t,wy,wp)| < ko + kq|wq| + ka|ws]
< ko +ki([|7l| + @) + k2 Qo (7|l + [[@]])
<

ko + (kl + szo)r = L.

Likewise, we have that [T, (t, wp, wq)| < vo + (v1 +12Qo)r = Lo.
Thus, for any (71, @) € O, we have

(W1 (7, @) (t)]
0 Q' Q
< {Fk(l’élk) T |A|1qk(tk) l'A“'Fk(lek)
) B % 1 _ €u+ﬂ
+|Az|(k2|'n(l”("ﬁ(ﬂ;%) e ) }]L1
ol Ql
+{ |ATk(t) [|A2|Tk(r’+k)
) et
+|A4|<k2|yz #) (plfr(‘;‘;c))) - +Z|€] e f;ui);c) ) }LZ
= Qi1 + Qol,
and hence

[Wi(m, @) < Qili + Qollo.
In a similar manner, we can find that
[Wa(m, @) < Qslq + Qullo.
Therefore, we get
[W(m, @) = [Wi(7, @) || + [W2(7r, @)[| < (Q1+ Q3)L1 + (Q2 + Q4)La,

which means that the operator W is uniformly bounded. Next, let t1,t, € [ag, by] with
t1 < tp. Then, we have

(Wi (7t(t2), @(t2)) — Wy (m(ty), @(t1))]
[ @92~ 9E)E — ((t) — p()E )

Ja

IN

Ty (a)

<ty (5,765, [ 9/ )@l )as

+ [Ty ) - plentm (5,700, [ (e s
%1

ty

g

(p(t2) — ¢(ag)) *

k

— (p(t1) — 9(ag)) * ~

AT ()
A4<2m|/ 1791t (s.0(5), [ 9/ (1))

+

ds
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IN

m
+ Y 1gl K1t
j=1

I, (z]-,co(z]-),/ﬂzj lp’(s)n(s)ds) ’
m (bo, 72(bo), / :” zp’(s)co(s)ds) D
+|Az|<2|rz|/ $rw|im (5,7(5), [ o (et

"Cu
# 3 ta 1t (e, [ 90

u=1
T RO () = () +(p(t2) = (a0 = (p(t2) — plao) |

((t2) — P(a0)) T~ — (p(tr) — () F ! () — p(ag)) FH
|A4|(kL2;|VZI rk(P+2k)

+k10¢;lp

ds

o

1t (i, @(t0), | b V()(s)ds)

+
| ATk (tx)

AL 3
+Lo Y12 (r) ¥ (@) L )
=1

(¢j+p+k) Tl + k)
v () — lag))E ! — 9(ag)) 7
+|A2|<kLllZ;|r’| ll"k(tx+2?<) L Z [0 | K (€u +zxj—k)

14
Q4
Lo—"—= 1|,
M VrEy

which tends to zero as f, — t1 — 0, independent of (77, @) € O,. Hence, Wy (7, @) is equicon-
tinuous. The equicontinuity of the operator Wy (77, @) can be established in an analogous
manner. In consequence, we deduce that the operator W (7, @) is completely continuous.

To apply the conclusion of Laray—-Schauder alternative, we need to show that the set
{(r,0) e XxX:(m,0) = AW(r,®),0 < A <1} isbounded. Let (71, w) € E, then

E =
(7,

@) =

AW (7t, @). For any t € [ag, by], we have

() = AW, (11, @) (1), @(t) = AW, (7, @)(t).

Then, we obtain

o, o )
|(t)] < {Fk(a+k)+A|l" ) |A4|m

v ) — plag) — 9(a0) "5
*'A2'<k121'”' T 20 +ZI5| (e +a°+k> )”
x (ko + k1 || || + Qokz2 |||

o of pl) )
*{mrk(tk) 'Az'rk<p+k>”4<k2'”l Te(p+26)

Pjt+r
—(ag)) F
+Z|§] cp +p+k) >

}(Vo +u1l|@]| + Qoval|7||),
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o ! of

ol = {|A|rk<wk> {“rk(wk)
v () = plao) T & (@) — ()

HAl(";’”' VSR ML s s >H

x (ko + k1| 7t[| + Qokz||@]])
1

Qo Q;%’ of
+{Fk(p+k) AT (w) ['A”Fk(P‘Fk)
Pjtp
() — plao) EY e (9(z) = ¢lan)) F
+’A3<ki_21|”l ST R My W )]}
x (vo + vy l|@|| 4+ Qova|l7])-

In consequence, we get

7]l < Q1 (ko + k1 l|7t]| + Qokal|@]]) + Qa(vo + v1]|@]| + Qovall7]|),
and
@]l < Qs(ko + k1ll7t|| + Qokz||@) + Qa(vo + vi|@]| + Qovz| 7|),
which imply that
||| + (@] < (Q1+Q3)ko+ (Q2+ Qa)vo + [(Q1 + Q3)k1 + Qo(Q2 + Qu)1o]|| ||
+[Qo(Q1 + Q3)k2 + (Q2 + Qu)v1] @]

Thus, for any t € [ag, bp], we have

(Q1 + Q3)ko + (Q2 + Q4)vo

/(D < ’
(@) < o

where M) is defined by
Mo = min{1 — [(Q1 + Q3)k1 + Qo(Q2 + Q4)12], 1 — [Qo(Q1 + Q3 )ka + (Q2 + Q1] }.

Therefore, the set E is bounded. Hence, the (k, ¢)-Hilfer fractional system (1) has at
least one solution on [ag, bp]. O

Finally, we present our second existence result for (k, ¢)-Hilfer fractional system (1),
which is based on Krasnosel’skii’s fixed point theorem [31].

Theorem 4. Suppose that (Hy) and the following condition hold:
(Hy) There exist continuous functions P1, P, € C([ag, bo], R™) such that

ITLy (t, x,y)| < Pi(t), [TIa(t,y, x)| < Pa(t), foreach (t,x,y) € [ao, by] x R x R.
Then, the (k, y)—Hilfer fractional system (1) has at least one solution on [ag, by|, provided that
Qo[(Q1 + Q3)(m1 + m2) + (Q2 + Qp) (m +1n2)] <1, (17)

where Qo, Q2, Q3, Q7, Qy are given in (13).
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Proof. We decompose the operator W defined by (10) as W = Wy 1 + Wy o + Wy 1 4+ Wy,
where

Wia(m@)(t) = FIIL(t, 7(t), @(t), t€ [ao, bo),

_ %
Wio(m,@)(t) = (w(t)ArliEf:)))

A4(2yl / s) kIPHTI, <s @(s / Y (r (r)dr) ds
S LM (5,0, [ 6)rs)

j=1

ke, (bo, (o), / :° 1p’(s)co(s)ds>>
—i—Az Z”l/ I‘“”Hl(sn /1/) (r)d )ds

+ Z S k16u+a;‘l’H1 <§u, (&), /aou 1//(5)60(5)(15)

u=1

ke, (bo,w(bo), / " 1p'(s)7r(s)ds)>], t € [ag, bol,

ap

Wy (m,@)(t) = kI, (t,c@ (t ,/t zp’(s)rr(s)ds), t € [ag, bo),

a)) E-1
Walmo)t) = (lp(t)Arlf((wi)))

(21’1 /u s) k191, <s,7‘c(s), a: w’(r)w(r)dr)ds

+ Z 5, Krentavyy, <Cu, ﬂ((:u),/aju 1p’(s)c®(s)ds>

u=1

_kpivr, <b0, @(by), /:0 1p’(s)7r(s)ds>>

+A3 <Ii{ Wi /a:)h @' (s)FIPYIT, (s,(o(s), /a: l,b’(r)n(r)dr> ds

+ i gj k9P, (zj,w(zj), /Zj 1p’(s)7t(s)ds>

j=1
101ty (v o), [/ S)(s)as) ) ] t € [no, ol

Let B, = {(m,@) € XxX : ||(m,@)|| < p} be a closed and bounded ball with
p > (Q1+ Q3)|IP1|| + (Q2 + Q4)||P2|. For any (712, @3), (111, @1) € By, as in the proof of
Theorem 3, we have

|Wi 1 (7r1, m2) (t) + Wi p(@1,@2)(t)] < Q1l|P1| + Q2| P2,

|Wo 1 (71, 702) () + Wao(@1,@2) ()| < Qs]|P1]| + Qal| P2l
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Therefore, we get
[(W1,1 + Wo,1) (1, 2) + (Wia + W) (@1, @2)|| < (Q1+ Q3)lIP1] + (Q2 + Qu)llIP2]| <p,

which means that (Wq 1 + Wy 1) (711, 712) + (W12 + Wp ) (@1, @2) € Bp.
Next, we show that (W15, W) is a contraction mapping. Let (711, 712), (@1, @2) € By.
Then, we have

|W15(72, @) (t) — Wi (71, @1)(1)]

of ! “ ‘ Qi
| ATy (1) 4FAa+H

IN

a it u - fukJr'X

(“‘I‘Zk) rk €u+0(+k)
(m1||712 - 7T1|| + Qoma||@2 — @1]])
Lk,l P p
Qy Qo P(17;) — p(ag)) £
+{mwam[M”nw+kf”A“@2””' Te(p+20)
Pjtr
+ZM] ¢fff% ﬂ}@ﬂ@—wN+Qwﬂm—nm)
= Q1(m1||7T2 — 1y || + Qoma||@2 — @1]]) + Qa2 (n1||@2 — @1 + Qonal|7r2 — 711|])
= (Qimy + QoQan2) Iz — 71|l + (QoQima + Qany)||@2 — @1 (18)

Likewise, one can obtain that

(Woo(72,@2)(t) — Wap(rry, @1)(t)]
< (Qamy + QoQin2) |2 — m || + (QoQamz + Qyny)||@2 — @1][]. (19)

It follows from (18) and (19) that
(W12, W22) (72, @2) — (W12, Wap) (71, @1)|
< Qo (Qf +Qs)(m1 +ma) + (Qa + QD) +12) }(Ilmy — 72l + @1 — @),

which means that (W; 5, W5 5) is a contraction in view of the constraint (17).
Note that the operator (Wy 1, W5 1) is continuous, since IT; and I, are continuous,
and uniformly bounded on B, as

QO Q%

In the next step, we will show that the set (W, W5 1)B, is equicontinuous. For
ti,ta € [ag, bol, t1 < tp, and for any (71, @) € B,, we have

[|(W1,1, W 1) (mr, @) < || P ||.

[W1,1(7, @) (t2) — W11 (7, @)(t1)]

5® [ 96D E = i) -y

I, (s, n(s), /az ¢’(r)w(r)dr> ds

[l )t (s 7o), [y o) i

ap

IN

+
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~i=

A 20p(e2) = )+ p(12) = plao))E = (plo0) = o),

Fla+B)
which tends to zero as t; — t; independently of (77, @) € B,. Similarly, we can show
that [W; (71, @)(t2) — Wo1(mr,@)(t1)] — 0 as t; — tp independently of (7,@) € B,.
Thus, |(Wq1, Wy 1) (7, @)(t2) — (W11, Woq) (7T, @)(t1)| tends to zero, as t; — t. Therefore,
(W1,1, Wy 1) is equicontinuous, and hence (Wy,1, W5 ) is compact on B, by the Arzela-
Ascoli theorem.

From the preceding steps, we deduce that all the assumptions of Krasnosel’skii’s fixed
point theorem are satisfied and hence, it follows by its conclusion that the (k, y)-Hilfer
fractional system (1) has at least one solution on [ag, bp]. [

4. MMustrative Examples

Consider the following non-local coupled system for (k, ip)-Hilfer fractional differen-
tial equations with nonlocal multipoint integral boundary conditions:

W=l

H o4 2.42,-/2 t 2 14
Hp33 — c =
D33 n(t) =1L (t,?‘[(t),/z/gl,b (s)w(s)ds), te (9, 9|’

3 HP3, 32t/ _ /t / ) (2 14]
+Hp3s @(t) =1L ( to(t), ds |, tels ol
0 =h(Low), [ 6 2

2 14 1 [5/9] (s%e=/?) _s/2
x(9> =0, x(9> =25 Jo [2 + 2se @(s)ds

2 8/9 (52675/2) —s/2
+3 e |72 + 2se @(s)ds
3 [11/9 2,—5/2
S (5% +2s¢75/2 [ @ (s)ds
45 J2/9 2 (20)
2 o 3 e
i - k13/4,tze t/2a)(1/3) + = k14/5,t23 t/Z(D(13/9),

2\ 14\ 3 49| (s%e7/?) _s/2
y(9> =0, y(7> =37 ) [—2 + 2se 7(s)ds

4 [7/9 2,-5/2
9 o —(5627) +2se7%/% | @(s)ds
5 13/9 (526—5/2)

+ i - 7
61 J2/9 2

4 j5/6202 D ki6/7201/2
t5 I CD(Z/3)+62 I @(1).

+ 256_5/2] @(s)ds

Here, k = 5/4, 0« = 4/3, 8 = 2/3,p = 5/3,q = 1/3, ¥(t) = t2e7"/2, a0 = 2/9,
b=14/9n=3m=2,v=3A=2,u =1/25 yp =2/35, u3 =3/45,m =5/9,
o =8/9,n3 =11/9, 01 = 2/54, {p = 3/65,2z1 = 1/3,2z0 = 13/9, 1 = 3/4, ¢ = 4/5,
r =3/37,1=4/49,r3 =5/61,v1 =4/9,v% =7/9,v3 =13/9,6, =4/51,6, = 5/62,
¢1=2/3,80=1,€1 =5/6,€e; = 6/7. Using the given values, it is found that t% =19/9,
ws = 29/18, A1 =~ 0.9894137797, A, ~ 0.0737375203, A3 ~ 0.0833890039, A4 =~ 1.062508916,
A =~ 1.045112065, Q1 =~ 1.067507459, Q1 =~ 1.649053094, Q, =~ 0.0681355524,
Q3 ~ 0.1370135866, Q4 =~ 1.425499425, Q7 ~ 0.8286319543, Q; ~ 0.7156209862.

(a) For illustrating Theorem 1, we take Iy, T1, : [(2/9), (14/9)] x R? — R as

e—(91-2)° (87T2+9|7t|> 1.3

t /
Hl<t’n(t)’/z/9¢(s)w(s)ds> T 209t +1)3\ 147 3115

t _s2e—s/2
— 4 2se %2 | @(s)ds
/2/9< 2 (s)

+- sin? , (21)
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2,—5/2

fzt/g (—sez + 2565/2> 7t(s)ds

9t +7
cos?(t+1/2) [ @* + |@| 1, 1
—t
s ( 1+ @] )+4 *

sin

(L), [ ¢omEs) -

3 (22)

Notice thatm; =1/6,my =1/7,n1 =1/9and n, =1/8 as
1 1
[Ty (t, 711, @q) — T (t, 712, @2) | < 8|7T1 — 1| + 7|@1 — @3],

and 1 1
[T (t, @1, 71) — [ (t, @2, 712)| < §|7T1 — mo| + §|(D1 — @/,
for all 711, 715, @1, @2 € R. Moreover, we find that

Qol(Q1 + Q3)(my +ma) + (Q2 + Qa) (11 + n2)] ~ 0.966621574 < 1.

Thus, by Theorem 1, the (k, y)-Hilfer fractional differential (20) with ITy and I,
defined by (21) and (22) respectively, has a unique solution on [2/9,14/9].
(b) Let the nonlinear bounded functions I1y,T1, : [(2/9),(14/9)] x R? — R be

given by
t 67(9t72) 4 1
I / _ -1 4
1(t,7t(t),/2/91p () (s)ds) = tan |+ 4
_2,-s/2
fzt/g (SZ —0—2535/2>a)(s)ds
% o —s2es/? ! (23)
1+ [0 — +2se75/2 | (s)ds
t
Hz(t,w(t),/2/9 PER(s)as) = o cos’|@] + 2+ gsin(t+7/2)
_2,-s/2
fzt/g (S; + 256‘5/2> 7t(s)ds
X (24)
; 752e—s/2
T+ [0 — +2se75/2 | 71(s)ds
Note that I'l;y and IT, are bounded as
-0 1 4 1 3 2
e
<t 4 - 4= < s 2 4=
Ty (¢, T, @)| < = tseg e III(t, @, )| < 5 sin(t 4 7t/2) + 013

and 3 1
T (t, 7t1, @1) — T11 (¢, 712, @2)| < E|7T1 — | + 4\01 — @],

1 3
[Ty (t, @1, 111) — I (t, @2, 2) | < g|7T1 — | + %\601 — @3|.

Setting my = 3/10, my = 1/4, n; = 1/5 and np = 3/20, we find that Qo[(Q1 +
Q3)((3/10) + (1/4)) + (Q2+ Q4)((1/5) + (3/20))] ~ 1.606714996 > 1, which means that
Theorem 1 does not apply to the problem at hand. On the other hand,

Qo[(Qf + Q3)(my +m2) + (Qa + QF) (1 + n2)] ~ 0.8597916826 < 1.
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Therefore, it follows by the conclusion of Theorem 4 that there exists at least one
solution for the (k,y)-Hilfer fractional differential system (20) with IT; and I, given
by (23) and (24) respectively, on [2/9,14/9].

(c) Let the nonlinear functions Iy, 11, : [(2/9), (14/9)] x R? — R be expressed by

t 1 1 2
/ I S 2 2
I (t, n(t),/Z/glp (s)c@(s)ds) = orr1 + 3|7r| +gcostm

2 ,—s/2 150

f2/9<_s ° +2565/2>(D(s)ds

’ 25
—s/2 149 ( )

—SE
1+ fw(

t 1 1 1 _
Hz(t,a)(t),/z/g¢'(s)n(s)ds) = g to+ g el

—S e
f2/9<
s/2

fzt/g <_S€2 + 2565/2> 7t(s)ds

+25€S/2>w(s)ds

—s/2 17

+2ses/2> t(s)ds

T (26)

1+

Observe that
1 1 2 1 1 1
1 <+ |n|+= 11 <4+ clal.

Fixing ko = 1/3, ky = 1/3, kp = 2/5,v9 = 1/5, v1 = 1/4, 1, = 1/7, we have
(Q1+ Q3)k1 + Qo(Q2 + Q)v1 &~ 0.9939721801 < 1 and Qo(Q1 + Q3)ka + (Q2 + Qu)r2 =~
0.9760322269 < 1. Therefore, by Theorem 3, the nonlocal coupled system for the (k, )-
Hilfer fractional differential system (20) with Iy and I'l; defined in (25) and (26) respectively,
has at least one solution on [2/9,14/9].

5. Conclusions

In this paper, we have presented the existence and uniqueness criteria for solutions
of a system of (k, i)-Hilfer fractional differential equations complemented with non-local
multi-point integral boundary conditions. We first converted the given nonlinear problem
into a fixed-point problem and then applied the tools of the fixed point theory to prove
the existence and uniqueness results for it. Our results are not only new in the given
configuration, but also specialize to several new results for the given (k, i)—Hilfer fractional
differential system by setting different combinations of the terms in the given nonlocal
multipoint integral boundary conditions. Here are two examples for the specialized non-
local integral boundary conditions.

(i) Owur results correspond to the boundary conditions: (ao) = 0,w(ap) = O,
w(by) = YIqu f”’ s)ds,@(bg) = Y1 [/ (s)7(s)ds if we take
i=0Vvj=1,...,m and (51, = O Vu =1,...,A,in the results of thls paper.

(i) Bytakingu; =0,Vi=1,...,nandr; =0,VI =1,...,v in the obtained results, we get
the ones associated with the boundary conditions of the form:

7t(ag) = 0,@(ag) = 0, 7t(by) = Za “iYa(z), (fm)zﬁéu Krend ().
j=1 u=1

Thus, our work is significant in the sense that it not only enriches the literature on
nonlocal boundary value problems of (k, {)-Hilfer fractional differential systems equipped
with non-local coupled multi-point integral boundary conditions, but also it covers a variety
of special cases. In future, we plan to investigate the existence of solutions for a system
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of (k,p)-Hilfer fractional differential inclusions subject to non-local multi-point integral
boundary conditions and impulsive variant of the problem (1).
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